Книга: Чего не знает современная наука (интересно о важном)
Назад: Чего не знает современная наука
Дальше: Вселенная как ответ

Загадки нашего мира: время, пространство и материя

Привычное, прочное и устойчивое здание науки и представлений о мире в начале XX века рухнуло. Ему на смену приходит другое понимание, основанное на новых данных и наблюдениях и полностью переворачивающее наше видение мира. Но насколько новыми являются эти представления?

К концу XIX века было почти завершено здание классической науки, которая родилась из соединения опыта, полученного человеком в повседневной жизни, и логического вывода. Ее успехи были очень впечатляющими, и это породило иллюзию всемогущества человеческого разума. Законы классической физики резко противоречили традиционным представлениям о мире, которые содержатся в мифах и учениях древних мудрецов. Из-за этого мифы стали рассматриваться как забавные истории, не имеющие отношения к реальности, а учения философов интересны были лишь с исторической точки зрения.

Однако открытия XX века показали, что, когда речь идет о явлениях природы в масштабах, намного отличающихся от привычных для человека, не всегда можно достичь ясности и отчетливости интерпретации опытных данных, основываясь на логике и здравом смысле. Это масштабы атомных явлений, а также процессов, которые идут в космосе и охватывают звезды, галактики и их скопления.

От классической к релятивистской физике

В XVII веке Исаак Ньютон сформулировал концепцию пространства и времени классической физики. Согласно этой концепции, пространство и время обеспечивают абсолютную и неизменную невидимую платформу, которая дает Вселенной порядок и структуру. К концу XIX века на этой платформе было возведено здание классической физики. Стало казаться, что к этому времени большинство фундаментальных принципов природы прочно установлены.

Однако первое десятилетие XX века стало поистине революционным. Классические представления о пространстве, времени и реальности, которые до этого были привычными и интуитивно ясными, вдруг уступили место новым представлениям, трудно понимаемым и далеко не очевидным с точки зрения нашего повседневного опыта.

В нашем жизненном опыте нет места движениям с очень большими скоростями, такими, как скорость света (примерно 300 000 км/с). А тем не менее именно изучение свойств движения с такими скоростями привело к пониманию того, что классические представления об абсолютности пространства и времени невозможно применять для описания этих свойств. В результате как пространство, так и время перестали быть абсолютными, а стали обладать свойствами, зависящими от наблюдателя. В частности, результаты измерений расстояний и длительности оказываются различными для разных наблюдателей, если они движутся с разными скоростями относительно той сцены, на которой разворачивался физический процесс. Более того, эти результаты зависят и от массы тел, которые находятся рядом с этой сценой. Здание теоретической физики зашаталось, так как законам природы, описывающим явления в пространственной протяженности и временной длительности, грозила утрата универсальности.

Вернуть абсолютный характер физическим законам удалось Альберту Эйнштейну. Он предложил так называемый специальный принцип относительности, хотя и не очевидный с точки зрения повседневного опыта, но обладающий общностью и красотой математических следствий: все физические процессы (в инерциальных системах отсчета) протекают одинаково, независимо от того, неподвижен ли наблюдатель или находится в состоянии равномерного и прямолинейного движения. Как следствие этого принципа, скорость света для любого такого наблюдателя одинакова, независимо от того, движется он относительно источника света или покоится.

Новая физика строилась в четырехмерном пространстве-времени, в котором три координаты – привычные пространственные, а четвертая – время. Для разных наблюдателей мир выглядит по-разному (у каждого из них – своя пространственная и временная шкалы), однако во всех системах отсчета неизменной остается величина, связанная с координатами двух событий в пространстве и времени. Она зависит как от разности пространственных координат точек, в которых происходят эти события, так и от временного промежутка между ними. Эта величина получила название «релятивистский интервал». Постоянство этого интервала можно интерпретировать как неразрывную сплетенность пространства и времени. Новые формулировки физических законов позволили предсказать, какими пространственно-временными характеристиками будет обладать физическое явление для любого наблюдателя. Физическая картина мира усложнилась, но сохранила свое единство, хотя это единство и спрятано за ширму математических преобразований.

