Книга: Вечное движение. История одной навязчивой идеи
Назад: Несколько замечаний редактора перевода
На главную: Предисловие

Примечания и комментарии

1. Дайонисиус Ларднер (1793—1859) — английский ученый, журналист, писатель, доктор философии. Приобрел широкую известность как автор многочисленных научно-популярных статей и книг, а также учебников по математике, астрономии, физике, химии и физиологии. А. Орд-Хьюм, вероятно, имеет в виду статью Ларднера, опубликованную в апрельском выпуске «Эдинбургского обозрения» за 1837 год. В ней действительно рассматривалась возможность построения трансатлантического парохода, но критике подвергалась не идея создания такого судна, а способ конденсации пара в паровой машине, предложенный неким Холлом (см.: Dictionary of National Biography. 1892. London, v. XXXII, pp. 145—147).

2. Архимед — великий древнегреческий ученый, один из создателей механики как науки, выдающийся математик, автор многих технических изобретений. Уже будучи глубоким стариком, организовал инженерную оборону Сиракуз (остров Сицилия) от римлян и был убит римским солдатом, которого, по преданию, встретил словами: «Не трогай моих чертежей».

3. Ричард Аркрайт (1732—1792) — цирюльник из Ноттингема. Воспользовавшись изобретением ткача Джеймса Харгривса, усовершенствовал прядильную машину, создал ряд ткацких мануфактур. Существует предположение, что интерес к механике у него возник вследствие увлечения проблемой вечного движения. Впрочем, это предположение оспаривается многими историками (см., в частности: П. Манту. Промышленная революция XVIII столетия в Англии. М., ГСЭИ, 1937, с. 180). К. Маркс назвал Аркрайта величайшим вором чужих изобретений и самым низким субъектом (К. Маркс и Ф. Энгельс. Соч., т. 23, с. 435, сноска 189).

4. Джорд Стефенсон (1781—1848) — положил начало развитию железнодорожного транспорта. Сын шахтера, с восьми лет работавший по найму, научился читать и писать в восемнадцать лет и путем самообразования приобрел специальность механика паровых машин. Его паровоз «Ракета» (1829), построенный для железной дороги Манчестер — Ливерпуль, развивал скорость до 50 километров в час. Дело Стефенсона продолжал его сын Роберт (1803—1859) и племянник Джордж Роберт (1819—1905).

5. Джеймс Клерк Максвелл (1831—1879) — английский физик, создатель классической электродинамики, один из основателей статистической физики. Упоминаемая А. Орд-Хьюмом научно-популярная книга Максвелла была опубликована в 1870 году.

6. Людвиг Больцман (1844—1906) — австрийский физик. Его научные интересы охватывали почти все области физики и ряд разделов математики. Однако наибольшее значение имеют его работы по статистическому обоснованию термодинамики и кинетической теории газов. Труды Больцмана не были приняты большинством его современников. Больной и подавленный, он покончил с собой.

7. Макс Карл Эрнест Людвиг Планк (1858—1947) — немецкий физик-теоретик, лауреат Нобелевской премии. Под влиянием работ Р. Клаузиуса увлекся проблемами термодинамики и посвятил докторскую диссертацию обоснованию ее второго начала. Один из создателей квантовой механики.

8. А. Орд-Хьюм имеет в виду, вероятно, Макса Планка.

9. Мариан Смолуховский (1872—1917) — польский физик-теоретик, профессор Львовского и Краковского университетов.

10. Петер Иозеф Вильгельм Дебай (1884—1959) — голландский физик-теоретик, лауреат Нобелевской премии. С 1904 года жил и работал в США.

11. Квадратуристами называли тех, кто пытался разрешить одну из трех знаменитых задач древности — задачу о построении квадратуры круга (квадрат, равновеликий данному кругу). Две другие задачи — это трисекция угла (деление данного угла на три равные части) и удвоение куба (построение ребра нового куба, объем которого был бы в два раза больше данного куба). Все задачи надлежало решать с помощью циркуля и линейки.

12. Симон Стевин, истинный homo universalis эпохи Возрождения, родился в 1548 году в Брюгге, жил и работал в Антверпене, путешествовал по Пруссии, Норвегии, Швеции и, наконец, поселился в Нидерландах. Учился в Лейденском университете, где позднее преподавал математику, служил главным инженером гидравлических сооружений и управляющим финансами принца Мориса Нассау. Умер в 1620 году. Пятитомное собрание его сочинений включает работы по алгебре, геометрии, тригонометрии, механике, оптике, топографии, астрономии, навигации, фортификации и т. д.

До Стевина мысль о невозможности вечного движения высказывали Леонардо да Винчи (1452—1519) и Джироламо Кардано (1501—1576). Вот что в 1551 году писал Кардано: «Для того, чтобы имело место вечное движение, нужно, чтобы передвигавшиеся тяжелые тела, достигнув конца своего пути, могли вернуться в свое начальное положение, а это невозможно без наличия перевеса, как невозможно, чтобы в часах опустившаяся гиря поднималась сама» (Дж. Кардано. О тонких материях. — цит. по кн.: P. Duhem. Les origines de la Statique. Paris, 1905, t. 1, p. 55—56).

