Книга: Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза
Назад: 13. Гений, управляющий генами
Дальше: 15. В конце пути

14. Приближающаяся революция

Важность эпигенома в патогенезе распространенных человеческих заболеваний, скорее всего, столь же значительна, как и роль мутаций.

А. Г. Уилсон 

Синеголовый губан обитает на коралловых рифах Карибского моря. Дерзкие и агрессивные самцы губана щеголяют яркой раскраской — узкие зеленые, белые, синие полосы с широкими черными полосами между ними. А самки, составляющие их гаремы, меньше размером и куда скромнее на вид — окраска их мягкого желтого тона, брюшко серебристое. Но если самец погибает либо по какой-то причине оставляет гарем, наибольшая по размеру самка меняет пол: ее яичники уменьшаются, разрастаются семенники — все за день-другой. И вот она уже щеголяет дерзкой раскраской: зеленой, белой, синей с широкими черными полосами. Вдобавок она начинает вести себя по-мужски задиристо и становится по духу и плоти новым властным хозяином гарема. Заинтригованный столь впечатляющей способностью к метаморфозе, я написал доктору Джону Годвину, изучающему смену пола у таких рыб, как синеголовый губан, и спросил: быть может, в эту перемену вовлечены эпигенетические факторы?

— Я удивлюсь, если эпигенетика окажется ни при чем, — ответил он, — но пока у меня нет совсем никаких данных, подтверждающих это. Возможно, они появятся в ближайшем будущем, когда станет доступным новое поколение генетических секвенсоров и мы начнем получать новые данные.

Поскольку ДНК губанов остается неизменной, весьма вероятно, что в удивительном явлении смены пола задействованы эпигенетические механизмы, подобные метилированию ДНК, модификации гистонов и РНК-интерференции. Если и в самом деле так, разве не поражает воображение масштаб изменений, произведенных простейшим химическим соединением? Присоединение метиловой группы к одной из четырех «букв», составляющих нашу ДНК, небольшое изменение белка, экспрессия коротенькой РНК могут вызвать фундаментальные изменения внешнего вида и жизнедеятельности организма. Конечно, мы знаем: эпигеном способен реагировать на внешние воздействия; в случае губанов — на потерю доминирующего самца, хозяина гарема. Существует огромное число примеров подобного рода и у животных, и у растений, реагирующих на изменения температуры, длительность светового дня и качество освещения, на уровень кислорода в окружающей среде или на присутствие гормона. Так, у головастиков определенных видов древесных лягушек для эпигенетических изменений достаточно лишь присутствия слюны либо мочи хищника в луже, где растет головастик. Разнообразие, чувствительность и интенсивность реакции эпигенетической системы поразительны — она словно бы служит легендарным «шестым чувством», распознает сигналы внешней среды и тут же на них реагирует, заставляет действовать определенным образом области управления нужными генами.

У людей существует загадочная система общения между матерью и растущим плодом. Информация об основных элементах материнской диеты как-то передается эмбриону, и это непонятным образом позволяет будущему ребенку приспособиться к среде, в которой он окажется после рождения. Существует много доказательств — как эпидемиологических, так и клинических и экспериментальных данных, — что воздействия, которым мать подвергалась в течение беременности, играют значительную роль в развитии восприимчивости к некоторым хроническим заболеваниям.

Столь оживленное взаимодействие организма с окружающей средой интригует и выглядит многообещающим. Неудивительно, что Яблонка и Лэмб посчитали возможным реанимировать дух ламаркизма. Одновременно другие исследователи изучают роль дарвиновского естественного отбора в эпигенетике. Возможно, найдутся и новые, неортодоксально мыслящие исследователи, которые взглянут по-новому на идеи Уоллеса, вспомнив, какое он значение придавал влиянию окружающей среды на видообразование. Но причудливость, сложность и быстрота реакции живых организмов на изменения окружающей среды в нашем мире рождают тревогу. Ведь наша планета перенаселена, ее реки, озера и океаны загрязнены, древние естественные ландшафты — такие, как дождевой лес, — уничтожаются повсюду, человеческая популяция страдает от алкоголя, табака и наркотиков, люди подвели к черте вымирания огромное количество видов животных и растений. Угроза нависла и над нашими ближайшими родственниками в животном мире — над гориллами и орангутангами. По мнению большинства экспертов, мы сами создали величайшую угрозу для современного общества, спровоцировав широкомасштабные климатические изменения. Поневоле задумаешься, преувеличивал ли Льюис Томас, замечая: «Мы слишком молоды как вид и слишком незрелы, чтоб ответственно относиться к миру вокруг. Мы распространились по Земле за несколько тысяч лет — ничтожный срок по часам эволюции. Мы заняли все места этой планеты, пригодные для жилья, истребляем все живое и теперь создали угрозу для самих себя…»

