Сосуд ли мы, в котором пустота?
Наш рассказ об аномалиях шел до сих пор дедуктивным путем, от необъятного к микроскопически малому: от фундаментальных констант мироздания к реакциям в ядрах атомов; от предсказаний окончательной участи Вселенной — к производству нового вида энергии в земных условиях. Однако ни один из этих феноменов нельзя счесть столь важным для человеческого рода, как наш следующий научный абсурд. Роль его так велика, что, по мнению теоретика комплексных систем Стюарта Кауфмана из Института Санта-Фе, справиться с этим вопросом — значит основать целую новую дисциплину в науке. Что же это такое? Мы говорим просто — жизнь.
Конечно, усмотреть в ней отклонение от нормы очень непросто. Но тут все дело в устоявшейся привычке. Давайте отрешимся на минуту от данностей и задумаемся о том, что же отделяет живой мир от неживого. Все научные исследования неоспоримо свидетельствуют лишь об одном: целый ряд форм материи имеет свойство, которое мы называем жизнью. И есть много других форм, которые никто не считает живыми. Однако ни один ученый на свете не может точно определить, где проходит граница между этими двумя состояниями, описать их фундаментальные различия. Равным образом ни один из них не способен превратить частицу неживой материи в нечто безусловно признаваемое живым. На самом деле ученые даже не пришли до сих пор к общему мнению, что и как для этого нужно делать.
Наши тела состоят из молекул; свойства и поведение каждой из них по отдельности поддаются научному описанию: принципиальное объяснение дано квантовой физикой. Однако в нашем случае молекулы соединяются друг с другом таким образом, что они обретают свойства, противоречащие любым теориям. Эти свойства мы и признаем жизнью. Однако в биологической науке слово «жизнь» не более чем этикетка — такая же, как ярлык «темная энергия» для космологии. Недаром сам отец-основатель квантовой теории Эрвин Шрёдингер в 1944 году озаглавил свою книгу «Что такое жизнь?».
Большинство ученых предпочитает отвечать на этот вопрос: «Ничего сверхъестественного». Нет ни малейшей причины верить в какой-нибудь эфир, мировой дух или «жизненную искру», однажды оплодотворившую группу молекул. Равно как нет поводов тем или иным образом выносить ответ за пределы естествознания, в мистику либо философию. Нет, по общему мнению, и причин сомневаться в возможности окончательного ответа. Просто мы пока не уверены, где и даже что именно надо искать.
К разгадке можно идти разными путями. Один из них — выяснить, с чего все начиналось, пробраться по древу жизни к самым его корням, когда все сущее было просто набором химических элементов. Другой — попробовать получить нечто «жизнеподобное» из неживого, соединив определенные вещества таким образом, чтобы получилась работающая клетка. Третий способ — усесться поудобней и размышлять о том, где проходит граница между живой и неживой материей, в надежде найти формулу жизни. Этот последний путь, видимо, самый истоптанный. Он же признан и самым бесперспективным.
Как истолковать жизнь? Как самовоспроизводящуюся систему? Тогда множество компьютерных программ можно назвать живыми, а немалое число людей — например, бесплодных мужчин и женщин или монахинь — так не назовешь. Ну хорошо: живые существа способны передвигаться, потребляют энергию и выделяют шлаки. Правильно? Но все это свойственно автомашинам, а их никто не спутает с живыми.
Шрёдингер пришел к мысли, что жизнь — единственная из природных систем, которая разворачивает вспять естественную последовательность событий, именуемую энтропией, — движение от порядка к хаосу. То есть живые существа — не что иное, как машины, которые действуют вопреки заведенному порядку вещей: в окружающей их среде они из беспорядка создают порядок. Именно в этом, по Шрёдингеру, заключается сущность процесса, который откладывает наступление смерти. Увы, и здесь чего-то не хватает: горящая свеча тоже упорядочивает пространство вокруг себя, а она уж точно неживая.