Известный физик и историк науки П. Дюэм считает, что именно у Кардано Стевин почерпнул веру в невозможность перпетуум мобиле.

13. Доказательство приведено в книге Стевина «Принцип равновесия» (Лейден, 1586) и получено в предположении, что вечного движения не существует.

14. Марен Мерсенн, французский физик и математик, оставил заметный след в науке. Но главная его заслуга в другом. «Подлинным центром французской науки была, вплоть до его (Мерсенна) смерти в 1648 году, келья францисканского монаха Мерсенна, который сам был незаурядным ученым. Он неустанно вел переписку, будучи своего рода главным почтамтом для всех ученых Европы, начиная с Галилея и кончая Гоббсом» (Д. Бернал. Наука в истории общества. М., 1956, с. 192).

15. Христиан Гюйгенс (правильнее — Хейгенс) — нидерландский механик, физик, математик, создатель волновой теории света. Гюйгенс открыл существование центра колебаний, основываясь на гипотезе о невозможности создания вечного двигателя. Он писал: «И если бы изобретатели новых машин, напрасно пытающиеся построить вечный двигатель, пользовались этой моей гипотезой, то они легко бы сами сознали ошибку и поняли, что такой двигатель нельзя построить механическими средствами» (X. Гюйгенс. Три мемуара по механике. М., Изд-во АН СССР, 1951).

Но, как справедливо отмечает А. Орд-Хьюм, Гюйгенс допускал, что для других «физико- механических систем, как, например, для магнитного камня, еще имеется некоторая надежда» (см.: Э. Мейерсон. Тождественность и действительность. Опыт теории естествознания как введение в метафизику. Спб., 1912, с. 216).

16. «Математические начала натуральной философии» (1688).

17. Этот принцип не что иное, как закон сохранения количеств движения. Он дается здесь в переводе академика А. Н. Крылова (Собрание трудов академика Крылова, т. VII, с. 45).

Спустя более чем полстолетия после И. Ньютона великий Ломоносов сформулировал принцип сохранения в наиболее общей форме: «Так, сколько материи прибавляется какому- либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования и т. д. Так как это всеобщий закон природы, то он распространяется и на правила движения: тело, которое своим толчком возбуждает другое к движению, столько же теряет от своего движения, сколько сообщает другому, им двинутому» (М. Ломоносов. Полн. собр. соч., т. 2, с. 182—185).

18. Питер-Марк Роже (1779—1869) — английский врач и ученый.

19. Алессандро Вольта (1745—1827) — итальянский физик, создатель «вольтова столба» — электрической батареи из нескольких десятков поочередно наложенных друг на друга пластинок из серебра и цинка. Вольта считал, что ток возникает исключительно из соприкосновения разнородных металлов. Однако вскоре была разработана химическая теория «вольтова столба», в соответствии с которой частицы в электролите разлагаются у электродов под действием последних на положительно заряженный водород и отрицательно заряженный кислород.

20. Книга Роже «Трактат о гальванизме» вышла в свет в 1829 году.

21. Майкл Фарадей (1791—1867) — сын кузнеца, гениальный самоучка, ставший великим физиком и химиком, основоположником учения об электромагнетизме. В 1840 году Фарадей писал: «Контактная теория принимает, что сила, способная преодолеть мощные сопротивления, может возникнуть из ничего. Это могло бы быть сотворением силы, что нигде не имеет места без соответствующего исчерпания того, что питает ее. Если бы контактная теория была верна, то следовало бы отрицать равенство причины и действия. Но тогда было бы возможно и вечное движение и было бы легко непрерывно получать механические эффекты при помощи электрического тока, возникшего первоначально вследствие контакта» (цит. по кн.: М. Планк. Принцип сохранения анергии. М. — Л., 1938, с. 30).

22. Доктор медицины Юлиус Роберт Майер дал первую, еще не совершенную формулировку закона сохранения и превращения сил (понимая, в сущности, под силой энергию) в статье «О количественном и качественном определении сил», отправленной в журнал «Анналы физики» 26 июля 1841 года. Статья, однако, не была напечатана. Не встретили понимания ученых и последующие работы Майера. В отчаянии он пытался покончить с собой, выбросившись из окна (май 1850 года). Майер остался жив, но у него началось сильное нервное расстройство, и родственники поместили его в психиатрическую лечебницу. Выйдя в 1853 году из лечебницы, он возобновил научную работу, но она мало что добавила к сделанному. О трагической жизни Майера см., например: В. Варламов. Рожденные звездами. М., «Знание», 1977, с. 21—42.

23. Герман Людвиг Фердинанд Гельмгольц (1821—1894) был разносторонним ученым: физиком, физиологом, математиком, психологом. Особой известностью пользуются его работы по оптике, акустике, электромагнетизму, физиологии нервной и мышечной систем.