Еще одним следствием теории относительности стало открытие того, что энергия и масса взаимосвязаны и могут превращаться друг в друга. Это можно интерпретировать так, как будто эти две физические величины суть разные «ипостаси» единой энергии-массы. Это следствие стало основой атомной и ядерной энергетики и прекрасно подтвердилось в экспериментах.

Через несколько лет Эйнштейн расширил специальный принцип относительности до общего: в нем утверждается, что все физические законы протекают одинаково для любых наблюдателей – движутся ли они относительно наблюдаемой сцены равномерно, или с ускорением, или покоятся. Для этого ему пришлось постулировать, что силы гравитации и силы инерции, которые действуют на тело, движущееся с ускорением (относительно инерциальной системы отсчета), имеют единую природу, и объяснить ее искривлением пространства-времени, зависящим от массы окружающей материи. Это разрешило одну из загадок классической физики, в которой как в законе инерции (второй закон Ньютона), так и в законе всемирного тяготения используется одна и та же величина – масса тела.

В самом деле, мы привыкли, что любое тело, на которое не действует сила, движется по кратчайшему пути. Для пустого пространства эти пути суть прямые линии, в классической физике по таким прямым траекториям распространяется световой луч. Поэтому обычная евклидова геометрия – это геометрия пустого пространства. Однако наше физическое пространство заполнено массивными телами. Как показывает опыт, световые лучи искривляются под действием гравитации. А. Эйнштейн предложил заменить действие гравитации на искривление пространства.

Разница между классической и релятивистской реальностью проявляется только в условиях чрезвычайно больших скоростей и гравитации, а для условий, в которых мы обычно действуем, ньютоновская физика дает очень точное приближение, полезное во многих ситуациях. Однако, по словам Б. Грина, «полезность» и «реальность» – совсем разные категории.

Квантовая реальность

Квантовая физика описывает новую реальность в масштабах, сравнимых с размерами атомов. Она началась с попыток сформулировать законы излучения света. Однако наблюдаемые эффекты никак не удавалось объяснить с классических позиций. Для устранения противоречий Макс Планк в 1900 г. предположил, что электромагнитные волны (свет) излучаются порциями; он назвал их квантами.

Далее последовали эксперименты по фотоэффекту. Еще в 1887 г. немецкий физик Г. Герц обнаружил, что под действием света вещество может испускать электроны. По классическим представлениям, чем больше амплитуда волны, тем больше ее энергия и тем больше электронов она должна выбивать. В экспериментах же все было не так: электроны выбивались только светом с частотой выше пороговой, а свет сколь угодно большой интенсивности, но с частотой ниже порога, никаких электронов вообще не выбивал. Это странное поведение света было теоретически объяснено Эйнштейном в 1905 г.: он предположил, что свет не только испускается, но и распространяется порциями (квантами), названными позднее фотонами и имеющими свойства частиц.

Еще один парадокс, расшатавший основы классической физики, – невозможность объяснить структуру атома. В 1896 г. было открыто явление радиоактивности, через год открыт электрон, а в 1911 г. благодаря опытам Резерфорда обнаружено, что атом состоит из необычайно малого ядра и вращающихся вокруг него электронов. Чтобы представить себе соотношение размеров ядра (10-13 см) и атома (10-8 см), увеличим атом до размеров комнаты – тогда ядро будет едва заметной точкой.

В результате классические представления о твердом теле как об области пространства, заполненной сплошной материей, были заменены на представления о «пустоте», в которой движутся чрезвычайно малые частицы – ядра атомов и электроны. Предполагалось, однако, что эти частицы обладают чрезвычайно высокой плотностью. Новое содержание получило учение Демокрита, утверждавшего, что в мире нет ничего, кроме атомов и пустоты.