Английский физик Пол Чарлз Уильям Дэвис сделал, возможно, больше других для объяснения феномена жизни, но и он затрудняется с окончательным ответом. Дэвис выделил целый ряд характеристик, из которых ни одна не определяет жизнь как таковую и саму по себе, зато многие в равной степени присущи неживой материи. В его книге «Пятое чудо: в поисках происхождения и значения жизни» перечислены эти признаки (а также присущие им недостатки) — скорее их можно назвать объяснениями и описаниями жизни, чем ее определениями. Живое существо перерабатывает материю, усваивая энергию (точно так же ведет себя Большое Красное Пятно на Юпитере). Живое существо самовоспроизводится (однако мулы этого не делают, в отличие от лесных пожаров и кристаллов). Оно представляет собой высокоорганизованную сложную систему, состоящую из ряда взаимозависимых подсистем, скажем сосудов и опорно-двигательного аппарата (подобно современным автомобилям). Оно растет и развивается (как ржавчина). Оно содержит в себе информацию, копирует ее и передает другим системам (компьютерные вирусы с этим делом справляются не хуже). Жизнь сочетает постоянство с изменениями, эволюционируя путем мутаций и отбора. Наконец — и это, по Дэвису, возможно, важнейший из всех признаков — живые существа автономны, они способны самостоятельно выбирать образ действий.
Другие ученые продолжают перечень. Как отметила биолог Линн Маргулис, живая система, помимо всего прочего, отделена от внешнего мира оболочкой, которая является частью ее самой. Однако все эти характеристики — скорее, дискретный ряд наблюдений, они чересчур расплывчаты, чтобы закрыть вопрос. И кое-кому в научном сообществе попытки дать определение жизни уже начинают казаться просто вредительством.
В июне 2007 года в редакционной статье журнал «Нейчур» выразил надежду, что
«навязчивые позывы во что бы то ни стало провести качественное разграничение между косной и живой материей — по сути, неовитализм — скоро будут похоронены рядом с предарвинистской верой, в соответствии с которой жизнь якобы самозародилась из гниющей органики. Иные современные ученые, отнюдь не разделяя подобных суеверий, тем не менее фактически воскрешают их своими потугами разработать систему жестких критериев для определения „живого“».
Зато редакционная статья «Нейчур» воспела достижения синтетической биологии — попыток построить живую материю из атомов и молекул. Это, с точки зрения научного истеблишмента, и будет решающим шагом к усвоению того факта, что феномен жизни не вписывается ни в какие существующие рамки понимания. Правда, принесут ли такие опыты успех — еще вопрос.
Первыми исследователями, кому удалось добиться некоторых результатов в сотворении живого, были химики из Чикагского университета Гарольд Клейтон Юри и Стэнли Миллер. В 1953 году они запечатали в двух сообщающихся сосудах газообразный аммиак, метан и водород вместе с водой, имитируя первичную земную атмосферу, и стали пропускать через эту смесь электрические разряды — исходя из идеи, что первую искру жизни на Земле могли случайно зажечь атмосферные бури.
Опыт увенчался показательным успехом. Через неделю непрерывного истязания «атмосферы» электрическими разрядами примерно два процента углерода, содержащегося в лабораторном метане, связались в аминокислоты — типовые блоки, из которых строятся белки. Сенсация, не иначе!
Проблема в том, что сегодня эксперимент признан нечистым. Как полагают многие коллеги, Юри с Миллером взяли не те газы, которые на самом деле присутствовали в исконной атмосфере. И основные химические пропорции они, очевидно, выдержали неверно. К тому же подлинная основа земной жизни — белки, углеводы, жирные и нуклеиновые кислоты — в полученной взвеси не появилась. Профессор химии из Нью-Йоркского университета Роберт Шапиро сравнил полученный эффект со случайным появлением слова «быть» при хаотическом переборе клавиш на пишущей машинке — это ведь вовсе не означает, что за ним последует «.. или не быть» и дальше весь монолог Гамлета до конца. «Любой трезвый расчет вероятностей показывает: надежды сочинить таким путем трагедию или хотя бы сонет тщетны, — писал Шапиро. — Даже если бы каждый атом на Земле работал как та машинка, безостановочно выдавая текст в течение четырех с половиной миллиардов лет».
Так что эксперимент Юри — Миллера трудно назвать подлинным успехом. Однако он показал потенциальные возможности метода. В 1961 году испанский биохимик, каталонец Хуан Оро сделал следующий шаг. Из воды, синильной кислоты и аммиака он синтезировал значительное количество аденина. Это вещество — не только одно из четырех азотистых оснований ДНК, но и главный компонент аденозинтрифосфата (АТФ), соединения, которое снабжает организм биохимическим «топливом» для обмена энергии и веществ. Без него живые существа не смогут ни бегать, ни расти, ни даже дышать.
