Книга: Мир физики и физика мира. Простые законы мироздания
Назад: Глава 10. Думай как физик
Дальше: О теории и знании

О честности и сомнении

Хочу поделиться с вами одной интересной историей. В 2017 году на студии Би-би-си я должен был представить документальный фильм под названием «Гравитация и я». Фильм о том, как развивалось в истории наше понимание этого фундаментального явления – гравитации, формирующего наш мир, от ньютоновской силы до структуры самого пространства-времени. Еще более увлекательным этот проект сделало то, что мы разработали приложение к смартфону для регулярного определения местоположения пользователей путем регистрации их GPS-координат (долготы, широты и высоты над уровнем моря). Приложение использует эту информацию, чтобы рассчитать скорость, с которой идет время для данного пользователя. Согласно общей теории относительности скорость течения времени зависит от силы гравитационного поля в данном месте. Человек, стоящий на вершине горы, находится дальше от центра Земли, чем человек, находящийся на уровне моря, так что первый ощущает гравитационное притяжение чуть слабее, чем последний. Это означает, что время на вершине горы бежит чуть быстрее, чем на уровне моря. Эффект совершенно ничтожный: за каждую секунду на уровне моря время на горе увеличивается менее чем на триллионную часть секунды. Таким образом, даже если вы проведете всю жизнь на вершине горы, при прочих равных условиях (что невозможно) вы проживете всего на одну миллисекунду меньше, чем если бы вы жили на уровне моря, – так, во всяком случае, покажут очень точные, но в целом совершенно бесполезные часы, дрейфующие вместе с космическим кораблем. В сравнении с плюсами чистейшего воздуха, здоровой диеты или регулярных физических упражнений это преимущество выглядит несколько странным. Но все равно физический эффект совершенно реален, а разработка приложения оказалась сплошным удовольствием.
Чтобы создать это приложение, нам пришлось учесть еще один фактор. Как я уже упоминал в главе 3, часы, движущиеся в пространстве, идут медленнее, чем остающиеся неподвижными. Таким образом, двигаясь, вы замедлите для себя течение времени по сравнению с человеком, пребывающим в статическом положении. Этот эффект еще слабее, чем связанный с гравитацией, поскольку обычно мы не развиваем скорость, хоть сколько-нибудь близкую к скорости света, а именно в этом случае данный эффект становится существенным. Тем не менее приложение способно учитывать передвижение пользователя, и если местоположение меняется достаточно существенно, приложение может рассчитать, с какой скоростью он двигался.
А теперь – самое важное. Наша планета не имеет форму правильного шара, она сплюснута у полюсов. Таким образом, если вы стоите на экваторе, то находитесь дальше от центра Земли, чем где-нибудь на Северном полюсе (примерно на 22 километра); следовательно, вы должны ощущать притяжение чуть слабее, как человек на горе. Поэтому часы на полюсе, где притяжение сильнее, должны тикать чуть медленнее, чем на экваторе (это называется дилатацией времени согласно общей теории относительности). Однако, помимо этого, Земля еще и вертится, и часы на экваторе вместе с планетой движутся быстрее, чем на полюсе (по показаниям наших объективных часов, парящих в космосе). Поэтому на экваторе ход времени должен быть медленнее, чем на полюсе (дилатация времени согласно специальной теории относительности). Эти два эффекта, один, объясняемый общей теорией относительности, а другой – специальной, работают в противоположных направлениях – и который перевесит? Какие часы все-таки тикают медленнее? Я просчитал оба эффекта по отдельности и обнаружил, что в целом часы на полюсе идут медленнее, потому что там сила притяжения ощущается сильнее, пусть даже часы на экваторе движутся с большей скоростью.
Вся эта классная математическая информация была включены в приложение, где использовались мои формулы. Шумная компания в средствах массовой информации означала, что мы убедили тысячи людей загрузить это приложение и воспользоваться им еще до того, как наш фильм вышел в эфир. Мы даже получили от нескольких пользователей (включая пилота самолета и альпиниста) видеодневники с регистрацией результатов, наблюдаемых с помощью нашего приложения.
И тут у нас возникла загвоздка.
Как-то вечером, за неделю до завершения редактирования фильма, как раз когда я собирался записывать голосовое сопровождение для ожидавшейся передачи на би-би-си, мне позвонил мой страшно умный продюсер Пол Сен. Он сообщил, что прочитал кое-какие материалы по физике на онлайн-форуме и похоже, что я облажался. Я тут же все бросил и занялся своими вычислениями. А еще я обратился к нескольким коллегам с просьбой их проверить.
И действительно, я совершил очень серьезную ошибку. Два эффекта – замедление течения времени на полюсе, поскольку там сильнее ощущается гравитация, и замедление времени на экваторе, поскольку часы там движутся быстрее вместе с планетой, – в точности перекрывают друг друга! На самом деле все часы на уровне моря тикают в одинаковом темпе по всей Земле, а время, которое они показывают, называется Международным атомным временем (МАТ). Поверхность Земли представляет собой геоид, эквипотенциальную гравитационную поверхность, где взаимное погашение этих двух эффектов, объясняемое действием общей и специальной теорий относительности – совсем не случайное совпадение. Миллиарды лет назад, когда наша планета только что сформировалась, была горячей и тягучей, вращение привело к изменению ее формы в сторону сплющивания, таким образом обеспечив условия для того, чтобы все точки на ее поверхности обладали одинаковым гравитационным потенциалом. Поэтому время везде течет одинаково при условии, что его измеряют на уровне моря – поднимитесь повыше, и время ускорится, опуститесь под поверхность Земли, и оно замедлится.