24. Лазар Никола Карно (1753—1823), математик, государственный и военный деятель периода Великой французской революции, назвал своего сына Сади в честь поэта Саади. «Размышление о движущей силе огня и о машинах, способных развивать эту силу» — единственный печатный труд Сади Карно (1796—1832), военного инженера, лейтенанта французского генштаба. В контексте книги А. Орд- Хьюма сочинение Карно интересно еще и тем, что в нем впервые применен принцип исключенного вечного двигателя для исследования немеханических явлений. Карно писал: «Могут здесь спросить: если доказана невозможность „perpetuum mobile“ для чисто механических действий, то имеет ли это место при употреблении тепла или электричества, но разве возможно для явлений тепла или электричества придумать иную причину, кроме какого-либо движения тел, и разве эти движения не должны подчиняться законам механики?» (Цит. по кн.: Второе начало термодинамики. М., Гостехтеоретиздат, 1934, с. 24).

25. Современная космология установила, что теория «тепловой смерти» Вселенной ошибочна, так как не учитывает существенные физические факторы и в первую очередь тяготения (см.: Я. Б. 3ельдович и И. Д. Новиков. Строение и эволюция Вселенной. М., «Наука», 1975).

26. А. Орд-Хьюм относит «Сиддханта Сиромани» к V веку. Однако установлено, что трактат этот написан около 1150 года индийским математиком Бхаскаром. Упоминание о вечном движении встречается в другом древнеиндийском руководстве по астрономии «Сурия Сиддханта» (ок. 1110 года). Примерно в это же время описания перпетуум мобиле появляются и у арабских ученых. Так, три варианта вечного двигателя рассматриваются в сочинении, принадлежащем перу Фахра ад дин Ридвана бен Мухаммеда (ок. 1200 года). Несколько позднее, в 1272 году, о колесе, наполненном ртутью, говорилось в астрономическом кодексе короля Кастилии Альфонса Мудрого.

Литература:

1. D. J. de Sol la Price. On the origin of clockwork, perpetual motion devices and compass. U. S. National Museum. Bulletin 218. Contributions from the museum of history and technology. 1959, pp. 82—112.

2. H. Schmeller. Beitrage zur Geschichte der Technik in der Antike und bei den Araben. Erlangen, 1922.

3. A. Wegener. Die astronomischen Werke Alfons X. Bibliotheca Mathematica, 1905, S. 129—189.

27. Альберт Великий (граф Альберт фон Больштедт, ок. 1193—1280) — немецкий философ и богослов, зачинатель перестройки и систематизации католического богословия на основе учения Аристотеля. Современники называли Альберта Великого «доктором (ученым) всеобщим», отдавая дань его энциклопедическим познаниям.

28. Многие художники-пейзажисты XVI века любили изображать на своих полотнах технические устройства. Француз Анри Бле (1490—1550) рисовал железоделательные мельницы; на картине Яна Брейгеля (1568—1625) «Венера в кузнице Вулкана» изображен весь арсенал металлургической промышленности XVI века; чрезвычайно насыщены механизмами картины братьев Луки (1530—1597) и Мартинна (1535—1622) пан Валькенборх.

29. Агрикола — это перевод на латынь настоящей фамилии немецкого врача и инженера Бауера (Bauer — земледелец), обобщившего в своей книге опыт горно-металлургического производства средневековья.

30. Корнелий Дреббель — выдающийся голландский изобретатель, большую часть жизни проживший в Англии придворным механиком королей Иакова I и Карла I. Слава Дреббеля-механика побудила императора Рудольфа II пригласить его в Прагу, где он некоторое время работал вместе с И. Кеплером и Й. Бюрги. Среди изобретений Дреббеля — термостат, подводная лодка, насосы, инкубатор; он внес важные усовершенствования в часовые механизмы, камеру-обскуру, микроскопы и телескопы, которые, кстати, с большим искусством изготовлял собственноручно. Задолго до Пристли и Шееле умел получать газ, названный позже кислородом...

О вечном двигателе Дреббеля говорится в маленькой книжечке с длинным названием: «Философский диалог, в котором раскрывается и показывается тайна природы и объясняется причина всякого движения в природе, как по характеру, так и по форме, для того, чтобы возвысить дух человеческий от природы до сверхъестественных и небесных вещей; и как все вещи существуют в числе трех; при этом изобретение искусственного перпетуум мобиле, демонстрированного перед его королевским величеством. Все — в беседе между Филадельфом и Теофрастом» (Лондон, 1612). Книжечка принадлежала перу знакомого Дреббеля некоего Томаса Тимме. Устройство, которое описал Тимме, действительно было продемонстрировано в 1607 году Иакову I и выставлено затем для всеобщего обозрения во дворце Элтхэм. Оно, видимо, пользовалось популярностью у лондонцев, так как попало даже в пьесу. В комедии Бена Джонсона «Молчаливые женщины» (1609) говорится: «В моем собственном доме все вверх дном от суматохи. Я живу в ветряной мельнице! Вечный двигатель здесь, а не в Элтхэме». К сожалению, Тимме не сообщил принципа действия изобретения Дреббеля, а весьма туманно заявил о неком «огненном духе», извлекаемом из «минерального вещества» и приводящим устройство в действие. Можно предположить, что Дреббель использовал эффект расширения воздуха в зависимости от колебаний температуры (см.: Ф. Даннеман. История естествознания. М., ОНТИ НКТП, 1936, т. II, с. 79).