По классическим представлениям, чтобы электрон не упал на ядро, он должен с сумасшедшей скоростью вращаться вокруг него. Но, вращаясь, электрон испытывает ускорение (направленное к центру орбиты) – а ускоряющиеся частицы, согласно законам классической электродинамики, непрерывно излучают электромагнитную волну, а значит, теряют энергию. Электроны должны практически мгновенно (за 10-11 секунды) упасть на ядро! Для объяснения устойчивости атомов было предложена еще одна «квантовая» идея: излучение электрона в атоме может происходить только дискретными порциями. Развитие этой идеи позволило описать частоты линий спектра электромагнитных излучений веществ.

Корпускулярные свойства света проявились и в эффекте А. Комптона (1922 г.): оказалось, что свет может рассеиваться электронами, при этом и электрон, и свет ведут себя подобно абсолютно упругим шарикам. Итак, «сумасшедшая природа» придает свету свойства то волны, то частицы – в зависимости от условий его регистрации.

В 1924 г. Луи де Бройль предположил, что такие свойства характерны не только для света, но и вообще для всех объектов микромира. Если эта гипотеза верна, то движение частиц атома нельзя описывать в классических понятиях траектории (орбиты).

Поток электронов, проходящих через щель, регистрируется на экране. Частота попадания электронов в точку y экрана изображена в виде графика функции z(y), изображенного зеленым цветом. Помимо размытого максимума напротив щели имеются и более слабые максимумы, куда электроны не могут попасть, если предположить, что они являются частицами.

Эта идея прекрасно согласуется с опытом, в котором электроны, которые всегда считались «частицами», один за другим «выстреливались» в сторону диафрагмы в виде щели, за которой располагался экран. На экране фиксировались точки, в которые попадали электроны, прошедшие через щель. Если бы электроны были частицами, на экране была бы четкая область, в которую попадали бы частицы, движущиеся по прямой через щель. В реальности же электрон попадает в любую точку экрана, причем в одни области чаще, а в другие реже. Частота попаданий электронов в разные площадки экрана на рисунке показана кривой зеленого цвета. Форма этой кривой полностью совпадает с формой интенсивности волны (световой или волны на поверхности воды), проходящей через щель. Это заставляет отказаться от понятия частицы, движущейся по траектории: вместо нее в современной физике используется представление о некоторой «волне вероятности», которая и распространяется как будто «вместо» частицы, огибает щели экрана, а затем порождает фотон в том или ином месте в соответствии с математическими законами.

Но волна не имеет конкретной координаты, она размыта в некоторой области пространства. На смену представлениям о точечных частицах материи (локальность) приходит «нелокальность». Удивительно, что при регистрации координаты электрона на втором экране «нелокальность» электрона мгновенно сменяется четкой локальностью – электрон-волна мгновенно сворачивается в точку, фиксирующую след от электрона на втором экране. Это свойство получило название редукции волны при измерении.

Однако такая интерпретация редукции волны грозила нарушить свойство причинности. Мы привыкли, что каждое событие имеет свою причину: например, разбитая ваза на полу возникла потому, что ее откуда-то бросили или столкнули, причем сначала ее столкнули, а потом она разбилась. От момента действия причины (толчок вазы) до следствия (ее разбития) обязательно должно пройти какое-то время, затрачиваемое на преодоление пространства, разделяющего причину и следствие. Однако в квантовом мире все не так просто – в рассмотренном примере следствие наступает одновременно с причиной, как бы далеко одна от другой они ни находились. Действительно, в момент измерения все «части» электрона-волны, размытого в пространстве, мгновенно собираются в точку на экране в момент измерения его координаты.