В этих условиях новая, интенсивно развивающаяся дисциплина эпигенетика — пусть и принадлежащая сугубо к биологии, но связывающая исподволь все без исключения ее отрасли с многообразным влиянием окружающего мира — приобретает особую важность. Эпигенетика как нельзя ярче демонстрирует, что жизнь на Земле — единое целое.

 

Каковы же последствия для медицины того факта, что метиловая группа может присоединяться к цитозину, гистоны хромосомы могут ацетилироваться, а регуляторная молекула РНК — активироваться? Каковы с медицинской точки зрения последствия возможности включения факторов, провоцируемых окружающей средой, не изменяющих ДНК, но способных контролировать работу генома? Насколько важной окажется эпигенетика для лечения болезней, если ученые найдут способ заставить эпигенетические механизмы работать нужным образом? В марте 2009 года я посетил свою альма-матер, Медицинскую школу Шеффилда, чтобы взять интервью у доктора Джерри Уилсона — представителя растущей армии медиков, склонных использовать эпигенетические методы в своей практике.

Уилсон применяет эпигенетические методы при лечении аутоиммунных заболеваний, в частности ревматоидного артрита. Как знают уже многие пациенты, страдающие ревматическим артритом и анкилозным спондилитом, революционная новая терапия, использующая лекарства, известные как супрессоры ТНФ (туморный некрозисный фактор), совершенно изменила подход к лечению их болезней. ТНФ — это вещество, выделяемое белыми кровяными клетками. Он играет важную роль во многих процессах, происходящих в человеческом теле, — в частности, при воспалениях, являющихся следствием аутоиммунности. ТНФ-ген контролируется контролирующей последовательностью известной как ТНФ-промоутер. Работая в Шеффилде с 1991 по 1995 год над завершением докторской диссертации, Уилсон исследовал генетические последовательности ТНФ-промоутера. Уилсон верит — в подтверждение эпиграф к этой главе, — что у медицинской эпигенетики большое будущее.

— Все клетки нашего тела имеют одинаковый набор ДНК, — говорит он. — Они различаются только тем, какой набор генов в них работает. Механизм, управляющей процессом экспрессии генов, — эпигенетический. Нарушение нормальных эпигенетических установок — одна из причин развития раковых опухолей. Среди них провокация рака курением. По-видимому, определенные составляющие табачного дыма могут стимулировать производство регуляторных РНК, вызывающих отключение генов, которые подавляют развитие раковых опухолей.

 

В конце семидесятых годов прошлого века Холлидей и его студент Пью задались вопросом: не вызывают ли рак нарушения процесса метилирования? В 1978 году Пью выдвинул эту идею, а годом позже Холлидей опубликовал более подробную статью о «новой теории карциногенеза». В сути своей идея Холлидея и Пью была такой: если ДНК повреждается и затем восстанавливается, но уже без присоединенной метильной группы, это может нарушить контроль за нормальной экспрессией генов. Много лет спустя, характеризуя свои ранние идеи, Холлидей ярко и точно описал сущность рака с генетической и эпигенетической точек зрения.

По словам Холлидея, рак меняет вид и поведение нормальных клеток — то, что биологи называют «фенотипом». Процесс этот постепенен, на промежуточных стадиях некоторые черты нормальной клетки еще сохраняются. Но в конце долгого процесса преобразований клетка полностью теряет черты нормальной и начинает бесконтрольно размножаться. При этом теряется генетическая стабильность. Это очевидно при взгляде на ядро раковой клетки, где встречается полиплоидия и прочие генетические ненормальности. Эпигенотип — общая картина эпигенетических процессов внутри клетки — тоже полностью нарушен. Мощный у нормальной клетки механизм эпигенетического управления у клетки раковой теряет контроль над генами.