31. Маркиз Ворчестерский имеет в виду, очевидно, Кристофора Клавия (1537—1612), математика и астронома, преподававшего в течение 45 лет математику в иезуитской академии «Коллегио Романо» в Риме. Клавий был автором ряда учебников, пользовавшихся в XVI—XVII веках большой популярностью. Внес значительный вклад в создание грегорианского календаря.

32. Преподобный Джон Уилкинс, епископ Честерский — заметная фигура в истории английской науки. Был мастером (ректором) оксфордского Тринити-колледжа, одним из основателей лондонского Королевского общества (Академии наук). Автор книг по астрономии, криптографии, об изобретенном им «универсальном» языке и о ...космических полетах! («Открытие мира на Луне, или Рассуждения, имеющие целью доказать, что весьма вероятно существование на этой планете еще одного обитаемого мира, а также Рассуждения по поводу того, как туда добраться», 1638).

Книга Уилкинса, в которой рассматриваются вечные двигатели, имеет название: «Математическая Магия, или Чудеса, которые можно изготовить с помощью механической геометрии». В девятой главе книги автор пишет: «Достоин нашего исследования вопрос о том, возможно или невозможно создание такого искусственного устройства, которое работало бы по принципу самодвижения, так, что настоящее движение всегда вызывало бы движение последующее. Это великий секрет Искусства, который подобно философскому камню Природы был предметом изучения для многих утонченных умов в различные годы. Уместно поинтересоваться, открыл ли этот секрет один из них до настоящего времени. Но если это и случилось, разобраться в открытии будет нелегко любому человеку».

Уилкинс, таким образом, довольно скептически относился к идее перпетуум мобиле, хотя и дал в дальнейшем, вероятно, первую классификацию способов построения вечных двигателей:

«1. С помощью химической экстракции.

2. С помощью магнитных свойств.

3. С помощью природного влияния тяжести».

33. Роберт Флудд — врач, алхимик и философ-мистик, автор ряда сочинений, из которых наибольшей известностью пользовался огромный космологический трактат о макрокосмосе и микрокосмосе.

34. «Театрами машин» назывались сборники о разнообразных технических конструкциях, выходившие в Западной Европе в XVII—XVIII веках. Книга русского механика Андрея Константиновича Нартова (1693—1756) названа автором в соответствии с этой традицией «Театрум махинорум».

35. Думается, А. Орд-Хьюм сильно преувеличивает заслуги Беклера. «Театр новых машин», если исключить из него собственно беклеровские проекты «вечных» мельниц, представляет собой заурядную компиляцию из ранее изданных аналогичных сочинений Агостино Рамелли и Якоба де Страда. Значительно более весомый вклад в технику зубчатых передач внесли Леонардо да Винчи, Джироламо Кардано, Джуанело Турриано (1500—1583), Жак Бессон (ум. 1569) и другие ученые и инженеры, жившие на столетие раньше Беклера.

36. Якоб Леупольд (Лейпольд, 1674—1727) — немецкий механик, автор десятитомной энциклопедии технических знаний «Театр машин» (при жизни автора вышло семь томов). Каждый том содержал около 200 страниц in folio из 50 гравюр, скопированных с рисунков в книгах Агриколы, Беклера, Рамелли, Бессона и других авторов. Леупольд, вероятно, был первым автором, сделавшим попытку разделить машины на отдельные механизмы, их описать и классифицировать, установить принципы эффективности их действия. Девизом его книг были слова: «Сила без искусства беспомощна».

37. Агостино Рамелли (1530—1590) был военным инженером у французского короля Генриха III. Рамелли действительно не упоминает в своей книге перпетуум мобиле, но он использует идею «вечного» колеса с неуравновешенными грузами в конструкции водяного черпачного механизма (см.: Т. Бек. Очерки по истории машиностроения. М., ГТТИ, 1933, с. 174). Следует упомянуть также, что в XVII веке о вечном двигателе писали Витторио Цонка (1568—1602), Якоб де Страда (1523—1588) и другие инженеры.