Бельгийский биолог, нобелевский лауреат Кристиан Рене де Дюв, сказал однажды: «Жизнь — это либо стандартная, почти что тривиальная форма материи, неизбежно возникающая всякий раз при определенных условиях, либо чудо. Слишком много шагов ей приходится сделать, чтобы можно было допустить какой-то промежуточный вариант». Но если синтез аминокислот и аденина на самом деле настолько прост, тогда, быть может, и жизнь сотворить несложно? Всерьез отнестись к такой возможности позволяет удивительная скорость, с которой жизнь развивалась на Земле.
В центре региона Пилбара на северо-западе Австралии солнце нещадно жжет рыжие скалы, сформированные первыми обитателями планеты. Эти удивительные геологические образования напоминают картонные ячейки для яиц или перевернутые мороженицы; их форма и состав говорят о том, что сложены они из осадочных пород — отходов жизнедеятельности микроорганизмов, населявших эту область 3,5 миллиарда лет назад. Но необычен в них не только причудливый вид.
Солнечная система сформировалась около 4,55 миллиарда лет назад. Долгие тысячелетия в ней бушевал адский смерч астероидов и комет; огромные каменные глыбы носились в космическом пространстве, бомбардируя планеты и их спутники. Согласно самой правдоподобной догадке о том, как Земля с ближайшими окрестностями приобрела знакомый нам вид, однажды в юную планету врезался камушек величиной с Марс. От страшного удара вся ее поверхность расплавилась, и на орбиту вылетела большая капля; этот сгусток стал впоследствии серебристой Луной.
После той катастрофы Земля приходила в себя еще десятки миллионов лет, и помехи остыванию прекратились далеко не сразу. Исследования кратеров на Луне, сформировавшихся, когда ее поверхность отвердела, показывают, что кометно-астероидные бури начали стихать приблизительно 3,8 миллиарда лет назад. Только тут и смогла жизнь заявить о себе; судя по всему, бактериям Пилбары понадобилось еще около 300 миллионов лет, чтобы утвердиться на планете.
Космолог и астроном Карл Эдвард Саган считал столь быстрое зарождение жизни доказательством простоты этого процесса. «Как только условия сделались благоприятными, жизнь на планете начала развиваться с поразительной скоростью, — писал он в 1995 году в эссе для журнала Планетарного общества „Новости биоастрономии“. — Возникновение жизни должно иметь высокую вероятность: едва лишь обстоятельства позволяют, она уже тут как тут!» Ученый, скончавшийся год спустя от миелодисплазии — расстройства костного мозга, связываемого с лейкемией, — был уверен, что жизнь существует и в других местах Вселенной.
Сегодня многие биохимики и биологи склоняются к более амбициозным выводам: если жизнь дается так легко, мы и сами сумеем ее синтезировать. Большинство исследователей согласилось, что задача достижима в принципе; весь вопрос в том, когда — не «если», а именно «когда»! — будет создана искусственная жизнь. В конце концов, раз однажды так вышло, что молния случайно ударила прямо в чан с первичным бульоном, то, мобилизовав все возможности современных биотехнологий, можно заставить эту случайность повториться. И конечно, «Жизнь 2.0» не заставит себя ждать так долго, как в первый раз…
Взгляд, безусловно, оптимистический, но при этом, увы, наше невежество остается вне поля зрения. Целое десятилетие ученые не сомневались, что проблема вот-вот будет решена путем надлежащего подбора первичных химических компонентов. Однако не факт, что сегодня мы к этому ближе, чем десять лет назад. Даже если сотворение жизни — это «просто-напросто» вопрос соединения нужных химикалий при нужных условиях, то о том, какова эта «нужность» — и для химикалий, и для условий, — ученые по сей день не могут договориться.