Холлидей взглянул на процесс развития рака с эволюционной точки зрения. Ведь когда одна либо несколько клеток «сошли с колеи» и стали бесконтрольно размножаться — они вступили на путь «эгоистической эволюции», а естественный отбор, конечно же, выбирает как раз клетки с наибольшими ненормальностями. С тех пор в тысячах исследований была подтверждена связь между нарушениями эпигенетического контроля и раком. Теперь хорошо известно, что нарушения метилирования — чрезмерное деметилирование одних частей генома и чрезмерное метилирование других — характерны для многих видов рака. Они приводят к ошибочной активации онкогенов, к отключению генов, подавляющих развитие рака, либо к тому и другому вместе.

Эти находки подтолкнули к более широкому исследованию нарушений различных эпигенетических механизмов при развитии рака. Как оказалось, при раке не только нарушается метилирование — но возможны изменения процесса ацетилирования гистонов, РНК-интерференции и импринтинга, упоминавшихся выше. Например, у детей, страдающих синдромом Беквита-Видемана, тысячекратно повышен риск развития злокачественных опухолей детского возраста — таких, например, как опухоль Вильмса (рак почек). В настоящее время ученые исследуют эпигенотипы различных видов рака, включая рак груди, легких, пищевода, желудка, толстой и прямой кишок, различных форм лейкемии и многих других злокачественных опухолей, поражающих кровь и лимфатическую систему, например, таких архетипических форм рака, как лимфома и миелома.

Конечно, в увлечении новой областью исследований не стоит забывать обычные, традиционно признаваемые факторы риска, и внешние — например, курение для рака легких либо папиллома для рака шейки матки, а также генетическую подоплеку карциногенеза. Не стоит также пренебрегать развитием традиционных способов лечения и исследования рака: радиологией, хирургией и радиотерапией. Если появятся надежные и гарантированные средства борьбы с раком — а я не сомневаюсь в этом, — они не будут некой единообразной панацеей, а станут результатом объединения огромного корпуса знаний, накопленного в различных областях медицины.

Всю нашу жизнь эпигеном откликается на воздействия окружающей среды. Поэтому читатели едва ли удивятся, узнав, что связь между эпигенетикой и старением — это важнейшая область эпигенетических исследований.

 

Конечно, старение — не болезнь в обычном смысле этого слова. Это естественный процесс, характерный для всех форм жизни, которым присуще половое размножение: и для целакантов, и для дубов, и для тропических древесных лягушек, и для человека. Притом — как ни странно — простейшие формы жизни, такие, как бактерии и амебы, не стареют. Старение и смерть — удел существ, чьи тела разделены на различные клетки, ткани и органы и чье размножение требует слияния мужской и женской половых клеток. Надо заметить, отношение к старению и смерти в разных культурах разное, но с медицинской точки зрения проблемы старения всегда одни и те же, вне зависимости от культуры, места жительства и этнической принадлежности.

Люди по-разному относятся к старению, но большинство согласится: мы любим жизнь и хотим полноценно жить как можно дольше. Серьезные болезни омрачают существование, отнимают у жизни достоинство и независимость — неотъемлемое право любого человека. Несомненно, помочь нам жить как можно дольше, сохраняя при этом полноценный образ жизни, — разумная и достойная цель для медицины.

В 2007 году М. Фрага и М. Эстеллер, работающие в Лаборатории рака и эпигенетики в Мадриде, опубликовали замечательный обзор о важности эпигенетики в старении, заключив, что «это зарождающаяся область исследований, обещающая значительный прогресс в ближайшем будущем». Сейчас несколько исследовательских групп работает над картой метилирования человеческого генома, сравнивая геномы молодых и старых, ведется также подобная работа над картами гистонных модификаций. В интервью с Джерри Уилсоном я коснулся проблемы старения и доказательств вовлечения в этот процесс эпигенетических процессов.

— У всех членов одной семьи наблюдается сходное увеличение либо уменьшение метилирования с возрастом, — сказал Уилсон. — Но в среднем по населению метилирование с возрастом не меняется. В связи с этим стоит снова задаться вопросом: «Почему в некоторых семьях риск заболеть раком выше?» Конечно, дело в генетической предрасположенности, но эпигенетические факторы тоже следует принимать во внимание.