38. «Первые археологические данные о колесе восходят к культуре народов Месопотамии. Предполагают, что идея колеса возникла из обычая перетаскивать тяжести при помощи подкладываемых под них древесных стволов — технический прием, применявшийся египтянами при транспортировке каменных плит, необходимых для постройки пирамид. Это предположение основывается также на том, что древнейшие колеса представляли собой попросту толстые, круглые деревянные диски, неподвижно соединенные с осью, которая двигалась с колесами. Из числа позднейших усовершенствований наибольшую важность имело изобретение ступицы и устройство в деревянном диске промежуточных сквозных выемок. Мало-помалу промежуточные пространства между деревянными частями увеличивались, пока, наконец, в бронзовом веке не образовались настоящие спицы. Колеса со спицами делали в Малой Азии уже в 2700 году до нашей эры... Колесо вошло в орнаментальное искусство высококультурных народов в качестве мифического символа солнца, божественности и счастья. Об этих мифических представлениях нам до сих пор еще напоминают некоторые старинные обычаи, как, например, скатывание с горы горящего колеса в праздник солнца...» (Юлиус Липе. Происхождение вещей. Пер. с нем., под редакцией С. А. Токарева. М., ИЛ, 1954, с. 198—199).

39. Витрувий Поллион (2-я пол. I века до нашей эры) — римский военный инженер, автор «Десяти книг по архитектуре», в которых собрал современные ему сведения по архитектуре, механике, физике и физической географии. Десятая книга посвящена «искусству построения машин». Здесь описаны грузоподъемные и метательные машины, водяные колеса и мельницы, насосы и т. д.

40. Альбом заметок и эскизов Вилара де Оннекура (Villard или Wilars de Honnecourt) относят к 1240—1251 годам. В нем содержатся многочисленные зарисовки различных механизмов и приспособлений и короткие аннотации к ним (см.: J. Drummond Robertson. The evolution of clockworks. London, 1931, p. 11—15).

41. «...Мы не можем установить достоверно, принадлежит ли этот проект ему или он только воспроизводит чужую идею. Вилар де Оннекур строил церкви. Может быть, его навел на эту мысль подвешенный на постаменте металлический барабан с молоточками, который до сих пор еще в старинных церквах Франции и Германии употребляется вместо колоколов. Он, вероятно, заметил, что вследствие инерции барабан этот продолжает вращаться короткое время после того, как по нему перестали бить, и, может быть, у него тогда зародилась идея, что можно было бы заставить барабан вращаться вечно, прибавляя все новые удары молоточков» (Ф. Ихак-Рубинер. Вечный двигатель. М., 1922, с. 37).

42. В собрании трактатов и заметок Леонардо да Винчи, хранящихся в Британском музее, имеется лист, на котором изображены шесть вариантов перпетуум мобиле. Все они представляют собой различные реализации идеи Внлара де Оннекура (см.: F. М. Feldhaus. Leonardo, der Techniker und Erfinder. Yena, 1913).

Наброски конструкций вечных двигателей можно найти и в «Атлантическом кодексе» — коллекции рукописей да Винчи в Милане. Все это говорит о том, что великий итальянский ученый был хорошо знаком с идеей вечного движения. Но сам он отрицательно относился к возможности ее реализации: «О, искатели постоянного движения! Сколько пустых проектов создали вы в подобных поисках» (Леонардо да Винчи. Избранные научно-естественные произведения. М., 1955, с. 14).43.

43. Генри Диркс, автор книги о маркизе Ворчестерском, вышедшей в 1865 году, несколько иначе, чем А. Орд-Хьюм, освещает факты его биографии.

Эдуард Сомерсет, второй маркиз Ворчестерский (1601—1667), с юношеских лет проявлял интерес к машинам и «хитроумным механизмам». Особенно увлекала его задача подъема воды на большую высоту, и он провел множество экспериментов в своем родовом замке Реглан. После поражения Карла I маркиз оказался в Ирландии, где как ярый роялист был арестован, лишен состояния и заключен в тюрьму. Вскоре ему удалось бежать во Францию. Здесь он провел некоторое время при дворе изгнанной королевской семьи, а затем в качестве секретного агента роялистов вернулся в Англию, где был опознан и заточен в Тауэр. В тюрьме в 1655 году маркиз написал книгу «Век тех имен и образы тех изобретений, которые приходят мне на память» (в литературе по истории техники эту книгу иногда называют «Столетие изобретений»). В ней содержится описание многочисленных изобретений, сделанных или увиденных автором. Книга вышла в свет в 1663 году уже после того, как маркиз был освобожден из Тауэра. Король Карл II за верность наградил маркиза обширными угодьями, оценивавшимися в 40 000 фунтов стерлингов. В том же 1663 году акт английского парламента закрепил за маркизом и его наследниками монопольное право «извлекать выгоды для установки и эксплуатации его управляющей водой машины» в течение 99 лет. Последние годы жизни маркиз провел в Воксхолле, лондонском имении семьи, где с помощью механика датчанина К. Калтоффа построил действующую модель своей машины. Она представляла собой одну из первых попыток использовать силу пара для подъема воды из колодцев, шахт и т. д.

Изобретение «самовращающегося колеса» и его демонстрация, о чем пишет А. Орд-Хьюм, относится, видимо, не к шестидесятым годам XVII века, а к 1638—1642 годам, поскольку именно в эти годы Уильям Бальфур был лордом-лейтенантом (комендантом) Тауэра (см.: Н. Dircks. The life, times and scientific labours of the second marquis of Worcester. London, 1865).

