Книга: Тринадцать вещей, в которых нет ни малейшего смысла
Назад: Пролог
Дальше: 2. «Пионер» — не пример

1. Пропавшая Вселенная

Мы можем поручиться лишь за четыре процента космоса

У индейцев, живущих в окрестностях сонного аризонского городка Флагстаффа, интересный взгляд на борьбу человека за мировую гармонию. По их преданиям, все тяготы и превратности жизни берут начало в порядке — или, сказать вернее, в беспорядке — звезд небесных. Эти драгоценные камни должны были помочь людям обрести мир и благоденствие. Но когда Первая Женщина собрала звезды, дабы запечатлеть на черноте неба нравственный закон, торопыга Койот выхватил их из горшка и разбросал как попало. От его нетерпения приключились и путаница созвездий на небесах, и хаос людского бытия.

Астрономы, ночи напролет всматривающиеся в небо над Флагстаффом, могут найти в этом мифе известное утешение. На холме над городом установлен телескоп; полученные с него данные о звездах и их путях в космическом хаосе сильно добавили разрухи в головах ученых. В первые годы двадцатого века звездный свет, проходивший сквозь линзы телескопа Кларка в тамошней обсерватории Лоуэлла, положил начало цепочке наблюдений, которая привела к одному из самых странных открытий во всей истории науки: большая часть Вселенной попросту отсутствует.

Если будущее науки зависит от постижения вещей, лишенных смысла, то у космоса есть что предложить на этот счет. Мы стремимся узнать, из чего состоит Вселенная и как она работает, — иными словами, определить составляющие ее элементы и взаимодействующие в ней силы. В этом суть единой универсальной теории, о которой мечтают физики: установить «совокупное содержимое» космоса и управляющие им законы. Время от времени та или другая газета, журнал либо телепередача объявляют, что мы почти у цели. Но это не так. Тяжело создать всеобщую теорию, когда приходится иметь дело с фактом, что большинство частиц и сил, подлежащих каталогизации, совершенно неведомы науке. Нам выпало счастье жить в золотом веке космологии; мы собрали огромное количество информации о том, как зародился космос и как он развивался до своего нынешнего состояния, но, по сути, не знаем, что представляет собой его большая часть. «В нетях» без малого вся Вселенная; если совсем точно — 96 процентов.

Звезды, которые мы видим на периферии далеких галактик, движутся словно по мановению незримой руки, которая удерживает их на местах и не дает унестись в пустоту. Согласно самым точным вычислениям, «плоть» этой невидимой руки, известная ученым под именем темной материи, составляет почти четверть совокупной массы космоса. Однако подобное обозначение — всего лишь словесная этикетка. На деле мы не знаем, что такое темная материя.

Кроме нее, есть еще и темная энергия. Когда Альберт Эйнштейн показал, что масса и энергия подобны двум сторонам медали и одна может быть преобразована в другую по формуле Е = mc2, он тем самым невольно создал наиболее каверзную из всех проблем современной физики. «Темная энергия» — название, используемое учеными для той призрачной сущности, что заставляет ткань Вселенной расширяться все быстрее, образуя все больше пустого пространства между галактиками. Примените уравнение Эйнштейна для преобразования энергии в материю, и окажется, что темная энергия составляет 70 процентов массы космоса (а после его открытий массу — энергию и приходится рассматривать как двуединое целое). Никто не знает, откуда берется эта энергия, какова ее природа, будет ли она без конца ускорять разбегание Вселенной или выдохнется когда-нибудь. Как только дело доходит до главных элементов, составляющих мироздание, остается разводить руками. Знакомый мир атомов, из которых сделаны мы сами и все наше окружение, — лишь мизерная доля вселенской массы — энергии. Весь гигантский «остаток» — загадка, ждущая своего решения.

 

Как мы об этом узнали? Благодаря навязчивому стремлению одного человека открыть жизнь на Марсе. В 1894 году богатый массачусетский промышленник Персиваль Лоуэлл загорелся идеей, что на Красной планете существует развитая цивилизация. Презрев издевки ученых современников, Лоуэлл захотел найти неопровержимое астрономическое доказательство своей мечты. Он разослал агентов во все уголки Соединенных Штатов и в конце концов решил, что для выбранной цели идеально подходит ясное небо Аризоны в окрестностях Флагстаффа. Промаявшись несколько лет с небольшими телескопами, Лоуэлл купил у изготовителей в Бостоне огромный по тем временам 60-сантиметровый рефрактор и доставил его во Флагстафф по железнодорожной ветке из Санта-Фе.

Так началась эпоха большой астрономии. Телескоп конструкции Элвина Кларка, обошедшийся в двадцать тысяч долларов, был установлен в куполе среди величавых сосен, в конце крутой тропинки на вершине Марсианского холма, названного в честь путеводной звезды Лоуэлла. Этот прибор основательно вошел в историю: в 1960-е годы он применялся для определения самых подходящих точек высадки на Луну астронавтов по программе «Аполлон». Но еще задолго до того не по годам серьезный и задумчивый молодой человек по имени Весто Мелвин Слайфер употребил телескоп Кларка в качестве «заводной ручки» всей современной космологии.

Слайфер родился в 1875 году в фермерской глубинке штата Индиана. В 1901 году, окончив университет с дипломом инженера-механика и астронома, он приехал во Флагстафф как помощник Персиваля Лоуэлла. Лоуэлл нанял его на короткий срок, да и то с неохотой, только ради одолжения своему старому учителю. Но договоренность пошла насмарку: бывший ассистент покинул обсерваторию пятьдесят три года спустя, уйдя на покой с директорского поста.

Хотя к мании своего босса Слайфер относился не без сочувствия, охота на марсиан его не слишком занимала. Гораздо сильнее Слайферу хотелось понять, как неразумные сферы, слепленные из газа и пыли — звезды и планеты, — перемещаются по Вселенной. Одной из самых больших загадок для астрономии того времени были спиральные галактики. Эти слабые мерцания в ночном небе представляли собой, по мнению одних, обширные скопления звезд — «острова Вселенной», как некогда назвал их философ Иммануил Кант. Другие считали их просто отдаленными планетными системами. И вот парадокс: исследования Слайфера, решив эту загадку, в итоге заставили нас озаботиться не столько тем, что мы видим своими глазами, сколько тем, чего мы увидеть никак не можем.

 

В 1917 году, когда Альберт Эйнштейн вносил последние штрихи в свой «кондуит Вселенной», ему недоставало для полной ясности одного эмпирического факта, который связал бы всю картину в единое целое. Ко всем астрономам мира он обращался с одним и тем же вопросом: космос расширяется, сжимается или пребывает в равновесии?

Уравнения Эйнштейна описали, как ведет себя пространство — время (трехмерное пространство плюс временное измерение, в совокупности образующие ткань Вселенной) во взаимодействии с массой — энергией, заключенной в этих пределах. Из первоначальных уравнений следовало, что Вселенная может либо раздвигаться, либо уплотняться под воздействием гравитации. Если же космос статичен, это означает наличие еще некоторого фактора, «расталкивающего» материю, которую сила притяжения стремится сжать. Эйнштейна такая мысль нисколько не тешила: если законы тяготения применительно к массе — энергии вполне обоснованны, то для существования каких-то противодействующих сил не было ни малейшего резона.

К несчастью для него, все астрономы в то время считали Вселенную равновесной. Вот и пришлось, скрепя сердце, вписать в систему уравнений «антигравитационный» член для удерживания массы — энергии, обозначив его греческой буквой лямбда. Это добавление впоследствии получило известность как космологическая константа (поскольку предполагалось, что ее влияние начинает ощущаться лишь на расстояниях в световые годы, а в пределах Солнечной системы оно пренебрежимо мало) и было сделано с множеством извинений и оговорок. По признанию самого Эйнштейна, космологическая постоянная «не подтверждается нашим действительным знанием о гравитации». Появилась она единственно затем, чтобы свести концы с концами в уравнениях статичной Вселенной. Жаль, никого в тот момент не заинтересовали расчеты Весто Слайфера.