Для демонстрации парадоксальности квантовой реальности А. Эйнштейн, Б. Подольский и Н. Розен придумали мыслительный эксперимент, в котором проверялось это свойство нелокальности квантового мира: описывались две частицы, разнесенные в разные концы Вселенной, и показывалось, что наблюдение одной из них в случае наличия нелокальности мгновенно скажется на состоянии другой. В 1964 г. Джон Белл предложил формулировку парадокса Эйнштейна – Подольского – Розена, допускающую непосредственную экспериментальную проверку. Эксперимент был поставлен в 1982 г., и он показал, что мир действительно таков, что в нем одна частица «чувствует» измерения, проведенные над второй. Приходится признать, что наш мир не есть набор локальных атомов-«кирпичиков», пусть даже и связанных последовательно между собой; он сам по себе – единое целое, и то, что происходит в одной его части, в тот же миг меняет его в целом.

Итак, сказанное выше приводит нас к мысли, что в основе наблюдаемой реальности лежит «невидимая» квантовая реальность, которая становится «видимой» в ходе взаимодействия наблюдаемой и наблюдающей частей рассматриваемой системы. Однако в реальных ситуациях эта система едина, ее разделение на «квантовую» и «классическую» весьма условно.

Одно из свойств квантовой реальности, кажущееся парадоксальным с позиций классической физики, связано с тем, что уточнение одной из характеристик объекта при взаимодействии квантового объекта с классическим прибором (то есть при измерении) сопровождается потерей точности в значении некоторых других. Так, например, уточнение координаты частицы в процессе ее взаимодействия с классическим прибором делает ее импульс (произведения массы на скорость) менее определенным; таким же свойством обладает время наблюдения системы и ее энергия и др. Такое странное с классической точки зрения положение сформулировано Н. Бором как принцип дополнительности. По-видимому, адекватное описание явлений микромира требует использования «разных языков», дополняющих друг друга.

Например, описание микрочастицы как точечного объекта отражает лишь часть его свойств, проявляющихся, например, при бомбардировке атомов. В других условиях (при прохождении через набор щелей) микрочастица проявляет свои волновые свойства. В результате возникает представление о квантовой частице как о некоторой скрытой реальности, ведущей себя по-разному в зависимости от способов взаимодействия с наблюдателем. По словам Нильса Бора, «…изолированные материальные частицы – это абстракции, свойства которых могут быть определены и зафиксированы только при их взаимодействии с другими системами». Наблюдения в этой ситуации становятся очень похожими на «тени на стене пещеры», описанные Платоном в диалоге «Государство». Этот миф другими словами пересказывают физики XX века. Так, например, Дэвид Бом считает: «…неделимое квантовое единство всей Вселенной является наиболее фундаментальной реальностью, а эти относительно независимые составные части – только лишь частные единичные формы внутри этого единства».

Итак, к настоящему времени установлен ряд поразительных пространственно-временных взаимосвязей, вытекающих из квантовой механики, которые противоречат классическому, интуитивному взгляду на мир. Это, в первую очередь, квантовая нелокальность, означающая, что области, разделенные пространственно, тем не менее связаны между собой квантовым единством; во-вторых, отсутствие абсолютной детерминированности в исходах экспериментов с квантовыми объектами – физика может лишь вычислить вероятности исходов. Внутренняя квантовая подоплека наблюдаемых экспериментальных фактов привела физиков к образному описанию физической реальности как ряби на поверхности океана, причины которой кроются в еще недоступной глубине.

Пространство и время Вселенной

Одна из загадок, оставшаяся еще со времен классической науки, состоит в том, что практически все законы физики допускают так называемое «обращение времени». Поясним это на примере механической системы, эволюционирующей во времени от прошлого в будущее. Если в какой-то момент поменять направление скоростей всех частиц механической системы на противоположное, то ее поведение будет в точности повторять движение исходной системы, но в обратном направлении. Этот эффект можно назвать изменением направления течения времени на обратное. То же самое можно сказать о системах с электромагнитным и гравитационным взаимодействием, а также о квантовых системах. Однако «в жизни» мы явно видим движение времени только в одном направлении: разбитая ваза никогда уже не станет целой, а старики – молодыми.

Первые законы физики с фиксированным (и необратимым!) направлением времени появляются в термодинамике, связаны они с именем Л. Больцмана, доказавшего, что в замкнутой системе все процессы идут так, что порядок сменяется хаосом.