44. Жана Теофила Дезагюлье (1683—1744) следовало бы назвать английским ученым, так как, родившись во Франции, он в трехлетнем возрасте был привезен родителями-гугенотами в Англию, где и прожил всю жизнь. Дезагюлье известен своим двухтомным «Курсом экспериментальной философии».

45. Биллем Якоб с' Гравезанд (1688—1742) нидерландский физик, математик и философ, профессор Лейденского университета. Автор нескольких учебников, один из первых пропагандистов учения Ньютона на континенте. Гравезанд посещал Кассель в 1721 и 1722 годах. Он верил в возможность осуществления механического препетуум мобиле и пытался обосновать свою точку зрения теоретически (см.: Ф. Ихак-Рубинер. Вечный двигатель. М., 1922, с. 135—138).

46. История «колеса Орфиреуса» описана многими авторами. Вечный двигатель удачливого жулика приводился в движение спрятанными людьми, в числе которых был и сам изобретатель, его брат, жена и служанка (она-то и проболталась о тайне своего хозяина). Орфиреус пытался оправдаться, но безуспешно, и он умер в 1745 году бедняком.

«Самовращающееся колесо» Орфиреуса наделало много шуму в Европе. Молва о нем докатилась до Санкт-Петербурга. Петр 1, по словам русского историка П. П. Пекарского (Наука и литература в России при Петре I, т. 1. 1862, с. 34—35), «сильно» заинтересовался этим колесом и думал «до самой кончины, как бы воспользоваться им...». По поручению царя этим занимались лейбмедик Арескин, будущий дипломат А. И. Остерман. В январе 1719 года преемник Арескина Блюментрост обратился к галльскому профессору X. Вольфу с просьбой сообщить свое мнение об изобретении Орфиреуса, однако Вольф ответил уклончиво, высказав предположение, что если бы тайна колеса попала бы в руки разумных математиков, то из нее можно было бы извлечь пользу. В 1721 году Петр I посылает И. Д. Шумахера за границу и поручает ему встретиться с самим изобретателем. Пекарский свидетельствует: «Шумахер предложил ему (Орфиреусу) оригинальный способ испытания его машины прежде приобретения ее, а именно, пригласив двух известных математиков, привести потом их к присяге, что они не откроют никому тайны механизма, изобретенного Орфиреусом, и затем уже допустить к осмотру машины для произнесения о ней приговора. Орфиреус не хотел и слушать об испытании, твердя: „На одной стороне положите 100 000 ефимок (joachimstaler — ок. рубля), а на другой я положу машину“.»

В январе 1725 года Петр I собирался отправиться в Германию, чтобы осмотреть «самодвижущееся колесо», но не успел: в январе того же года он умер.

47. О магните в той или иной связи писали Пифагор, Аристотель, Гиппократ, Гален, Платон, Эпикур, Плутарх, Птолемей, Лукреций, Плиний... Китайцы называли его «чу-ши», греки — «адамс» и «коламита», французы — «айман», индусы — «тхумбака», египтяне — «кость Оро», испанцы — «пьедрамант», немцы — «магнесс» и «зигельштейн», англичане — «лоудстоун». Добрая половина этих названий переводится как «любящий», «любовник». Так поэтично люди называли куски магнетита, обладающего свойством притягивать — любить — железо.

Название «магнит», утверждает Платон, дано магнетиту Еврипидом, называвшим его в своих драмах «камнем из Магнезии». По другой более красивой, но менее правдоподобной притче Плиния, заимствованной им у Никандра, название дано в честь волопаса Магнисса, который будто бы случайно наткнулся на неведомые камни с чудесным свойством — к ним прилипали сандалии, подбитые железными гвоздями.

По-видимому, слово «магнит» в действительности происходит от названия греческой провинции Магнезия (о магните и магнитных явлениях можно прочитать в книге В. Карцева. Магнит за три тысячелетия. М., Атомиздат, 1978).

48. Не совсем ясно, что имеет в виду А. Орд-Хьюм. Известно, что Роджер Бэкон (1214—1294) по крайней мере в трех своих сочинениях цитировал Перегрино.

49. «Послание о магните», датированное 8 августа 1269 года, адресовано пикардийскому дворянину Сигеру. Оно состоит из двух частей. В первой части говорится о замечательных свойствах магнита, во второй приводится описание различных приборов, в том числе магнитного компаса и вечного двигателя, сделанного с «чудесным хитроумием» (см.: P. Peregrinus. Epistle on the magnet. Ed. by Silvanus P. Thompson. London, 1902).

Сочинение Перегрино впервые было опубликовано в 1558 году.

50. И. Тэснериус, архиепископ Кельна в 1558 году, — один из приближенных императора Карла V. По Ф. Ихак-Рубинер, описанный Тэснериусом вечный двигатель имел иную конструкцию и состоял из колеса с «тяжелыми полосками железа», вращающегося относительно «магнитного камня» (см.: Ф. Ихак-Рубинер. Вечный двигатель, с. 57—59).