Слайфер воспользовался телескопом Кларка, чтобы установить, перемещаются ли галактики относительно Земли. Для этого он применил спектрограф — прибор, который разлагает свет, попадающий в телескоп, на хроматические составные части. Анализируя спектры свечения далеких галактик (как думали в то время — спиральных туманностей неясной природы), Слайфер обнаружил, что цветовые составляющие света изменяются в зависимости от того, приближается к нам туманность либо удаляется от нас. Видение цвета — это наш способ воспринимать частоту электромагнитного излучения в оптическом диапазоне, а частота эта — не что иное как количество световых волн в единицу времени. Когда мы любуемся радугой, то видим излучение разных частот. Фиолетовый цвет соответствует относительно высокой частоте и малой длине волн, красный — наоборот; все остальные занимают определенные места между красным и фиолетовым.

Добавив к этому фактор скорости движения, мы получаем так называемый эффект Доплера: частота светового излучения меняется таким же образом, как частота (длина) звуковых волн, испускаемых автомобильной сиреной, когда карета «скорой помощи» проносится по улице мимо нас. Если бы радуга, как та машина, надвигалась на наблюдателя с огромной скоростью, то ее спектральные линии сместились бы в фиолетовую зону: количество волн, принимаемых каждый миг, растет по мере приближения. Это называется фиолетовым или синим смещением. Если же источник света помчится прочь, то количество волн будет ежесекундно сокращаться, а частота излучения — сдвигаться в красную зону: это красное смещение.

То же самое происходит со светом далеких звезд. Если «туманность» двигалась к телескопу Слайфера, то в ее свечении обнаруживалось фиолетовое смещение. Галактики, удаляющиеся от Земли, давали красное смещение. Величина смещения позволяет судить о скорости движения.

К концу 1912 года Слайфер завершил анализ четырех спектрограмм. Три из них имели красное смещение, у одной — туманности Андромеды — обнаружилось фиолетовое. За следующие два года он измерил параметры движения еще двенадцати галактик. Все они, кроме трех, оказались «красными». Результаты были настолько поразительны, что в августе 1914 года, когда Слайфер представил их на собрании Американского астрономического общества, весь зал встал и устроил овацию.

Слайфер — один из невоспетых героев астрономии. Согласно биографии, изданной Национальной академией наук США, он, «очевидно, совершил больше фундаментальных открытий, чем любой другой астроном-наблюдатель двадцатого века». И при таком вкладе основное признание ему досталось лишь на двух космических картах — Луны и Марса. Там, за пределами небес, его имя носят два кратера.

Причина в том, что Слайфер не имел привычки обнародовать свои открытия по всей форме. Иногда он публиковал краткие сообщения о результатах, в большинстве же случаев ограничивался перепиской с коллегами. Как сказано в официальной биографии, Слайфер был «сдержанным, осторожным, скрытным человеком, всячески избегал рекламы и даже редко посещал научные собрания». Августовский бенефис 1914 года стал, судя по всему, исключением. Но именно он указал английскому астроному Эдвину Пауэллу Хабблу путь к личной славе.

Космолог из Кембриджского университета Стивен Хокинг в своей книге «Мир в ореховой скорлупке» делает колкое замечание. Сопоставив хронологию научных результатов Слайфера и Хаббла, из которой фактически следует, что второму приписали приоритет в открытии разбегающейся Вселенной, сделанном в 1929 году, Хокинг обращает внимание на первое публичное обсуждение спектрограмм Слайфера — то самое, когда аудитория, встав с мест, разразилась аплодисментами. Хаббл, как пишет Хокинг, присутствовал на этой презентации.

В 1917 году, пока Эйнштейн выяснял у астрономов их взгляды на динамику Вселенной, наблюдения Слайфера уже показали, что из двадцати пяти туманностей двадцать одна мчится прочь от Земли и лишь четыре приближаются. Все они движутся с огромной скоростью, в среднем более двух миллионов километров в час. Это вызвало настоящий научный шок, поскольку звезды, видимые на небе, ничего подобного обычно не совершают; а ведь в то время считалось, что Млечный Путь и есть вся Вселенная, практически неподвижная относительно Земли. Слайфер перевернул прежние представления. Спиральные туманности, по его предположению, — это «звездные системы, наблюдаемые с очень больших расстояний». Тем самым он как бы невзначай открыл, что космос полон роями галактик, которые стремительно движутся куда-то прочь.

Когда эти вычисления были опубликованы в «Ученых записках Американского философского общества», им никто не придал особого значения, — а Слайферу, разумеется, характер не позволял требовать внимания к себе. Однако Хаббл, по всей очевидности, взял его успехи на заметку. Он попросил у Слайфера подборку данных для своей работы по теории относительности, и тот в 1922 году послал ему таблицу галактических скоростей. Семь лет спустя Хаббл, объединив результаты наблюдений Слайфера и еще нескольких астрономов со своими собственными, сделал сенсационный вывод.

Если взять галактики, удаляющиеся от Земли, и сопоставить распределение их скоростей с расстояниями от наблюдателя, то выяснится: чем дальше от нас галактика, тем больше ее скорость. Если одна убегающая галактика находится вдвое дальше другой, то она и движется в два раза быстрее «ближней». Если дальше втрое — скорость возрастает соответственно. У Хаббла имелось лишь одно вероятное объяснение. Галактики можно уподобить конфетти, облепившим воздушный шарик; если тот начнет раздуваться, а затем лопнет, бумажные кружочки не продолжат плавно раздвигаться, а разлетятся в разные стороны. Так Хаббл установил, что Вселенная разбегается.

То было бурное время для науки. Идея Большого взрыва, впервые зародившаяся в 1920-е годы, очутилась на острие космологических теорий. Но если Вселенная расширяется, значит, в некий предыдущий момент она была и меньше, и плотнее. Астрономы стали задаваться вопросом, как выглядел космос в исходном состоянии. Работа Весто Слайфера послужила первым свидетельством об истоках всего нашего мироздания. Но она же в конечном счете привела к открытию, что большая часть Вселенной непостижима для нас.

 

Чтобы понять, откуда стало известно о «выморочности» значительной доли космоса, привяжите грузик к концу длинной нитки и начните вращать над головой. Полет грузика будет довольно медленным, за ним можно следить без риска головокружения. Теперь подберите нить, чтобы она стала покороче, и орбита станет совсем маленькой. Дабы сохранился импульс кругового движения, грузик не упал вам на голову и нитка не захлестнулась на шее, вертеть все это хозяйство приходится гораздо быстрее, так что разглядеть «спутник» едва удается.

Тот же самый принцип действует при движении планет. Земля, будучи сравнительно близка к Солнцу, мчится по орбите значительно быстрее, чем далекий от светила Нептун. Причина проста: она в равновесии сил. Гравитационное поле Солнца сильнее действует на радиальном расстоянии до Земли, чем на расстоянии до Нептуна. Тело, обладающее массой Земли, должно двигаться относительно быстро, чтобы удержаться на своей орбите. Нептуну, испытывающему меньшую силу притяжения, для равновесия достаточно небольшой орбитальной скорости. А если бы он двигался так же быстро, как Земля, то покинул бы Солнечную систему и улетел в космическую пустоту.

Этому правилу должна следовать динамика любых орбитальных систем. Баланс центростремительной и центробежной сил означает: чем дальше помещается масса от центра притяжения, тем медленней она будет двигаться. Но как раз этой закономерности не обнаружил в 1933 году швейцарский астроном Фриц Цвикки.

В тот год, когда в Сан-Франциско началось строительство моста Золотые Ворота, а сорокатрехлетний Адольф Гитлер был назначен рейхсканцлером Германии, Цвикки нашел нечто странное в скоплении галактик Кома (скопление Волос Вероники). Говоря упрощенно, звезды испускают определенное количество света на килограмм массы; таким образом, проанализировав свечение Комы, наблюдатель мог оценить, сколько в ней содержится вещества. Странность заключалась в том, что звезды на периферии галактик двигались слишком быстро, чтобы их могло удержать притяжение расчетной массы. Вычисления определенно показывали, что скопление Кома примерно в четыреста раз массивнее, чем представляется визуально.