Испытания первой атомной бомбы в пустыне близ Лос-Аламоса научный руководитель Манхэттенского проекта Роберт Оппенгеймер подытожил, по воспоминаниям очевидцев, на редкость лаконично: «Получилось». Однако в снятом спустя несколько лет эпилоге к документальной хронике Оппенгеймер признался, что в тот момент мысли его были куда сложнее. Едва сдерживая эмоции, потупив взгляд и даже смахивая набегающие слезы, он вспоминал:
«Мы знали, что мир уже не будет прежним. Несколько человек смеялись, некоторые плакали, большинство молчало. Мне вспомнилась строка из священной книги индуизма — „Бхагавад-гиты“. Вишну призывает принца исполнить долг воина и, чтобы убедить его, принимает свое многорукое обличье со словами: „Я — Смерть, великий разрушитель миров, несущий гибель всему живому“. Наверное, в тот момент все мы, так или иначе, подумали о чем-то подобном».
Если миру суждено измениться столь же радикально во второй раз, эта новость, несомненно, будет связана с успешным созданием искусственной жизни. Один из таких экспериментов сейчас проводит Стин Расмуссен в сердце пустыни Нью-Мексико, в Лос-Аламосской национальной лаборатории. Если проект осуществится — то есть если «лос-аламосская букашка» хоть когда-нибудь оживет, — это заставит нас пересмотреть свое место во Вселенной. То, что мы зовем жизнью, перестанет быть аномалией.
Наверное, неудивительно, что Расмуссена обвиняют в том, будто он «играет в Бога»; были даже предложения закрыть его проект. Если он хочет отвести подобные обвинения, ему достаточно лишь предъявить список компонентов «лос-аламосской букашки». Развивайся жизнь по его «рецепту», она пойдет иным путем, чем тот, по которому двигались микроорганизмы Пилбары и все остальные обитатели Земли. Собственно, можно утверждать, что «лос-аламосская букашка» — не совсем жизнь, а… крошечный мыльный пузырек. Нечто вроде обычного моющего средства: липидная основа плюс светочувствительный состав, тот самый, что после стирки придает ослепительную белизну вашим рубашкам. Расмуссен шутит — дескать, этакого голема каждый может купить себе в соседней лавке. Так что никакими научно-фантастическими ужасами по «франкенштейновской» линии здесь явно не пахнет.
Макромолекулы моющих веществ представляют собой сложные цепочки жирных кислот и других соединений с противоположными свойствами на концах: один водоотталкивающий, другой, наоборот, водолюбивый. Оказавшись в воде, они выстраиваются наподобие цветочных лепестков: гидрофильные концы обращены наружу, гидрофобные сосредоточиваются в центре. Частицы загрязнителей, будь то нефть или жир, улавливаются в водоотталкивающей сердцевине каждого «цветка» и отрываются от всего, с чем сцеплялись.
Причина, по которой для создания нового поколения жизни был выбран комочек жира (мыло имеет слабый кислотный состав — эти кислоты именуются жирными), довольно проста: он представляет собой весьма удобный контейнер. В водной среде жирные кислоты создают четкую самоподдерживающуюся структуру, для которой лабораторная пробирка — что дом родной. Остается добавить лишь толику генетического материала.
Для этого конструкторы «букашки» не стали использовать ДНК. Ее заменяет ПНК. Буква «П» здесь обозначает «пептид» — короткую цепочку аминокислот, строительных кирпичиков белков. ПНК, как и ДНК, состоит из двух перекрученных нитей аминокислот, но устроена проще, и синтезировать ее много легче. Она не несет никакого электрического заряда, а это означает, что в жировой среде она будет растворяться. Встроившись в маслянистую капельку «букашки», ПНК ждет случая самовоспроизвестись.
Такой шанс выпадает, когда становится жарковато. Если температура поднимается выше определенной отметки, двойные нити ПНК начинают расходиться. При этом на некоторых участках возникают слабые электрические заряды, которые проявляют интерес к молекулам воды. Сама цепочка, основа «букашкиной» генетики, остается внутри жировой капельки, но заряды тянут ее к оболочке. Здесь она встретится с короткими кислотными цепочками, еще более короткими, чем ПНК, — Расмуссен с коллегами предполагают, что эти цепочки будут свободно плавать в воде, образуя своего рода систему жизнеобеспечения. Некоторые из них присоединятся к «обнаженным» основаниям разошедшейся двойной пептидной нити; если какие-нибудь короткие цепочки окажутся «правильными», отделившийся фрагмент ПНК неожиданно для себя обнаружит, что у него появилась пара, которая вместе с ней образует новую двойную нить. Ее электрические заряды нейтрализуются, и она снова растворяется в маслянистой капельке. По мере температурных изменений процесс будет повторяться снова и снова, а генетический код «букашки» — постоянно самовоспроизводиться, с шансами на интересные мутации при каждом новом повороте событий.