Однояйцовые близнецы — идеальный предмет наблюдения для генетики. Для эпигенетики однояйцовые близнецы также исключительно ценны, но по причине в точности обратной — не потому, что они генетически идентичны, а как иллюстрация нарастания со временем эпигенетических различий. В основополагающей статье в американском журнале «Материалы Национальной академии наук США» Фрага с коллегами сообщили результаты изучения однояйцовых близнецов. Оказывается, близнецы по-разному восприимчивы к заразным заболеваниям и даже к распространенным психическим расстройствам, таким, как шизофрения и биполярные расстройства. Испанские исследователи задались вопросом: «Может ли быть, чтобы два человека, начавшие жизнь с абсолютно идентичным набором генов, по сути генетических клонов друг друга, со временем стали различаться по экспрессии этих генов?» Во многом это исследование, затронувшее восемьдесят пар близнецов, тридцать пар мужчин и пятьдесят — женщин, в возрасте от трех лет до семидесяти четырех, может считаться совершенной и исчерпывающей проверкой способности эпигенома реагировать на окружающую среду.

Исследователи обнаружили: в начале жизни эпигенетические механизмы однояйцовых близнецов практически идентичны. Но с возрастом приблизительно у трети близнецов проявляются существенные эпигенетические различия в метилировании ДНК и модификации гистонов. Эти модификации касаются всего генома, затрагивают и вирусные последовательности, и «позвоночные» гены, и, по-видимому, оказывают существенное влияние на экспрессию генов. Существует прямая связь между возрастом близнецов и степенью эпигенетических различий. У молодых они относительно слабо различаются, а у старых различия весьма существенны и хорошо заметны. Разница больше у близнецов, ведущих разный образ жизни и меньше времени проживших вместе, что, по словам Фрага с коллегами, «подчеркивает роль факторов окружающей среды в трансляции общего генотипа в два разных фенотипа». Далее авторы статьи размышляют, не в этом ли кроется причина различной восприимчивости однояйцовых близнецов к некоторым заболеваниям.

Для Уилсона однояйцовые близнецы были важным объектом исследования аутоиммунных заболеваний, и ревматоидного артрита в частности.

— Данные по ревматоидному артриту сходны с данными по диабету первого типа, — сказал Уилсон. — Одним из наших способов определить роль генетического фактора и было сравнение частотности заболевания ревматоидным артритом у разнояйцовых и однояйцовых близнецов. Если бы болезнь эта имела целиком генетическую природу и ответственные за нее гены всегда функционировали, то логично было бы ожидать ревматоидный артрит у обоих близнецов. Но не более тридцати процентов однояйцовых близнецов болеют им одновременно. Процент совпадений у разнояйцовых близнецов еще меньше — всего семь процентов. Понятно, напрашивается вопрос: отчего семьдесят процентов расхождения у однояйцовых? Возможно, это как раз результат влияния окружающей среды. Ревматический артрит — заболевание, развивающееся по мере взросления, и потому растущие эпигенетические расхождения между близнецами могут, в принципе, объяснить, почему один болеет, а другой — нет.

Я спросил, не может ли сказываться и различный уровень стресса у близнецов? За десятилетия опыта консультирования в клинике я много раз видел, как продолжительный стресс провоцирует аутоиммунные заболевания, иногда даже несколько одновременно.

— Да, в самом деле. Мы исследовали влияние классических стрессовых гормонов, включая кортикостероиды, и обнаружили, что кортикостероиды могут оказывать сильнейшее влияние на гены, причем результатом действия кортикостероидов могут быть как генетические, так и эпигенетические изменения. Есть данные в пользу того, что кортикостероиды могут влиять на эпигенотип клеток.

Я спросил, по-прежнему ли доктор Уилсон думает, что изучение изменений эпигенома для медицины не менее важно, чем изучение геномных мутаций?

— Да, я так сказал однажды и по-прежнему так считаю. Проблема в том, чтобы достичь должной степени исследованности. Эпигенетика каждой клетки сложна, а клеток множество разновидностей. И для одной клетки речь идет не просто о метилировании — а о множестве возможных модификаций гистонов.

— И о РНК-интерференции?

— Да, и о ней, конечно.

— Американцы много говорят о так называемом «раковом геноме», — сказал я, — но, похоже, скоро нам придется вести речь и о «раковом эпигеноме».