Одно это могло бы послужить достаточной причиной начать погоню за темной материей. Но не послужило, увы, — по самым что ни на есть неприятным, околонаучным мотивам. Наберите фамилию Цвикки в интернетовском поисковике, и вы найдете эпитет «блестящий» рядом с «рехнувшимся», а «гениальный» — через строчку от «невыносимого». Цвикки, как и Слайфер, нечасто упоминается в учебниках астрономии, несмотря на все важные открытия, которые он сделал. Цвикки первым установил, что галактики образуют скопления, и ввел в научный оборот термин «сверхновая». Он, конечно, был большой оригинал — устроил, например, лыжную трассу под боком у астрономической обсерватории Маунт-Вилсон в калифорнийских горах Сан-Габриэль и зимой притаскивал на работу спортинвентарь, чтобы не терять навыков слаломиста. Но главное, в общении с окружающими у него имелись серьезные трудности. Цвикки был тяжелый, язвительный человек, убежденный, что его гениальность не получает должного признания. Всех своих коллег по обсерватории он скопом обзывал «шаровидными ублюдками». Почему так? Да потому, что ублюдки, с какой стороны ни глянь. Не приходится удивляться, что коллеги просто проигнорировали его открытие невидимой массы в скоплении Кома.

Однако же Цвикки был прав. При измерении галактических масс концы не сойдутся с концами без допущения, что значительная часть Вселенной заполнена темной материей. В 1939 году на торжественном открытии обсерватории Макдональд в Техасе это подтвердил голландский астроном Ян Оорт. Он прочитал лекцию, в которой утверждал, что распределение массы в одной из эллиптических галактик разительно противоречит характеристикам ее свечения. Данные своих наблюдений Оорт опубликовал три года спустя, специально подчеркнув этот момент в резюме статьи. И опять, точь-в-точь по Куну, никто не счел нужным отреагировать. Изумительная тенденция отворачиваться от неудобных данных длилась десятилетиями, пока наконец ученый люд не прислушался по каким-то резонам к Вере Рубин.

Рубин сейчас за восемьдесят, а ее серьезный дебют в космологии состоялся в 22-летнем возрасте. В канун нового 1950 года газета «Вашингтон пост» сообщила о докладе в Американском астрономическом обществе под пафосным заголовком: «Юная мать вычислила центр мироздания по бегу звезд». В редакционном вступлении говорилось: теория Рубин «настолько смела, что большинство астрономов находит ее пока что невозможной». Но самое дерзновенное из дел, затеянных Рубин, — борьба за то, чтобы темную материю приняли всерьез, — было впереди.

Начнем с того, что Рубин и себя-то принимала не вполне всерьез. Эта история, по ее собственным словам, дает поучительный пример «ученой глухоты». В 1962 году Рубин преподавала в Джорджтаунском университете в Вашингтоне. Ее слушатели в большинстве были сотрудниками Военно-морской обсерватории США, находившейся по соседству, и, как ей вспоминается, отлично разбирались в астрономии. Общими усилиями им удалось рассчитать кривую вращения галактики. Этот график отображает зависимость орбитальной скорости звезд от их расстояния до центра галактики. Скорость должна падать по мере удаления, как в примере с человеческой головой и ее «спутником», грузиком на нитке. Однако Рубин со своими флотскими астрономами ничего подобного не обнаружила: кривая и вдали от центра оставалась плоской. Опубликовав три научных сообщения, они благополучно забыли о проблеме.

В шестьдесят пятом Рубин перешла в вашингтонский Институт Карнеги. Проведя год в изматывающей гонке за квазарами — самыми активными и далекими из всех известных объектов во Вселенной, — она задумала взяться за что-нибудь поскромнее, что могла бы проделать своими силами. И решила всмотреться в пространство у границ галактик, поскольку никто эти области толком не изучал, все сосредоточились на центрах скоплений. Но Рубин не только запамятовала напрочь об университетской находке — по ходу дела ей пришлось усомниться и в собственных результатах. Она измеряла скорости звезд, наблюдая, как меняется световой спектр в зависимости от параметров движения. Каждую ночь Рубин составляла в среднем по четыре спектрограммы, постепенно уходя все дальше от центра галактики. Однако, несмотря на любые уточнения на этом пути, все результаты выглядели примерно одинаково, не сходясь с условиями задачи.

«Я постоянно ждала, что при следующем измерении монетка выпадет правильной стороной, — вспоминает Рубин. — А она всякий раз не хотела упасть, как надо».

Так или иначе, дело было сделано. К 1970 году Рубин закончила расчеты ротационной кривой для туманности Андромеды. Скорость движения звезд практически не менялась, как бы далеко от центра ни заглядывал наблюдатель. При таком сумасшедшем коловращении на периферии галактики центробежная сила неизбежно должна была вышвырнуть ее внешние звезды в открытый космос. По всем законам физики Андромеда обречена рассыпаться. Если этого не происходит, значит — она окутана галактическим гало, невидимым ореолом темной материи.

 

Из чего сделана сама темная материя, не знает никто. Кембриджский профессор Малькольм Сим Лонгэйр в своем «букваре» по космологии «Наша эволюционирующая Вселенная» привел список кандидатов на темную материю. Этот перечень открывается одиночными планетами и звездами-карликами, а завершается обыкновенными кирпичами и подшивками старых журналов по астрофизике. Последний вариант — неслабый образчик научного юмора: именно в «Астрофизическом журнале» в 1970 году вышла работа Веры Рубин, впервые пролившая свет на темную материю.

Нельзя сказать, что та статья напрашивалась на сенсацию. Заголовок выглядел вполне нейтрально: «Вращение туманности Андромеды согласно спектральному анализу эмиссионных областей». Резюме как будто не содержало спорных утверждений, и броских выводов тоже не было. Автор просто сообщала о результатах измерения круговых скоростей звезд в галактике, не более того. Однако же график с двенадцатой страницы журнала до сих пор висит на стене кабинета Рубин в отделе геомагнетизма Института Карнеги. Он и сегодня столь же точен… и столь же загадочен, как в момент первой публикации.

Представления о незримом сгустке материи, удерживающем в своем гравитационном поле внешние звезды Андромеды, далеко не сразу завоевали популярность, но, во всяком случае, на сей раз привлекли к себе внимание. Для начала астрономы приоткрыли один глаз, который крепко зажмуривали тридцать семь лет кряду. Они принялись строить собственные ротационные кривые, порой придумывая самые диковинные объяснения, отчего галактическая масса распределяется так, а не иначе. Как говорит Рубин, ни одна из этих потуг ее не убедила: во всех альтернативных версиях часть точек на графике устанавливалась произвольно, часть попросту опускалась, в результате всякий раз выходил абсурд.

В начале следующего десятилетия астрономы перестали уклоняться от фактов. Наилучшим объяснением «неправильностей» в полях притяжения галактик было признано наличие некоего вещества, которое не светится, подобно звездам, не отражает свет, не испускает никаких волн или частиц, поддающихся обнаружению, и вообще не заявляет о своем существовании ничем, кроме гравитации. Теперь оставалось определить природу этого странного явления.

Первый симпозиум, посвященный новооткрытому феномену, состоялся в 1980 году в Гарвардском университете. Рубин уверенно заявила перед аудиторией, что проблему темной материи мы сможем решить не раньше чем через десять лет. Назначенный срок наступил и миновал, но ничего нового мы так и не услышали. В 1990 году на конференции в Вашингтоне британский королевский астроном — директор Гринвичской обсерватории Мартин Рис просто повторил обещание раскрыть тайну до начала очередного десятилетия. Но в девяносто девятом, за год до им же названной даты, пошел на попятную, объявив: «Нет сомнений, если бы я писал эти строки не сегодня, а пять лет спустя, то сумел бы объяснить, что такое темная материя».