Размышляя над этим эффектом и вспоминая, что одним из самых грандиозных «необратимых эффектов» является рождение Вселенной, Р. Пенроуз высказал предположение, что особые физические условия при возникновении Вселенной (высокоорганизованная среда в момент Большого взрыва или сразу после него) могли заставить двигаться время только в одном направлении, от прошлого к будущему.

Вопрос «откуда взялся наш мир?» всегда будоражил воображение людей. В традиционных цивилизациях ответ на этот вопрос содержался в мифах о сотворении мира, рассказывающих об изначальных временах. Характерной особенностью этих мифов является то, что, согласно им, мир творится в некоторой точке – центре мира, из которой начинает разворачиваться пространство; в момент создания начинается и течение времени. Совершенно неожиданно для многих ученых в начале XX века эти мифологические концепции получили естественнонаучные подтверждения.

В начале XX века были открыты объекты Вселенной – галактики, находящиеся гораздо дальше от нас, чем большинство видимых звезд. Измерение их скоростей, предложенное астрономом Э. Хабблом в 1928 г. по смещению спектральных линий их светового излучения, показало, что все они удаляются от Земли со скоростями, пропорциональными их расстоянию. Анализ этого факта и других, появившихся позже, позволяет сейчас говорить о том, что около 13,7 млрд лет назад Вселенная действительно родилась из точки или, точнее, из колоссально малой области пространства. С этого момента, по представлениям современной науки, и начало свой бег время и родилось пространство. Эта теория получила экспериментальные подтверждения (например, открытие предсказанного реликтового излучения), стала общепринятой и получила название теории Большого взрыва.

В конце XX века наблюдения астрофизиков привели к новым открытиям. Самым интригующим является то, что расширение Вселенной с некоторого момента вдруг стало происходить с ускорением. Теперь считается, что видимая масса во Вселенной составляет всего около 4 % всей массы-энергии Вселенной. Около 22 % составляет так называемая «темная материя», она ответственна за форму галактик и характер их движения, физическая природа ее пока не ясна. И, наконец, остальная часть массы-энергии Вселенной, около 74 % ее полной массы, нужна для объяснения ее ускоренного расширения. Она носит название «темной энергии».

Заключение

В результате развития физики пространство, время и материя предстают перед нами в совершенно непривычном обличье: оказывается, что пространство и время сплетены между собой и различны для разных наблюдателей, движущихся с разными скоростями, а также зависят от наличия тяготеющих масс. Удаленность предметов в квантовом мире не является препятствием для их связи, поскольку сами квантовые объекты не локализованы, а предстают в виде волнового поля, квадрат амплитуды которого в каждой точке дает вероятность обнаружить этот объект в этой точке при наблюдении. Само пространство и время динамичны, они «родились» вместе со Вселенной, и с тех пор пространство «растягивается», так что к настоящему времени область наблюдаемой Вселенной составляет около 13 млрд световых лет. В современных теориях, пытающихся дать единое описание всей физической картины мира, пространство-время предстает в еще более экзотическом облике: есть теории, которые говорят об 11-мерном, 13-мерном пространстве и так далее. И нет уверенности, что наши представления о пространстве, времени и материи в будущем не изменятся коренным образом.

В современных теориях физические законы не обладает очевидностью, свойственной классическим представлениям, язык, на котором формулируются эти законы, сейчас больше напоминают символические сюжеты древних мифов, для раскрытия смысла которых надо отрешиться от «бытовой реальности». Понимание физических законов также требует непредвзятости, иначе можно утонуть в противоречиях между привычной очевидностью и не вписывающимися в нее экспериментальными данными.

 

Алексей Чуличков, д-р физ. – мат. наук, МГУ

Назад: Чего не знает современная наука
Дальше: Вселенная как ответ

Пашапчеловод
золотое сечение, пронизывает всё устройство нашей вселенной
Анатолий
Вы забыли 2 тела-цилиндр и тор