Не то чтобы опыт уже завершился. Пока группа Расмуссена добралась только до процессов роста и деления; самовоспроизводства генов еще нет. Но Расмуссен убежден: когда это произойдет (он подчеркивает: именно «когда», а не «если»), «букашка» оживет.
Ну хорошо, как бы оживет. Расмуссен не спорит: если под жизнью разуметь точное подобие нашей с вами, тогда это нечто иное. Но для создания с нуля «настоящей» жизни, по его словам, нужны долгие годы; ведь клетка чрезвычайно сложна, мы еще и половины не знаем о ней. Тем не менее Расмуссен убежден, что по всем рабочим критериям «букашке» суждено стать живой.
У нее будет, например, примитивный обмен веществ, который позволит ей самовоспроизводиться. Некоторые из плавающих в воде кургузых «запчастей» — пептидных цепочек — обретут на одном конце группу светочувствительных молекул. Эти молекулы послужат нейтрализации электрического заряда цепочек, сделав их растворимыми в жировой среде, и «букашка» начнет «поглощать» их. Однако с наступлением утра световое излучение разрушит светочувствительные молекулы; в итоге цепочки снова обретут электрический заряд и начнут искать заряд противоположного знака в окружающей водной среде, для чего им потребуется приблизиться к оболочке «букашки». По мере увеличения уровня освещенности все больше и больше цепочек будет устремляться к поверхности капельки, и в конце концов на оболочке просто-напросто не хватит места для всех. Вот тогда-то, считает Расмуссен, капля и разделится надвое — самовоспроизведется. Этот механизм задуман весьма хитроумно: электрические свойства ПНК не позволят «сырьевым» молекулам влиять на генетику «букашки», и, следовательно, процесс роста будет замечательным образом отделен от генетических мутаций.
Впрочем, вообразить, что эта жировая капелька и есть жизнь, пока еще очень трудно. Кстати говоря, та самая редакционная статья журнала «Нейчур», которая подвергала критике само определение понятия «жизнь», задавалась еще и вот каким вопросом: а можно ли вообще попытки сконструировать организмы «с нуля» назвать «сотворением жизни»? Глядя на иные проекты, конкурирующие с идеей Расмуссена, хочется ответить: «Нет». Возьмем для примера опыты Крейга Вентера.
Ни для кого не секрет, что от мочеполовых инфекций ждать добра не приходится. Однако Вентер — человек, задумавший превратить расшифровку человеческого генома в частное предприятие, — вряд ли согласится с этим. Он тоже занимается искусственной жизнью, стараясь раскрыть загадку с помощью бактерии, портящей людям настроение при каждом заходе по малой нужде.
Mycoplasma genitalium была впервые обнаружена в начале 1980-х в моче пациента, страдавшего негонорейным уретритом. Оказалось, что болезнетворный микроб, поражающий мочеполовые пути, обладает самым куцым геномом среди всей живности на планете. У человека генов насчитывается примерно 30 тысяч, у микоплазмы гениталиум — всего 517. Да и из тех почти триста не несут, судя по всему, никакой полезной информации.
Вентер возглавлял исследовательскую группу, расшифровавшую геном этой бактерии в 1995 году. Относительная простота ее организма подсказала идею определить методом исключения гены, действительно нужные для сохранения вида. Как только их набор сведется к абсолютно необходимому минимуму, тут-то мы, по словам Вентера, и постигнем самую суть жизни. А заодно создадим ценную биофабрику: Вентер собирается заменить «лишние» гены в ДНК бактерии другими, которые позволят ей, допустим, синтезировать инсулин. Несомненно, это и есть причина, по которой Вентер собирается сделать следующий сомнительный ход — запатентовать минимальный геном.
Ученый уже выделил гены, необходимые для такого минимального организма, и синтезировал их. Сейчас, когда пишется данная книга, осталось только внедрить эти гены в бактериальную клетку, из которой удален ее собственный геном. Вентер уже доказал, что его группа в принципе способна выполнять такие генные трансплантации; стало быть, дело не в технических препятствиях. Однако, хотя Вентер похваляется, будто делает важный шаг на пути к сотворению жизни, по сути, то, что он создает, — вовсе не жизнь, а новый вид бактерии. Биофизик Дэвид Димер из Калифорнийского университета в Санта-Крусе выразился еще жестче. По его словам, тварь, которую пытается произвести на свет команда Вентера, — всего лишь «существующий организм, подвергнутый радикальной переделке».