И опять надежды не оправдались. Объяснений по-прежнему нет. За минувшие годы был предложен целый ряд экзотических версий — от черных дыр до не открытых пока частиц с необычными свойствами. Однако ни одна из них не соответствует всем положенным требованиям. Такое едва ли вдохновляет на продолжение поисков.

 

Ловля темной материи в черном пространстве — занятие не для малодушных, коль скоро попытки тридцать с лишним лет не приносили успеха. Однако за этот срок ученые разжились некоторыми идеями о том, где и как искать разгадку. Физики построили теоретические модели, объясняющие, какие частицы могли образоваться в момент Большого взрыва и до сих пор присутствовать во Вселенной, создавая эффект темной материи. Самый многообещающий кандидат на эту роль — гадательное нечто, получившее имя слабовзаимодействующих массивных частиц. Их чаще называют просто «вимпы», пользуясь английским сокращением. Если теория верна, то темного вещества полно и вокруг нас. Специалисты по физике частиц считают, что Земля как раз сейчас проходит через облако темной материи; стало быть, каждую секунду нам на головы падает примерно миллиард вимпов.

В пестрой компании вимпов имеется свой ВИП: нейтралино. Эта гипотетическая частица, как полагают, достаточно устойчива, чтобы сохраниться в космосе спустя 13 миллиардов лет после Большого взрыва. Нейтрали-но невозможно увидеть и очень трудно уловить, так как оно совсем не участвует в сильных взаимодействиях, скрепляющих атомные ядра, и не фиксируется детекторами электромагнитных полей. При этом массы нейтралино — ее раз в сто больше, чем у протона, — вполне хватит для эффекта темной материи в галактиках. Вот только никому не известно, существует ли оно в действительности.

Чтобы экспериментально подтвердить существование темной материи, нужно заставить ее вступить во взаимодействие с чем-нибудь — лучше всего с атомами, имеющими тяжелое ядро. Охотники за темной материей используют для этого глыбы кристаллического кремния или германия либо большие емкости со сжиженным ксеноном. Они рассчитывают, что рано или поздно какой-нибудь вимп в своем полете по Вселенной угодит прямиком в одно из массивных атомных ядер. Когда это произойдет, ядро должно чуточку «отскочить» (если оно находится в кристаллической решетке) или испустить электрический импульс (в жидком ксеноне). Однако здесь возможны осложнения.

Во-первых, ядра атомов постоянно испытывают те или иные природные колебания, следовательно, физики должны удерживать их в полном покое, дабы избежать ложных показаний приборов. Кристаллы, например, приходится охлаждать до температуры, предельно близкой к абсолютному нолю, при которой прекращается всякое движение. Но на таком морозе и датчики замрут; добиться от них нормальной работы будет невероятно сложно. Вторая помеха — космическая радиация.

Земную поверхность непрерывно бомбардируют потоки быстрых частиц из космоса. При каждом их попадании аппаратура выдает показания, ничем не отличающиеся от предполагаемой поимки вимпа. Значит, поиски нужно вести глубоко под землей, куда не проникнет посторонний космический мусор. Из-за этого экспериментаторам приходится устраивать лаборатории в самых труднодоступных местах планеты. Итальянская исследовательская группа поместила датчики под подошвой горы. В Соединенном Королевстве охота за нейтралино идет на километровой глубине, в залежах калийной соли, где штреки давних выработок тянутся под океанское ложе. Американцы выслеживают темную материю в заброшенных железных копях на севере Миннесоты, в семистах метрах под поверхностью земли.

Представив себе труд в подобных условиях, можно оценить серьезность намерений ученых. Тем не менее пока им ничего не удалось поймать. Экспериментальные поиски темной материи ведутся второй десяток лет, а многие исследователи посвятили этой проблеме вдвое больший срок жизни. Приборы постоянно совершенствуются, их чувствительность повышается, однако по-прежнему нет сколько-нибудь отчетливых представлений о том, что создает странные гравитационные поля в космосе.

Невероятно, но факт: полная четверть вселенской массы для нас даже не темный лес, а просто тьма непроглядная. Остается утешать себя тем, что эту «неявную» долю удалось хотя бы вовремя заметить. В противном случае даже представить трудно, что сотворилось бы в головах ученых в 1997 году, как только была обнаружена очередная брешь в мироздании. Если темная материя оказалась крепким орешком, то открытие темной энергии стало без малого катастрофой для теоретической физики.

 

Допустим, что открытое Хабблом расширение Вселенной — непреложный факт. Тогда сразу возникают два вопроса. Первый: с какой скоростью идет процесс? Второй: будет ли он идти и дальше?

На первый вопрос ответ дает измерение скоростей разбегающихся галактик и их расстояний от Земли. Однако нельзя просто подсчитать, насколько быстро галактика уносится прочь, и объявить полученную величину коэффициентом расширения: реальное поведение Вселенной противоречит здравому смыслу. Чем дальше от нас галактика, тем проворнее она убегает, потому что пространство между нею и Землей увеличивается тоже. Коэффициент расширения исчисляется так называемой постоянной Хаббла; ее сейчас считают близкой к 70 кмсек/Мпк (мегапарсек — около 3,2 млн световых лет). Для нашего рассказа довольно и такого приближения: ведь любые цифры после запятых всегда меняются с совершенствованием измерительной техники.

Ответ на второй вопрос выглядит гораздо интереснее во многих отношениях. Если Вселенная продолжает разбегаться после Большого взрыва, этот процесс неизбежно должен тормозиться: против него, по идее, работает гравитация всей космической материи. Таким образом, наша будущность во вселенской перспективе зависит от того, сколько там вещества и как оно распределено.

Кое-что об этом космологам уже известно благодаря одному простейшему наблюдению: мы с вами существуем. Чтобы Вселенная начала свой разлет из сверхплотной раскаленной точки, ей нужен был импульс энергии определенной величины. Окажись он чрезмерно мощным, и тогда бы любая образующаяся материя «размазалась бы тонким слоем» — настолько дисперсным, что гравитация, вполне возможно, не смогла бы слепить атомную пыль в звезды и галактики. Значит, и жизнь не зародилась бы, и не возникло бы человечество. По мере распространения материи от центра притяжение продолжало бы слабеть, а центробежная сила, напротив, доминировала бы все больше. И пошла бы Вселенная вразнос задолго до образования в ней сколько-нибудь сложных объектов и высокоорганизованных систем, не говоря уже о людях.

Если бы энергия расширения, наоборот, была слишком мала, то гравитация сжимала бы вещество в ходе обратного цикла; центростремительный импульс нарастал бы вместе с уплотнением. В конце концов ткань Вселенной «схлопнулась» бы, как выражаются астрономы, в Большом коллапсе.

Этот пороговый эффект энергии для так называемой Вселенной Златовласки — зоны, где условия в самый раз подходят для зарождения жизни и разума, — неизбежно должен распространяться и на массу, требуя строго определенной плотности материи в гравитационном поле. Отношение сил притяжения и отталкивания во Вселенной космологи условно обозначают символом омега. При Ω = 1, что соответствует всего лишь массе шести атомов водорода на кубический метр Вселенной (для сравнения: в кубометре воздуха, которым мы дышим, содержится, в грубом приближении, 1025, или десять септиллионов, атомов), гравитация более или менее устойчиво уравновешивает центробежную силу.

Согласно теории образование звезд и галактик становится возможным, начиная с омеги в одну квадриллионную долю единицы. А в силу циклической обратной связи равновесное начало ведет к сохранению равновесия в дальнейшем. Если теоретики правы, сегодня величина омеги должна оставаться близкой к единице. Проблема в том, что во всей Вселенной для этого не наберется материи — ни темной, ни какой-либо другой.

Именно этот момент совершенно неожиданно возвратил к жизни космологическую константу Эйнштейна. Ее, казалось, окончательно похоронил триумф хаббловской концепции разбегающейся Вселенной. Уравнения ОТО перестали нуждаться в натяжке ради обоснования вселенского равновесия, и к 1930 году антигравитационная сила превратилась в типичную избыточную сущность, годную лишь для смущения умов. Кто мог бы тогда предположить, что без малого семьдесят лет спустя она вновь заявит о себе, превратившись в призрак темной энергии?