— Конечно. Проблема в том, что эпигенетика находится на уровне, пройденном генетикой двадцать лет назад. Экспериментальные исследования с технической точки зрения сложны. Нельзя провести скрининг целого генома в поисках эпигенетических маркеров таким же образом, как проводится скрининг в поисках некой генетической последовательности. Например, для исследования генов я недавно послал шестьсот образцов ДНК пациентов с ревматоидным артритом в Италию, чтобы определить четыреста тысяч генетических маркеров. А в эпигенетике мне приходится возиться с единственным геном TNF, поскольку эпигенетический анализ чрезвычайно сложен. И потому почти невозможно определять слабые различия — хотя, как мне кажется, они исключительно важны. У нас есть еще не опубликованные данные о том, что ген TNF с возрастом постепенно деметилируется. Поэтому экспрессия протеина TNF неизбежно растет с возрастом. У макрофагов деметилирование увеличивается лишь на одну целую шесть десятых процента в десятилетие. Значение небольшое, но за пять-шесть десятилетий это приводит к существенному увеличению экспрессии TNF — и риска болезни.

Замечание Уилсона о малых изменениях эпигенома показалось мне важным.

— Пластичность эпигенома, его способность меняться под воздействием окружающей среды, наверное, усложняют исследования, но и, полагаю, делают их более интересными?

— Следует помнить, что все клетки человеческого тела отличаются. Около года назад в «Нэйчур» была статья на эту тему. Авторы нашли в среднем четыре тысячи работающих генов в каждой клетке, причем у каждой случайно включалась одна из двух аллелей — копий гена, полученных от каждого из родителей. Причем то, какая именно копия включалась, менялось от клетки к клетке. Так что если анализировать возможные комбинации включенных и отключенных генов, то все клетки оказываются разными.

Я представил всю ошеломляющую сложность проблемы. За последние два десятилетия генетический скрининг развился очень сильно, появились схемы, позволяющие делать скрининг огромного количества ДНК за очень малое время. В таком же развитии нуждается и эпигенетика. Из разговора с доктором Уилсоном я вынес впечатление: такой прогресс не за горами.

 

Чтобы понять перспективы эпигенетики в медицине, нужно усвоить несколько простых и взаимосвязанных вещей. За пару последних десятилетий медики изо всех сил старались научиться изменять экспрессию генов, но это оказалось слишком трудным. Теперь мы знаем: экспрессию генов контролируют различные эпигенетические механизмы, на которые может влиять окружающая среда. А медицинские препараты и курсы лечения как раз и действуют таким образом, что меняют химический состав окружающей клетку среды. То есть напрашивается вывод, что возможно создать препараты, влияющие на эпигенетические механизмы. Думая об этом, я снова и снова повторял про себя вопрос, заданный мною доктору Кварреллу: «Что будет, если мы сможем свободно отключать и включать отдельные гены?»

Предположим, что посредством терапии будут отключены гены BRCA1 и BRCA2, увеличивающие риск рака груди, либо ген HLA В27, играющий ключевую роль в развитии анкилозного спондилита, либо гены DRB1, DQA1 и DQB1, подвергающие человека риску развития диабета, либо гены HLA-DQ2 и HLA-DQ8, делающие человека склонным к заболеванию целиакией? А если бы мы знали, как включать защитные гены, тем либо иным образом полезные для организма? Наше углубляющееся знание эпигенетики (возможно, вкупе с генной терапией) способно помочь в лечении болезней, обусловленных HERV, LINE или Alu-повторами и тысячами мутаций, вызывающими наследственные заболевания, да и в тысячах обычных заболеваний, с которыми каждодневно приходиться справляться докторам.

Здесь уместно вспомнить результаты исследования, вселившие в доктора Кваррелла надежду на излечение его пациентов, страдающих болезнью Хантингтона. Они были опубликованы в 2000 году Ямамото, Лукасом и Хеном из Центра нейробиологии и поведения Колумбийского университета. К тому времени генетическая подоплека болезни Хантингтона была полностью разъяснена, определен и назван «хантингтином» основной ген, ответственный за нее, найдено и точное положение его в четвертой хромосоме, локализована мутация в этом гене, определена и природа мутации — слишком большое число CAG-повторов. Если у человека при рождении от шести до тридцати четырех повторов, он будет здоровым. Но при более чем сорока повторах болезнь практически неизбежна, несмотря на присутствие здоровой версии хантингтина. И чем больше число повторов, тем меньше возраст, с которого начинается развитие болезни. Вообще говоря, известен целый ряд обладающих сходными чертами болезней, обусловленных CAG-повторами. Этот ряд включает восемь прогрессирующих неврологических заболеваний, таких, как Х-сцепленная бульбарная спинальная мышечная атрофия и спинноцеребральная атаксия. Возможно, если мы научимся лечить одну из них — сможем лечить и все остальные.