Цифры, которые выдавало мое приложение, были неверными, и формулу требовалось откорректировать. Но проблема даже не в этом. Моя ошибка стала бы достоянием гласности. Наш документальный фильм нельзя было показывать в том виде, который он имел на тот момент.
Я сказал об этом продюсеру, и он тут же попросил Би-би-си отменить трансляцию. Простейшее решение, конечно, – переснять те сцены, где я давал неверную информацию. Никто бы и не заметил. Но я вовремя понял, что у меня появилась возможность продемонстрировать, как работает реальная наука. Не надо скрывать свой промах, надо в нем признаться, показать, что это нормально – делать ошибки, занимаясь исследованиями. Так что мы сняли еще несколько сцен, где я признавал, что ошибся, и объяснял, как это случилось. С моей стороны не потребовалось никакой особой смелости и силы духа; ведь наука развивается именно через преодоление ошибок – они неизбежны и на них мы учимся. В конце концов, если бы мы не ошибались, как бы нам удалось открыть что-то новое? Этим наука отличается, например, от политики. Действительно, часто ли вы слышите, чтобы политик прямо признался, что совершил ошибку?
В истории науки полно примеров, когда исследователи учились на ошибках прошлого, когда новые гипотезы и теории приходили на смену старым по мере того, как мы все больше узнавали о мире вокруг нас и накапливали экспериментальный опыт. Но как же мы объясним широкой публике полезность такого подхода: формулирование гипотезы, ее тестирование и, наконец, отказ от нее в связи с несоответствием экспериментальным данным? Конечно, признание такого подхода по большей части не согласуется с современной риторикой, особенно в средствах массовой информации, где слышнее всего голоса тех, кто ценит личное мнение больше, чем реальные данные и воспроизводимость экспериментальных результатов.
Так есть ли какой-то урок, который ученые могут преподать обществу или нас обвинят в самонадеянности и элитарности?
Еще одна особенность ученых, тесно связанная с нашей безукоризненной честностью и очень важная для научных исследований, – способность сомневаться. Эта черта может стать нашим злейшим врагом, когда дело доходит до объяснения широкой публике, как делается наука. Мы говорим, что никогда нельзя быть полностью в чем-то уверенными, что научная теория – это просто наша последняя версия объяснения какого-либо явления, и как только эта теория придет в противоречие с новыми наблюдениями или экспериментальными данными, мы должны быть готовы пересмотреть или отвергнуть ее в пользу новой. Но тогда кто-то скажет: «Если вы ни в чем не уверены, как можно верить тому, что вы утверждаете? Как можно на что-то положиться, никогда не зная наверняка?» Такая реакция объяснима. Это в нашей природе – стремиться знать что-то наверняка, а не мириться с какой-то временной версией.
Однако думать таким образом – значит иметь неправильное представление о том, как развивается наука. Доверие к научной информации возникает не на основе убежденности, а на основе признания наукой фактора неопределенности: она всегда подвергает сомнению существующие знания и готова заменить их более глубокими, если вдруг таковые появятся. В других областях жизни такое поведение могло бы показаться легкомысленным, но не в науке. Весь научный прогресс зависит от безусловной приверженности ученых научной честности и от возможности высказывать сомнения.
Вот еще один пример типичного образа мыслей ученого, который может вас удивить. Многие бывают шокированы, когда узнают, что некоторые физики – конечно, не из тех, кто посвятил много лет своей жизни созданию Большого адронного коллайдера, – надеялись, что бозон Хиггса никогда не найдут. Понимаете, если бы бозон Хиггса не обнаружили, это означало бы, что со Стандартной моделью действительно что-то не так; а значит, открылся бы новый путь для развития физики. Просто поставить галочку, чтобы подтвердить истинность того, о чем мы давно уже догадывались, совсем не так увлекательно, как обнаружить, что нам предстоит пойти по совершенно новому, неизведанному научному пути.
С другой стороны, имеющие добрые намерения, но непрофессиональные ученые-любители иногда обвиняют нас, физиков, в том, что мы недостаточно открыты для того, чтобы принимать их новые теории, – когда, например, они утверждают, что нашли какую-то ошибку в эйнштейновской теории относительности.
По правде говоря, мне бы очень хотелось, чтобы Эйнштейн оказался не прав, поскольку это означало бы, что нам нужна новая, более совершенная теория, подобно тому как теория общей относительности пришла на смену ньютоновской теории притяжения. Однако физики уже целый век безжалостно проверяют и разбирают по косточкам идеи Эйнштейна, и все-таки теория относительности с честью отбивает каждое нападение. Возможно, когда-нибудь будет предложена более совершенная версия, объясняющая все, что может объяснить теория относительности, и более того. Но нам еще предстоит ее открыть.
И вот уже много веков мы прилагаем усилия, чтобы найти еще более фундаментальные объяснения физических явлений и, пытаясь развенчать, тестируем теории до их полного разрушения. Если они выживают, мы верим в них… пока не появляется что-нибудь более совершенное.
Назад: Глава 10. Думай как физик
Дальше: О теории и знании