 

В тридцатые годы астрономы впервые заинтересовались омегой как оракулом для предсказания судьбы Вселенной. Если омега действительно равна единице, то расширение будет продолжаться прежними темпами. Если теоретики ошиблись и Ω < 1, то сила, стоящая за расширением Вселенной, продолжит нарастать и материя будет «истончаться». Если же омега окажется больше единицы, то в конечном счете победит гравитация и Вселенную ждет Большой коллапс.

Сперва астрономы попробовали подступиться к омеге с инструментарием Хаббла и Слайфера, анализируя свечение галактик. Но из-за бесчисленного множества отдельных источников света в каждой из них положиться на такой метод нельзя: это все равно что для лингвиста — изучать фонемы, вслушиваясь в гомон разноплеменной толпы болельщиков на футбольном матче. Ученым нужен был единичный объект с измеримыми свойствами, из коих можно делать дальнейшие выводы. В 1987 году такой объект был найден. Чтобы узнать участь Вселенной, надо заняться сверхновыми — взрывающимися звездами.

Люди столетиями наблюдали их в небесах; об одной такой вспышке сообщил датский астроном Тихо Браге еще в 1572 году, за тридцать с лишним лет до изобретения телескопа. Звезда становится сверхновой, когда ее масса превышает критический размер и разрушается под собственной тяжестью. В течение нескольких земных недель или месяцев, пока гибнущее светило превращается в нейтронную звезду или даже в черную дыру, оно пылает в десятки миллиардов раз ярче и жарче, чем наше Солнце. Подобную картину земляне наблюдали, например, в понедельник 23 февраля 1987 года. Взрыв голубого сверхгиганта под названием Сандулик-69202 в галактике Большое Магелланово Облако получил широкую известность по двум причинам. Во-первых, это самая мощная вспышка сверхновой, отмеченная с 1604 года. Во-вторых, она впервые дала стандарты для измерения расстояний в космосе.

Вспышки некоторых сверхновых — их обозначают как тип Ia (или SN Ia) — имеют специфические характеристики, чрезвычайно важные для астрономов. Звезды этого типа взрываются, потому что своим притяжением «высосали» слишком много вещества из соседних небесных тел. Проанализировав световой спектр такой вспышки и скорость ее затухания, можно определить, какое расстояние свет прошел до Земли и насколько сильно его на этом пути «растянуло» расширение Вселенной.

Единственное неудобство такого метода — слишком тесные временные рамки. В изучении сверхновых без синхронизации не сделать ни шагу. Если хотите добыть действительно ценную информацию, ее поиски должны уложиться в считанные недели с того момента, как свет вспышки дошел до Земли. А поскольку взрыв сверхновой в какой-нибудь галактике случается примерно раз в сто лет, необходим постоянный телескопический мониторинг несметного множества звездных скоплений.

Тяготы этого монотонного труда — давнишняя головная боль астрономов. Скажем, в обсерватории Лоуэлла во Флагстаффе можно познакомиться с утомительными методами наблюдений, практиковавшимися в дни Слайфера. Он, изучая Плутон, пользовался астрономической версией игры «найди разницу». Два фотоснимка одного и того же участка звездного неба, сделанные в разные ночи, помещаются в устройство под названием «блинк-компаратор», снабженное окуляром с подвижной заслонкой. Затем надо внимательно рассматривать снимки, чередующие друг друга. Побеждает тот, кто укажет единственную светлую точку среди множества других, меняющую положение от снимка к снимку. Это мигающее пятнышко и есть искомая планета.

Хорошо, что на фотографиях, выставленных в музее обсерватории Лоуэлла, кто-то догадался пририсовать к мерцающей точке жирную белую стрелку. Конечно же, современная технология обработки цифровых изображений несравненно облегчает локализацию сверхновых: сегодня компьютер сопоставит за нас фотографии, сам установит различия между ними и даст все нужные подсказки. Некоторые находки окажутся на поверку астероидами, другие — пульсацией черных дыр в центрах галактик; еще один вид ложных сигналов — яркие следы от субатомных частиц, бомбардирующих земную атмосферу. И лишь изредка обнаружится среди них свет далекой «лопнувшей» звезды.

Первые ценные интерпретации данных о ярчайшей сверхновой представила в июне 1996 года группа сотрудников Национальной лаборатории имени Эрнеста Лоуренса при Калифорнийском университете в Беркли (или, как нередко сокращают специалисты, Лоуренс-Беркли). Об этом было объявлено на космологической конференции по случаю 250-летия Принстонского университета, приемной альма-матер Эйнштейна. Весьма удачный, как выяснилось, повод воскресить космологическую константу.

Когда астрономы приступили к исследованиям сверхновых, чтобы с их помощью составить своего рода карту разбегания космоса, они были уверены, что обнаружат признаки замедления. В конце концов, должна же энергия Большого взрыва когда-нибудь иссякнуть; тут гравитация вступит в свои права и крепко надавит на тормоз. Но оказалось, не так-то просто устроена Вселенная.

На первый взгляд результаты Лоуренс-Беркли подтверждали ожидания. Свечение сверхновой показало, что расширение Вселенной замедляется: рано или поздно притяжение ее массы обуздает разбегание и установит коэффициент омега на отметке, близкой к единице.

И тем не менее это открытие было спорным. Вся известная науке масса Вселенной, включая пресловутую темную материю, дает омеге значение не более чем 0,3. Исследователи «недоучли» невидимое? Такое казалось маловероятным: они к тому времени уже овладели дифференцированными методами подсчета массы галактик. Любой из способов показывал, что вещества там гораздо больше, чем можно наблюдать. И все эти способы давали примерно одинаковые результаты.

Если концепция темной материи обоснованна, тогда за чем дело стало? Космологи Майкл Тернер и Лоуренс Максвелл Краусс явились на принстонскую встречу с готовым ответом. Почему бы, сказали они, не признать темную материю равной 0,3, при этом позволяя некоторой иной сущности внести остальные семь десятых. Вместо того чтобы разыскивать какую-то там недостающую массу, не резонно ли допустить, что эта доля принадлежит дополнительной энергии? Надо вернуть космологическую константу Эйнштейна, заявили Тернер и Краусс.

Экспериментаторы, как водится, добились успеха вопреки построениям теоретиков. Из результатов Лоуренс-Беркли, опубликованных Солом Перлмуттером, следовало, что гравитация вещества может составить чуть ли не всю омегу. Так что нет нужды возвращать космологическую константу, надо просто разобраться в неполадках с темной материей. Ее масса явно должна быть больше.

Однако в расчетах Перлмуттера обнаружились свои собственные проблемы. Если известны плотность Вселенной, текущий коэффициент ее разбегания (постоянная Хаббла) и темпы замедления, это позволяет установить, сколько времени прошло с начала расширения — проще говоря, возраст Вселенной. По данным Лоуренс-Беркли, где омега равна или близка к единице и задана исключительно наличной материей, выходило, что Вселенной не больше 8 миллиардов лет. Увы, астрономы, проанализировавшие свечение самых древних звезд, называют другое число: в пределах 15 миллиардов. Для понимания, что вся Вселенная просто не может оказаться почти вдвое моложе своих элементов, совсем не нужен гарвардский диплом. Помимо трудностей с «кастингом» космологической константы на роль омеги, возникла еще и проблема с омегой-единицей, обусловленной массой. Казалось, единственный достоверный факт — то, что темная материя составляет 0,3 Ω; все остальное предстоит еще выяснять и объяснять.

Однако не все были разочарованы этим тупиком: по крайней мере один гарвардский астроном остался доволен. Роберта Киршнера беспокоило другое: его исследования сверхновых продвигались слишком медленно, и это внушало опасения, что в соперничестве с Лоуренс-Беркли его группа будет разбита наголову. Между тем гонка за научный приоритет в предсказании судеб Вселенной все еще была далека от завершения.