То же можно сказать о программе, идущей в Цюрихе под научным руководством Пьера Луиджи Луизи. Его «минимальный клеточный проект» начался с крохотного пузырька, своего рода контейнера для транспортировки внутри клетки всякого добра, затем во внутриклеточную среду будут добавляться различные химикаты и компоненты — пока не получится что-то вроде полноценно работающей клетки. Джек Шостак в Гарварде тоже мастерит пузырьки с начинкой из биоматериала в ожидании, что станет свидетелем их спонтанного деления. Шостак охотно признаёт: его проект рассчитан на долгий срок и не имеет обозримого предела в будущем; как он говорит, до настоящего искусственного самовоспроизводства клетки лет десять — двадцать… плюс к тем десяти — двадцати годам, которые ожидаются сегодня.
Но даже если из выпотрошенной клетки в лаборатории Вентера или из мыльного комка в аквариуме Расмуссена в конце концов что-нибудь да вырастет, оно вовсе не обязательно даст людям новые важные знания о том, что зовется жизнью. Ну и к чему мы приходим в итоге? Кристиан де Дюв, воспитывавшийся в коллеже у иезуитов, рассуждает о «космическом императиве», согласно коему жизнь возникает при благоприятных условиях как неизбежный результат действия физических законов. Расмуссен, в сущности, ему вторит: жизнь — это просто очень эффективный способ преобразования энергии. Проблема в том, что такая точка зрения все равно оставляет нас в потемках: мы по-прежнему не очень-то понимаем, что такое жизнь и откуда она взялась на Земле. Расмуссен возражает, аргументируя это тем, что отдельно взятый элемент и всеохватный феномен — две совершенно разные вещи: внешний вид автомобиля ничего не говорит нам о дорожных пробках, напоминает он.
Возможно, именно такой взгляд на аномалию жизни и приведет к новой революции в науке. Если редукционизм — тупиковый путь, значит, надо развернуться и двигаться в противоположном направлении.
В августе 1972 года в журнале «Сайенс» вышло эссе Филипа Уоррена Андерсона. Будущего нобелевского лауреата по физике, в то время работавшего в корпорации «Лаборатории Белла», всегда отличала страсть к интеллектуальным провокациям, но нигде она не проявилась с такой силой, как в увлекательном тексте, озаглавленном: «Большее — это иное».
Опираясь на собственный опыт ведения научных исследований, Андерсон подчеркивал, что природу большой и сложной системы невозможно понять, исходя из знания ее отдельных элементов. Иными словами, разница та же, что между автомобилями и дорожными пробками: множество более высокого ранга создает принципиально новое качество, не присущее не только какому-либо из подмножеств, но даже их механической сумме. Это, по убеждению Андерсона, не голая эмпирика, а реально действующая закономерность. На каждом следующем уровне сложности «проявляются абсолютно новые свойства, и, чтобы понять новое поведение системы, требуются, я полагаю, специальные исследования, столь же фундаментальные по своей природе, как и любые другие».
Если мы стремимся познать мир, в котором живем, продолжает Андерсон, то неизбежно придется отвергнуть редукционизм — методологический принцип, сводящий любое сложное явление к его простейшим началам: целое не поддается реконструкции из деталей. «По сути, чем больше ученые, изучающие элементарные частицы, говорят нам о природе фундаментальных законов, тем меньшее отношение, судя по всему, имеют их слова к самым что ни есть реальным проблемам всех остальных наук».
Да, стараясь разобраться в устройстве любой вещи, мы по детской привычке принимаемся разламывать ее на кусочки: брусок железа — на молекулы и атомы, атомы — на электронные облака и ядра, последние — на протоны и нейтроны, те, в свой черед, на кварки и далее. Этим путем наука шла все прошлое столетие, достигнув поразительных успехов. И зачем тогда менять методологию сейчас?