51. Генри Катер (1777—1835) — английский геодезист, изобретатель «обратимого маятника», прибора для определения ускорения силы тяжести в данном месте. Джон Плейфэер (1748—1819) — шотландский математик.

52. Трудно согласиться с А. Орд-Хьюмом: измышления Теквина никак не могут служить свидетельством «странных представлений об электричестве», якобы бытовавших в начале века. Сумасбродные и прочие ненаучные идеи и «теории», которых немало и в наше время, никоим образом не являются показателем уровня развития науки и техники.

53. Под гидростатическим парадоксом понимают равенство сил давления жидкости на дно сосудов любой формы при одинаковой высоте их столбов. Следствием этого положения, доказанного Симоном Стевином, является уравновешивание столбов жидкости в сообщающихся сосудах.

54. Дени Папена можно было бы назвать вечным скитальцем. Получив медицинское образование в Анжере, он практиковал здесь до 1674 года, затем переехал в Париж, был ассистентом у Гюйгенса. Религиозные убеждения заставили его бежать в Англию, где он нашел приют и работу у Р. Бойля. 1680 год Папен встречает в Венеции, спустя четыре года он вновь возвращается в Лондон, в 1687 году занимает место профессора физики в Марбурге, но вскоре переезжает в Кассель. В 1707 году Папен покидает Германию и с большими трудностями добирается до Лондона, где и умирает всеми забытый.

55. Бернулли — семья швейцарских ученых, давшая миру выдающихся математиков, физиков, механиков. Наибольшую известность получили братья Якоб (1654—1705) и Иоганн (1667—1748) и сын последнего Даниил (1700—1782). Иоганн Бернулли был профессором Гранингенского и Базельского университетов. Вместе с Лейбницем принимал активное участие в разработке дифференциального исчисления, занимался вариационными методами решения задач. Ему принадлежит ряд ценных исследований по механике.

56. Роберт Бойль, по определению Ф. Энгельса, «сделал из химии науку». Четырнадцатый ребенок государственного секретаря Ирландии, уже в восьмилетнем возрасте свободно владел латынью и французским. Готовил себя к занятиям философией и богословием, но, в 1654 году переехав в Оксфорд, целиком отдался физике и химии с целью «принудить природу дать свои показания». Бойль выполнил многочисленные и разнообразные физико-химические опыты и открыл, в частности, зависимость изменения объема газа от давления (закон Бойля—Мариотта).

57. Уильям Конгрев — сын командира королевской артиллерии. Окончил Кембриджский университет, адвокат, владелец газеты. Примерно с 1804 года, при поддержке отца, начал работать над усовершенствованием военной ракеты, которая затем широко применялась в сражениях под Лейпцигом, при осаде Копенгагена. К 1830 году она была принята на вооружение большинством европейских армий. В 1826 году Конгрев уехал во Францию, в Тулузу, где и умер. Был членом лондонского Королевского общества, автор 18 запатентованных изобретений (см.: W. Ley. Rockets, missiles and space travels. London, 1958, pp. 67—73).

58. Роберт Фултон (1765—1815) — американский изобретатель, создатель первого практически пригодного парохода.

59. Томас Альва Эдисон (1765—1815) — американский изобретатель, сын эмигрантов из Нидерландов. Изобрел фонограф, лампу накаливания, диктофон, железнодорожный тормоз, способ магнитной сепарации руды и многое другое.

60. Никола Тесла (1856—1943) — инженер, оставивший заметный след как изобретатель в области электро- и радиотехники. Серб по национальности, с 1884 года жил и работал в США.

61. Кристофер Рен (1632—1723) — английский архитектор, математик, механик, один из основателей лондонского Королевского общества. По его проектам в Лондоне построено свыше 60 зданий, в том числе самый большой в мире собор Св. Павла, в котором он и похоронен. Эпитафия на его могиле гласит: «Si monumentum requiris, circumspice» — «Ищешь памятник — оглянись вокруг».

62. Уильям Николсон (1753—1818) плавал гардемарином на «корабле его величества», служил в адвокатской конторе, был агентом торговой фирмы в Амстердаме, секретарем и помощником писателя Т. Холкрофта и, наконец, выпустил в 1781 году «Введение в натуральную философию», после чего полностью посвятил себя научной журналистике. Основанный им в 1797 году журнал назывался «Журналом натуральной философии, химии и искусств».

63. От флорентийских водопроводчиков Галилей узнал, что всасывающие насосы не могут поднять воду выше 18 локтей (10 метров), но дать правильное объяснение этому явлению не смог. Это сделал в 1643 году ученик Галилея — Эванджелиста Торричелли (1608—1647), открывший атмосферное давление и создавший прибор, впоследствии названный Р. Бойлем «ртутным барометром».

64. Аббат Готфейль и X. Гюйгенс независимо друг от друга безуспешно пытались создать пороховую машину — двигатель, в цилиндре которого вакуум получался путем охлаждения пороховых газов водой. Превратить этот двигатель в действующий, работоспособный пытался и Д. Папен (см.: И. Я. Конфедератов. История теплоэнергетики. Начальный период (17—18 вв.). М.—Л., ГЭИ, 1954, с. 78).