В своей книге «Экстравагантная Вселенная» Киршнер весьма изящно и остроумно изложил подноготную изучения сверхновых и восстановления космологической константы. В конечном счете именно он решил исход дела и первым вышел с результатами, открывшими новую эпоху в космологии. Однако для этого ученый должен был преодолеть собственную предвзятость.

Группа Киршнера, куда входили исследователи со всех континентов, вела наблюдения сверхновых с горных вершин в Чили, Аризоне и на Гавайях. Как и ученые в Лоуренс-Беркли, они месяц за месяцем разыскивали новые вспышки, затем отслеживали наиболее перспективные варианты, уточняя необходимые детали с помощью космического телескопа «Хаббл». Будучи установлен в автоматической обсерватории на околоземной орбите, он мог извлечь из собираемых данных информацию о расстоянии сверхновой от Земли и о том, как меняется спектр излучения по мере распространения света от точки взрыва.

В конце концов ученые получили то, чего добивались. И это им совсем не понравилось.

Взрывы сверхновых были «слабее», чем следовало: свет, по идее, должен был распространиться дальше, чем показывали наблюдения. Адам Рисс, астроном из группы Киршнера, работавший в Калифорнийском университете в Беркли, первым объявил во всеуслышание: данные свидетельствуют об ускорении. Вселенная расширяется все быстрее.

Такого просто не могло быть. Но с гибнущими звездами не поспоришь. Всякий раз, когда Рисс, рассчитывая омегу, обращался к характеристикам сверхновой — яркости, красному смещению и скорости затухания, — его вычисления показывали отрицательную величину массы Вселенной. Единственное разумное объяснение состояло в том, что эта масса со своим притяжением — не единственный фактор, влияющий на разбегание Вселенной. Если же добавить «расталкивающую силу» в виде космологической константы, то картина обретала хоть какой-то смысл. Так, в выборе между несусветной массой со знаком минус и долго пребывавшей в забвении математической уловкой победила вторая. Но не окончательно.

На конференции в январе 1998 года выяснилось, что данные, полученные группой Лоренс-Беркли, указывают в том же направлении. Исследователи усовершенствовали методику анализа и разобрались с некоторыми проблемами — в частности, научились вводить поправку на искажения, которые вносит в результаты наблюдений межзвездная пыль Каждый опасался первым совершить роковую промашку. Кто первым объявит о возвращении космологической константы Эйнштейна? Это стало настоящей «войной нервов» для соперничающих группировок, испытанием веры ученых в их экспериментальные способности. Огласить информацию или выждать еще немного, перепроверить несколько раз и вновь поискать огрехи в обработке данных? Приз достанется тому, кто первым объявит о научной находке десятилетия. Проигравший рисковал сесть в лужу вместе с Эйнштейном.

Киршнеру полученные результаты не нравились, и он, конечно же, не хотел становиться посмешищем. По его собственному признанию, он делал все возможное для устранения досадной помехи. 12 января 1998 года Киршнер отправил Риссу по электронной почте нечто вроде полезного совета: «Признайтесь самому себе, положа руку на сердце: эти данные неверны».

Рисс откликнулся в тот же вечер пространным письмом, обращенным сразу ко всей группе. Его ответ был достоин героев Шекспира; так мог бы высказаться, к примеру, Генрих Пятый, будь он астрофизиком. «Посмотрите на них не сердцем или умом, но попросту открытыми глазами, — писал Рисс коллегам. — Ведь мы же наблюдатели, в конце концов!»

В последних числах февраля результаты наблюдений увидели свет. Затем последовала буря в СМИ. Рисс красноречиво поведал аудитории телеканала Си-Эн-Эн, что расширение Вселенной ускоряется, космос буквально разлетается на части и константа Эйнштейна наконец вернулась, чтобы вращать маховики мироздания. Киршнер, напротив, выступил совсем не по Шекспиру, заявив 27 февраля 1998 года газете «Вашингтон пост»: «Выглядит как полный бред. Но что поделаешь — это самое удобное объяснение».

Нельзя сказать, что даже и теперь исследователи были обрадованы. Похоже, точнее всего их общее состояние определил руководитель группы Брайан Шмидт. В интервью журналу «Сайенс» он описал свою реакцию как «нечто среднее между изумлением и ужасом».

Тем не менее группа Лоуренс-Беркли вскоре обнародовала, по сути, такие же выводы. Они и сейчас никем не оспорены. Но все же — что разрывает Вселенную на части? Не известно. Однако именно это непонятное нечто держит за ниточки «основной вопрос физики».

 

Изумление и ужас Брайана Шмидта не шли ни в какое сравнение с эмоциями, разыгравшимися после откровений его группы. Ситуация выплеснулась за рамки загадок космоса. «Полностью бредовые» характеристики света взорвавшихся звезд раскололи круг виднейших ученых. Теперь, когда космологическая константа вернулась на поле, они не могут договориться друг с другом, как и во что играть дальше. Пол Стейнхардт, физик-теоретик из Принстонского университета в Нью-Джерси, всерьез расстроен тем, что из-за проблем с этой константой лучшие умы как будто утратили и надежду, и всякое стремление когда-нибудь постичь Вселенную. «Смирение большинства наших теоретиков меня разочаровывает», — сообщил он журналу «Нейчур» («Природа») в июле 2007 года.

Все эти взаимные претензии, образно говоря, — много шума из ничего. Под «ничего» в данном случае подразумевается «пустующее» пространство Вселенной, которое на самом деле вовсе не пусто.

Космос, невзирая на то, есть ли в нем вообще какая-либо масса или нет, бурлит энергией. В 1920-е годы, вскоре после рождения квантовой теории, описавшей поведение природы на уровне атомов и субатомных частиц, британский физик Пол Адриен Морис Дирак воспользовался этим, чтобы построить свою квантовую механику на основе свойств электрических и магнитных полей. Квантовая теория поля в итоге привела Дирака к заключению, что пустота обладает энергией. А поскольку в лексиконе физики пустое пространство принято называть вакуумом, энергия Дирака получила известность как вакуумная.

Самое разумное, что можно предположить, — как раз эта энергия и ускоряет «антигравитацию», убедительно продемонстрированную сверхновыми; это она и есть космологическая константа. Вся проблема в том, что параметры сверхновых показывают ничтожно малую величину вакуумной энергии. Измеряется она обычно в граммах (как мы помним, в знаменитом уравнении Эйнштейна Е = mc2 масса и энергия взаимно обратимы). Так вот, количество энергии в вакууме, равном по объему земному шару, — около сотой доли грамма. Смотреть не на что.

Зато когда величину вакуумной энергии вычисляют физики-теоретики согласно квантовой теории поля, у них, наоборот, получается излишек. Фантастически огромный. Если верить их расчетам, вакуумная энергия до того велика, что Вселенная уже давно должна была разлететься на субатомные частицы в порыве сверхмощного ускорения. Эту широко известную проблему даже сторонники космологической константы признают самым вопиющим из когда-либо отмеченных расхождений между постулатами теории и экспериментальными данными. Миллион — большое число: единица с шестью нолями. У триллиона двенадцать нолей. А «ножницы» между постулируемой и эмпирически полученной величинами космологической константы выражаются числом со 120 (ста двадцатью!) нолями.

Столкнувшись с этим несоответствием, многие физики приняли концепцию, впервые предложенную нобелевским лауреатом Стивеном Вайнбергом в 1987 году. В книге «Мечты об окончательной теории» Вайнберг предположил, что космологическая константа существует в нашей Вселенной совершенно независимо от человеческой способности когда-либо определить ее величину. Если наша Вселенная одна из многих, то каждая может иметь свои собственные мировые константы, иные, чем у «соседки». Некоторые вселенные, несомненно, остаются бесплодными, другие порождают жизнь; среди последних, вероятно, найдется по меньшей мере одна, где может развиться и разум, подобный человеческому. Таков антропный принцип в объяснении мира («антропос» по-гречески — человек). В сухом остатке он постулирует, что наша Вселенная такая, какая есть, ибо в противном случае не существовало бы нас, чтобы ее описать. Иначе говоря, человек — необходимый элемент Вселенной, без которого она не могла бы существовать, во всяком случае, в присущем ей виде. Это вовсе не обязательно подразумевает конструкторский план или вообще какой-либо «промысел»: просто, будь условия иными, осознать их и зафиксировать было бы некому. К тому же, по сути, подводят и наши наблюдения, указывающие, что формы, в которых может развиваться Вселенная, имеют ограниченный диапазон. Антропный взгляд подкреплен утверждением физиков, что наша Вселенная отличается чрезвычайным разнообразием «ландшафта»; она подобна лоскутному одеялу, скроенному из множества субвселенных, и у каждой — собственные неповторимые свойства, установившиеся путем случайного подбора. Так что нет необходимости определять значения постоянных для каждой из них.