Да затем, что иначе никакого прогресса не будет! — возмущается Андерсон. Уже просто некуда деваться от наглых, самодовольных молекулярных биологов, «преисполненных решимости свести все знание о человеческом организме к элементарной химии, хотя между ДНК и человеческой этологией, несомненно, намного больше уровней организации, чем, скажем, между квантовой электродинамикой и ДНК». И для каждого из этих уровней, возможно, потребуется, предполагает Андерсон, совершенно новый концептуальный подход.
Ученый завершает свои рассуждения ссылкой на исторический диалог двух писателей:
Фрэнсис Скотт Фицджеральд: «Богатые не похожи на нас».
Эрнест Хемингуэй: «Да, у них больше денег».
Всем понятно, что у толстосумов нет никакого писаного кодекса, который диктовал бы общие нормы этой непохожести. Но вероятно, каждый имел случай убедиться, что такие особенности поведения реально существуют. Точно так же, по словам Андерсона, метод редукции бессилен объяснить, как и почему возникают те или иные сложные явления; для этого мы должны наблюдать, где именно «внезапно» появляется новое «поведение» (его называют «эмерджентным» — от английского слова emergency, «появление, возникновение»), и пытаться установить принципы, на которых основано это появление.
Прошло больше тридцати лет, но за это время почти никто так и не прислушался к Андерсону. Тем не менее в конце минувшего тысячелетия идею Андерсона подхватили двое других физиков. Нобелевский лауреат Роберт Беттс Лафлин и именитый физик Дэвид Пайнс опубликовали статью в «Ученых записках Национальной академии наук США». Отталкиваясь от воззвания Андерсона: «Большее — это иное», они объявили, что главная задача физики наших дней «состоит уже не в том, чтобы записать окончательные уравнения, а скорее в том, чтобы систематизировать и понять эмерджентное поведение во всем многообразии его проявлений, включая, по возможности, саму жизнь».
Основная посылка эмерджентной теории заключается в том, что система, состоящая из большого числа взаимосвязанных подсистем, способна к самоорганизации; разнообразные взаимодействия ее частей вызывают поразительно сложные формы упорядочения. Это наглядно показал опыт американского химика Джорджа Уайтсайдса: насыпав в чашку Петри стальные шарики от подшипника, он подложил под нее вращающийся стержневой магнит. Шарики самоорганизовались в концентрические кольца, и каждое кольцо пришло в круговое движение. Конечно, такое поведение должно подчиняться неким правилам, имеющим отношение к магнитным взаимодействиям и тому, что на каждый шарик воздействуют силы трения, но… пока нет никакой надежды найти этим правилам вразумительное объяснение! Тем не менее можно, по всей вероятности, установить общие принципы самоорганизации при эмерджентном поведении и воспользоваться ими для анализа любых сложных явлений, кажущихся необъяснимыми. Таких, например, как свертывание белка или высокотемпературная сверхпроводимость. Уцепившись за кончик нити, мы сможем размотать целый клубок загадок, в том числе тайну жизни.
Энтузиасты идеи считают, что игра стоит свеч. По мнению Стюарта Кауфмана — ученого, занимающегося теорией сложности, — «живые организмы не просто хитромудрая новинка, сляпанная на скорую руку, но порождение глубинных законов природы». По Лафлину, эти глубинные природные законы, они же принципы самоорганизации, служат «подлинным источником важнейших законов физики, включая, вероятно, самые фундаментальные из тех, которые мы знаем».
В 1999 году Лафлин и Пайнс создали Институт по изучению сложной адаптивной материи при Калифорнийском университете. Их целью было объединить ученых для исследования «необъяснимых» эмерджентных явлений и поиска принципов, лежащих в их основе. Мысль, судя по всему, оказалась верной: в 2004 году Национальный научный фонд предоставил институту грант.
Идея открыть целое новое направление в науке, бесспорно, вдохновляет: если мы узнаем, что заставляет шарики бегать по кругу, это может помочь в разгадке не только тайны жизни, но, вероятно, и природы темной энергии или непостоянства альфы. Реальность, однако, неутешительна. Пока — ни единого прорыва, ни намека на озарение, которое изменит наш взгляд на Вселенную. Не заметен и массовый отказ ученых от редукционизма. Не сформулированы даже самые общие представления о том, как могут выглядеть эмерджентные принципы. Это, конечно, вовсе не означает, что Андерсон, Пайнс, Лафлин и Кауфман непременно заблуждаются, но приходится признать: путь от постановки проблемы до ее решения будет долгим и непростым.