Основываясь на сложной искусственной системе, позволяющей включать и отключать мутировавший ген, группа Ямамото произвела эксперимент на мышах. Когда мутировавший ген включали, у мышей развивалась патология наподобие болезни Хантингтона со всеми ее физическими проявлениями. Когда же ген отключали, патология исчезала, а с тем улучшалось и физическое состояние. Но механизм отключения не был эпигенетическим. Пять лет спустя две сотрудничающих группы исследователей из Программы генетических исследований (университет Айовы) и Национального института сердца, легких и крови (Национальный институт здравоохранения США, Вифезда) сделали важный следующий шаг, рассмотрев РНК-интерференцию в качестве управляющего механизма.

Позволю себе напомнить: РНК-интерференция — это эпигенетический механизм, работающий посредством взаимодействия небольшой молекулы РНК с определенной транспортной РНК, то есть молекулой, переносящей код от гена в ядре до производящей белки структуры вне ядра. Промоделировав на мышах болезнь Хантингтона, исследователи показали: РНК-интерференция, направленная против транспортной РНК, переносящей код от мутировавшего гена, сильно понижала концентрацию этих РНК и тем уменьшала экспрессию кодируемых дефектным геном протеинов. И поскольку РНК-интерференция чрезвычайно избирательна, на экспрессии нормального хантингтина она никак не сказывалась. Понижение экспрессии дефектного гена привело к значительным изменениям в пораженном мозге лабораторных мышей и в культурах тканей. Исследователи установили: «Отключение дефектного гена хантингтина положительным образом повлияло на поведение и нейропатологические ненормальности, ассоциированные с болезнью Хантингтона». И заключили: «Наши данные позволяют с уверенностью заключить о перспективности применения РНК-интерференции для лечения болезни Хантингтона и дают основу для разработки такого применения».

 

В свете изложенного выше неудивительно, что теперь по всему миру возникают и разрастаются центры исследования медицинского потенциала эпигенетики, лечения с ее помощью рака, воспалений, старения, врожденных и наследственных заболеваний, диабетов — широчайшего спектра самых распространенных заболеваний. В эти центры вкладывают деньги ведущие фармацевтические компании, причем деньги очень большие. И уже имеется внушительный список новых лекарств и новых применений лекарств уже известных.

Количество новых методов терапии растет столь быстро, что в этой книге едва ли возможно описать их подробно. Первые методы терапии были довольно грубыми и примитивными — как и первые лекарства, применяемые для них. Но повышение точности и избирательности терапий — лишь вопрос времени. Можно с уверенностью прогнозировать скорое появление эпигенетических терапий, работающих на уровне единичного гена, способных блокировать определенный онкоген либо стимулировать ген, подавляющий развитие рака, исправить неправильную модификацию гистона в митохондриальном гене, привести в порядок нарушенные эпигенетические механизмы контроля, приводящие к тяжелым воспалениям и аутоиммунным заболеваниям, разрушающим человеческие жизни. Эпигенетические терапии могут повлиять на старение — многое из описанного выше способно продлить жизнь, одновременно делая жизнь стариков более яркой и полноценной.

Надеюсь, я не оставил у вас сомнений в важности понимания сложной и причудливой истории эволюции нашего человеческого генома. Если да, то главную цель моей книги можно считать достигнутой. Ради этого я писал ее. Если мы выучимся управлять геномом, управлять каждым геном, какого бы происхождения они ни был — митохондриального, позвоночного либо вирусного, — мы сможем буквально все. И это сулит колоссальные выгоды медицине.

Я оставляю вам, мой читатель, самому пофантазировать на тему того, как это изменит наш взгляд на общество, нашу историю и мир вокруг нас.

Назад: 13. Гений, управляющий генами
Дальше: 15. В конце пути

csadfasf
sdfsadfsadfa