Такое толкование космологической константы раздражает многих физиков. Например, Леонард Сасскинд из Стэнфордского университета счел предположение Вайнберга «немыслимым, вероятно, самым шокирующим признанием, какое только может в наши дни сделать ученый».

Идея потому встречает столь сильное сопротивление, что ставит вверх дном всю науку. Философ Карл Поппер создал целую доктрину о том, что науку движут вперед исключительно фальсификации и опровержения: некто подбрасывает гипотезу, а затем каждому вольно попытаться «сбить» ее зарядом эмпирических данных. Если эксперименты опровергли данную гипотезу, теоретики переходят к следующей. И лишь тогда, когда гипотеза выдержит много «попаданий» подряд, появляются основания говорить о ее научной достоверности.

В случае с антропной Вселенной такой подход бесполезен, потому что другие вселенные для нас недосягаемы. Концепцию, которая не проверяется экспериментально, нельзя опровергнуть. Значит, не стоит и пытаться объяснить, отчего у Вселенной такие свойства: они именно потому таковы, что делают ее пригодной для нашего обитания. И вот это называется наукой? Наверное, и это тоже, говорит Сасскинд; он не исключает возможной правоты Вайнберга. Если нам суждено постигать Вселенную, то теперь, видимо, придется отвергнуть Карла Поппера со всеми его последователями (которых Сасскинд иронически окрестил «попперацци») как высокую инстанцию в вопросе о том, что является наукой и что ею не является. И признать, сколь бы ни возмущались «попперацци», что физические законы Вселенной действуют благодаря нашему бытию в ней.

Как ни трудно переваривать подобные идеи, есть причины отнестись к ним всерьез. Квантовая теория поля предполагает, что если для завершения описания Вселенной требуется точное значение космологической константы, значит, наше мироздание действительно должно быть одним из великого множества. Может статься, как писал поэт Эдвард Эстлин Каммингс, «за углом чертовски славный мир».

В основе этой аргументации — принцип неопределенности квантовой механики, который гласит, что фундаментальные свойства любой системы никогда не могут быть определены в точности, но имеют присущие им допуски. Применительно к квантовой теории поля этот принцип вызывает естественные колебания характеристик в тех или иных областях Вселенной. Здесь опять-таки можно привести сравнение с надувным мячом, имеющим множество «слабых точек» на оболочке; по мере «раздувания» Вселенной флуктуации могут нарастать, порождая новые пространственно-временные континуумы. Иными словами, Вселенная, которая обладает космологической константой, выводимой из вакуумной энергии, непрерывно создает новые «пузырьковые» подобия. Те, в свою очередь, рождают собственные дочерние вселенные, и так до бесконечности. То, что нам угодно считать Вселенной, — лишь один из островков пространства — времени в океане квантовой пены мини-миров.

У антропного принципа сейчас много сторонников, особенно в теоретической физике; именно поэтому упомянутый Пол Стейнхардт относит себя к меньшинству. Но если нет возможности изучить «пузырьковые вселенные» и определить, разнятся ли их законы, не означает ли это, что физика окончательно сдалась на милость неведомых сил?

Этот вопрос стал главным на конгрессе в Брюсселе, где призрак Альберта Эйнштейна витал повсюду, заглядывая каждому через плечо. Что дальше: сложить руки и ограничить действие космологической константы рамками той конкретной Вселенной, где мы живем? Следует ли отсюда, что мы так никогда и не узнаем, из чего состоит большая часть мироздания, не разгадаем природу темной энергии?

Ответ был — и да, и нет: да, это возможность, с которой надо считаться; нет, надежду терять нельзя. Дэвид Гросс, председательствовавший в собрании, не преминул напомнить, что на первом Сольвеевском конгрессе в 1911 году физики были точно так же растерянны. У отдельных веществ обнаружилась способность испускать элементарные частицы особым манером — казалось, при этом нарушались законы сохранения массы и энергии. Объяснение феномена нашлось через несколько лет, с появлением квантовой теории. «Они упустили из виду нечто совершенно фундаментальное, — сказал Гросс Сольвеевскому конгрессу — 2005. — Возможно, и мы не замечаем чего-то столь же важного, как наши предшественники в свое время».

Так что же это за фундаментальное нечто? Существуют ли какие-то подсказки? Смотря кого спрашивать. Адам Рисс, чьи радикальные речи в шекспировском духе открыли для нас эпоху темной энергии, выдвинул провокационную идею. Вдруг в наших знаниях о гравитации недостает какой-то малости? Возможно, никакой темной материи и темной энергии вообще нет в природе — просто за четыреста лет никто не углядел крошечную погрешность в ньютоновском законе тяготения, а именно в ней таится ключик, который откроет замок и явит нашим глазам «пропавшую» часть Вселенной.

Рисс не первый задался этим вопросом и не настаивает на его исключительной важности. Но считает такое вполне вероятным и ничего не исключает априори. То же самое ощущает Вера Рубин. Она думает, что девяносто девять физиков из сотни лишь по инерции цепляются за веру в некое темное вещество, которое заполняет Вселенную, скрепляя галактики своим тяготением. Но ей уже начинает казаться более продуктивным решением модификация основных физических законов.

На первый взгляд из затруднительного положения можно найти относительно простой выход. Новую альтернативу предложил в 1981 году израильский физик Мордехай Милгром. В его теории закон тяготения Ньютона подправлен таким образом, что на сверхдальних расстояниях, скажем в пространстве между галактиками или их скоплениями, гравитация несколько сильнее ожидаемой. Идея получила имя «модифицированной ньютоновской динамики» (МОНД) и, несмотря на свою очевидную безвредность, вызвала новый наплыв проблем.

Не так-то просто взять творение человека, признанного величайшим мастером своего дела, — к тому же творение, которое безупречно отслужило четыреста лет, — и объявить: «Вот здесь у нас перевес, а там недовес; вот сейчас мы тут подложим, а там подтянем». Подобный шаг требует известного мужества. Идею Милгрома поначалу не принимали всерьез, но все же нескольких сторонников она приобрела. Среди них самым известным оказался молодой астроном Стейси Магоу.

 

Защищая МОНД, Магоу вызвал на себя столь ожесточенный огонь, что ему впору было обзаводиться бронежилетом. Сорок лет всеобщего безразличия к темной материи открыли Вере Рубин глаза на феномен «ученой глухонемоты». А Магоу, в свое время один из ее аспирантов, преподал другой важный урок: как побеждать «сопромат» академической среды.

В марте 1999 года он выступил с докладом о МОНД в Институте Макса Планка в Германии. Там никто не загорелся энтузиазмом. Магоу заявили: не хотите дурной славы — предскажите результаты какого-нибудь эксперимента, и, если прогноз подтвердится, вот тогда мы, так и быть, согласимся вас послушать.

Магоу вынашивал ответ ровно девять месяцев, а затем опубликовал в «Астрофизическом журнале» заметку, где все так же бесцеремонно вопрошал: «Есть ли темная материя?» Если ее действительно нет, то обнаружится серьезное расхождение между определенной характеристикой реликтового излучения — космического эха Большого взрыва — и ожиданиями поборников темной материи. Должен выявиться «спектр мощности» — нечто вроде распада излучения. Как теория МОНД, так и модели темной материи предполагали, что на полученной спектрограмме будут чередоваться пики и впадины. Только «темные материалисты» утверждали, что второй пик окажется ниже первого, но незначительно. А Магоу предсказал: если темной материи не существует, второй пик будет совсем крошечным; так давайте убедимся в этом, как только появятся данные.