Итак, на сегодняшний день жизнь упорно остается аномалией — уникальным, загадочным, проще говоря, «особенным» явлением. С наукой эта ситуация как-то не очень согласуется. Большинство ученых, естественно, отвергают взгляд на жизнь как трансцендентный феномен, созданный «животворящей силой» или, как в Книге Бытия, Духом Божьим. Помимо всего прочего, такой подход прямо противоречит магистральной научной тенденции двадцать первого столетия, исходящей из представлений о нашей заурядности во Вселенной. Кажется, ярче всех эту мысль сформулировал Карл Саган:
«Мы живем на шарике из камня и металлов, вращающемся вокруг банальной звезды — одной из 400 миллиардов, входящих в Галактику Млечного Пути, одну из миллиардов галактик нашей Вселенной, которая, в свою очередь, возможно, лишь единица в очень большом, быть может, бесконечном числе миров… Таковы масштабы, в которые вписано человеческое бытие вместе со всей нашей культурой; и именно эту перспективу следует постоянно держать в уме».
Вот мы и привыкли, как выразился писатель Джордж Джонсон, «упиваться собственной незначительностью». Однако проблема жизни как аномалии отчасти омрачает этот пир духа. Ну, и что же мы можем предпринять, пока сидим да ждем, сможем ли мы объяснить явление жизни или, во всяком случае, воссоздать ее «с нуля», чтобы лишить покровов тайны?
Очевидный ответ — найти жизнь в других местах Солнечной системы. Возможно, воссоздать живую клетку нам трудно оттого, что задача не столь очевидна, как считают Расмуссен, Вентер и другие их единомышленники. Жизнь могла развиться так быстро не потому, что это в принципе несложно, но потому, что она уже в готовом виде прибыла из внеземных пределов. Разумеется, не каждому придется по душе считать себя космическим подкидышем, однако со строго научной точки зрения в такой идее нет ничего возмутительного или невероятного. В начале 1990-х НАСА финансировало исследования метеоритных потоков. Откуда прилетают небесные камешки на Марс, на Венеру или Меркурий и что при этом случается? В течение ряда лет на нескольких настольных компьютерах моделировались траектории тел, выброшенных в космос; результаты были опубликованы в 1996 году в журнале «Сайенс». Как выяснилось, для планет и лун на внутренних орбитах Солнечной системы время разбрасывать камни и время их собирать длится миллиарды лет. Расчеты показали, в частности, что в силу притягивания гравитационным полем Земли всяких космических обломков около четырех процентов камешков, выбитых с поверхности Марса, в итоге приземляются на нашу родную планету.
Теория не противоречит фактам. Состав некоторых метеоритов, найденных в не тронутой тысячелетиями среде, на ледовой шапке Антарктиды, указывает на их марсианское происхождение. Если они попали сюда, когда на Марсе еще была жидкая вода и могла существовать жизнь (сама Земля в ту эпоху таких условий не имела), то почему не допустить, что тамошняя живность, оторвавшись от дома по воле слепого случая, выждала удобный момент и продолжила развиваться как ни в чем не бывало?
Путешествие с Марса на Землю может длиться до 15 миллионов лет, потому что прямой маршрут между планетами никто не прокладывал. За такой срок космические странники должны были получить чудовищную дозу радиации. Однако земные микроорганизмы, как мы знаем, способны «выключаться», прекращая дыхание и обмен веществ на долгие тысячелетия. Да и бактерии-экстремофилы, обнаруженные в серных источниках, в гидротермальных жерлах на дне океана и в ядерных могильниках, не дают повода усомниться в жизнестойкости микробного племени. Земля кишит существами, легко выдерживающими вполне космические дозы жесткого облучения.
С учетом этих обстоятельств трудно возражать тем доводам, что жизнь могла быть занесена на Землю откуда-нибудь из Солнечной системы. Может быть, сотворить жизнь до странности трудно именно потому, что мы понятия не имеем, как она началась? Может быть, Земля — со всеми ее подходящими условиями — не породила жизнь, а лишь приютила ее? Эта гипотеза выглядит особо привлекательно, если мы наряду с ней рассмотрим еще две аномалии, тоже связанные с жизнью. Далее речь пойдет об эксперименте, в ходе которого вроде как были обнаружены следы жизни на соседней планете, и о возможном контакте с внеземным разумом.