65. Томас Томпион (1639—1713) — английский механик, считается «отцом английского часового дела».

66. Согласно некоторым источникам, изменения атмосферного давления пытался использовать в «вечно» идущих часах еще Корнелий Дреббель и даже в 1598 году получил на свое изобретение патент (см.: L. Harris. Two Netherlanders. London, 1961, p. 132).

67. Джон Эвелин (1620—1706) — один из основателей лондонского Королевского общества, автор множества сочинений на исторические, политические и морально-философские темы. Наибольшую известность как литератору принес ему «Дневник», опубликованный в 1818 году. Этот дневник Эвелин вел на протяжении более чем полстолетия, поэтому его можно рассматривать как достоверную хронику событий в Англии второй половины XVII века, составленную политиком умеренного толка, преданным сыном англиканской церкви.

68. Сын портного Сэмюэл Пепис (1633—1703), окончив Кембриджский университет, начал служебную карьеру скромным клерком морского ведомства, а спустя два десятка лет, в 1679 году, занял пост секретаря адмиралтейства. Он неоднократно избирался в парламент, был президентом Королевского общества и другом И. Ньютона. Английские энциклопедии называют его (как и Эвелина) «даиэристом» — человеком, ведущим дневник. Пепис писал свой дневник шифром. Опубликованный в 1825 году шеститомный дневник Пеписа служит своеобразным источником сведений о жизни английского общества во время правления Карла II.

69. Атанасиус Кирхер (1602—1680) — член ордена иезуитов, профессор математики, философии и восточных языков в Вюрцбурге и позднее в Риме. Автор сочинений, содержащих обзор практически всех областей современного ему знания, огромное количество самых разнообразных сведений, фактов, наблюдений, часто смешных, нелепых и неправдоподобных. Живя в век, когда трудами Кеплера, Декарта, Ньютона, Бойля и других естествоиспытателей создавалось Новое Знание, свободное от теологии и слепого преклонения перед догмой, Кирхер по существу оставался на позициях старой описательной науки и не внес заметного вклада в развитие естествознания. Вероятно, главная заслуга Кирхера перед наукой — создание при римской иезуитской школе одного из первых естественнонаучных музеев. Кирхер неоднократно писал о вечном движении, пытался теоретически обосновать «самовращающееся колесо». Особое внимание он уделял перпетуум мобиле с использованием магнитов, посвятив им сочинение «Магниты, или Искусство магнетическое» (см.: P. Connor Reilly. Athanasius Kircher, master of a hundred arts. Wiesbaden—Roma, 1974).

Иезуит Каспар Шотт (1608—1666) — ученик Кирхера в Вюрцбурге и ассистент в Риме. Преподавал моральную теологию и математику в Палермо и Риме, а в последние годы жизни был профессором физики в вюрцбургской иезуитской школе. Автор объемистых трудов, в которых следовал стилю и характеру сочинений Кирхера. Книга, о которой упоминает А. Орд-Хьюм, называется «Достопримечательности техники, или Чудесное искусство... содержащее описание различных экспериментов и хитростей в пневматике, гидравлике, гидротехнике, механике, графике, хронометрии, автоматике, кабаллистике...»

70. Джузеппе Кампани (1635—1715) изобрел станок для обработки и полировки линз и оптических стекол. Это позволило изготовлять лучшие в Европе телескопы и микросколы (см.: S. A. Bedini. The optical workshop of Giuseppe Campani. — Journal of the history of medicine and allied science, 1961, XVI, № 1, pp. 18—38).

71.

72. Король Эдуард III правил с 1327 по 1377 год.

73. А. Орд-Хьюм имеет в виду героя романа английской писательницы Мэри Шелли (1797—1851) «Франкештейн, или Современный Прометей». Герой романа в результате длительных экспериментов создает разумное существо, страшное чудовище, демона, который приносит смерть близким ученого и объявляет войну всему человечеству.

74. Вот как французские академики мотивировали свое решение:

«Построение перпетуум мобиле абсолютно невозможно. Если бы даже трение и сопротивление среды в течение длительного времени не смогли уничтожить двигательной силы, то эта сила могла бы произвести только эффект, равный причине. Если бы мы захотели, чтобы эффект конечной силы продолжался постоянно, то в конечный промежуток времени эффект должен был бы быть бесконечно малым. Если бы можно было пренебречь трением и сопротивлением среды, то тело, которое приведено в движение, могло бы оставаться в движении, но не оказывать воздействия на другие тела, и перпетуум мобиле, который получился бы в этом гипотетическом случае (что в природе невозможно), был бы абсолютно бесполезен...» (см.: Historie de l'Academie Royale des sciences. Paris, 1775, 4, p. 61).

75. Аналогичные умозаключения изложены в книге Лео Гильберта «Новая энергетика», изданной в 1912 году в Дрездене.

Назад: Несколько замечаний редактора перевода
На главную: Предисловие