Летом следующего года Вера Рубин приехала на конференцию в Рим, ожидая услышать показательное выступление Магоу перед астрономами. Благо эмпирические данные теперь уже имелись. И в них не было второго пика — ни высокого, ни низкого. Вообще никакого.

Магоу отвели на сообщение десять минут. Рубин была поражена, когда он закончил, — ничего не произошло! «Даже ни единого вопроса не задали», — вспоминает Рубин. И добавляет: на следующее утро некий выдающийся космолог, приступив к обсуждению новых результатов, ни словом не упомянул об их расхождениях с общепринятой моделью темной материи.

С того момента Рубин серьезно заинтересовалась МОНД. Отчасти потому, что ей не по вкусу сама идея привлекать новые виртуальные частицы для истолкования прямых наблюдений, и еще потому, что астрономический истеблишмент погряз в пресловутых связях с общественностью, а слишком хороший пиар, по мнению Рубин, вредит нормальной научной дискуссии. Она всегда была поклонницей «беспородных собак» в науке.

Между тем МОНД долгое время не тянула и на такую участь. Как пошутил Магоу, сравнить ее можно было разве что с паршивой псиной, которую не впустили в зал заседаний и оставили скулить за порогом. Большинство ученых отказывались понять, почему теорийка, наскоро слепленная израильским физиком, должна быть лучше заклинаний темной материи, великой и ужасной. Но затем, в 2004 году, в дело вмешался Якоб Бекенштейн.

Бекенштейн родился в Мехико, изучал физику в Политехническом институте Бруклина и в Принстонском университете, а сейчас профессорствует в Еврейском университете Иерусалима. В молодости он докучал Стивену Хокингу разными спорными гипотезами насчет черных дыр (все они подтвердились), а сегодня признан одним из крупнейших авторитетов теоретической физики. И когда Бекенштейн сформулировал свою версию эйнштейновской теории относительности, недвусмысленно дав понять, что модифицированная гравитация заслуживает лучшего отношения, сообществу физиков не оставалось ничего, кроме как занять места в аудитории и внимательно слушать. Когда же у релятивистской МОНД по Бекенштейну стали обнаруживаться точные и изящные совпадения с результатами наблюдений за галактиками, теория, вчера считавшаяся маргинальным вздором, оказалась вдруг в центре внимания. Однако массовое «прозрение» адептов темной материи смотрелось далеко не столь красиво.

 

У расхожего представления, будто наука нейтральна, беспристрастна и лишена предубеждений, бывают порой «критические дни». Один из таких дней случился 21 августа 2006 года, когда пресс-релиз американского Национального управления по воздухоплаванию и исследованию космического пространства (НАСА) прокричал граду и миру: «Мы нашли прямое доказательство существования темной материи!»

Весь шум был по поводу грандиозного столкновения двух скоплений галактик, получивших в результате общее имя Пуля. Наблюдая последствия этого события, астрономы обнаружили явные признаки пространственного разделения между обычным газом и гало — предполагаемой темной материей. Они проанализировали эффект гравитационного линзирования, когда лучи света отклоняются в поле тяготения. (Одна из вершин теории Эйнштейна — открытие, что масса — энергия искривляет пространство. Любое излучение, будь то фотоны или гамма-кванты, проходит мимо массивных скоплений звезд и планет не прямо, а по кривой, огибает их.) И когда космический телескоп НАСА «Чандра» зафиксировал отклонение рентгеновских лучей словно бы на пустом месте, без наблюдаемых тел вокруг, многим померещилось, будто вся критика темной материи идет ко дну под звук пощечины смутьянам, посмевшим утверждать, что картина мироздания не нуждается ни в вызове духов, ни в эльфийской пыльце, ни в каком-либо ином «волшебном космическом бланманже» (по выражению одного сатирика).

Гвоздь программы преподносился с немалой помпой. «Вселенная, отданная во власть темной материи, казалась нелепостью, и мы решили убедиться, нет ли в наших рассуждениях принципиального изъяна, — рассказал руководитель исследовательской программы Дуг Клоу из Аризонского университета в Тусоне. — Полученные результаты дали прямое доказательство того, что темная материя реально существует».

Все здесь правда, кроме «полученного доказательства». Впрочем, дальше составители пресс-релиза сбавили тон: дескать, это пока всего лишь «самое яркое из свидетельств в пользу того, что большая часть вещества Вселенной — темная материя».

Затем весь пыл обрушился на неких скептиков, имевших наглость сомневаться. Теперь эти кое-кто посрамлены, кончилось их время. «Невзирая на весомые признаки существования темной материи, отдельные ученые предлагали альтернативные модели тяготения, согласно которым в межгалактическом пространстве оно действует сильнее, чем указывали Ньютон и Эйнштейн; тем самым темная материя отрицалась. Но подобное теоретизирование бессильно объяснить наблюдаемые эффекты столкновения галактик».

Это могло показаться крахом модифицированной ньютоновской динамики. Однако никто в НАСА как будто не поинтересовался у гравитационных ревизионистов, действительно ли им не под силу объяснить упомянутые эффекты. Никто даже не потрудился заглянуть на сайт arXiv.org, где физики размещают препринты новых экспериментальных и теоретических работ.

Сторонники релятивистской теории Бекенштейна еще за два месяца до ликования НАСА приглядывались к скоплению Пуля. Их работа, опубликованная под игривым заголовком «Поймает ли МОНД Пулю?» в респектабельном и реферируемом астрономическом журнале, — весьма любопытное чтение. По утверждению авторов, показания спектрометров «Чандры» ни в чем не противоречили МОНД. Реакция Милгрома также заинтриговала. Все эти претензии, заявил он, мы слышали еще три года назад; у «мондистов» было время обдумать проблему, обсудить ее на конференциях и познакомить оппонентов со своей точкой зрения, но те, «сдается, просто не желали слушать». Магоу, в свою очередь, заметил, что объяснить феномен Пули с позиций МОНД довольно сложно, если не затрагивать при этом некоторые скользкие вопросы, но все же никакая экзотика тут не нужна. Достаточно учесть присутствие некоторого количества нейтрино — они, как известно, во-первых, реально существуют, во-вторых, трудноуловимы и, в-третьих, согласно стандартной теории темной материи составляют в последней определенную долю. Кроме того, Магоу напомнил еще об одном виде элементарных частиц — барионах. Все вещество в мире, как принято считать, на четыре процента состоит из них, но до сих пор прямыми методами удалось обнаружить от силы десятую часть расчетной массы барионов; где находятся все остальные — не известно. Быть может, эти, скажем по аналогии, «темные барионы» и проявили себя в скоплении Пуля?

Помимо МОНД вкупе с нейтрино и барионами появилась и еще одна альтернатива. На десятый день после пресс-конференции НАСА канадский физик Джон Моффат разместил в электронном архиве свое сообщение. Там утверждалось, что его интерпретация закона тяготения также способна объяснить результаты «Чандры», не прибегая к темной материи.

Моффат — редкая птица в мире ученых: космолог-самоучка, уехавший из Парижа вольным художником без гроша в кармане, он сумел подняться на академические вершины. Биография Моффата читается как волшебная сказка: в 1953 году, будучи двадцати лет от роду, он послал Эйнштейну свои работы, в которых попытался продолжить и развить некоторые идеи великого физика. Эйнштейн, распознав единомышленника и оценив его труд, написал доброжелательный ответ, и с тех пор перед юношей, как вспоминает он сам, «начали распахиваться двери». Пять лет спустя Джон Моффат, не имея высшего образования, защитил диссертацию в Тринити-колледже Кембриджского университета.

Но удача сопутствовала ему не во всем. Нетрадиционный стиль мышления подталкивал Моффата к разработке непопулярных идей, а в науке мода не менее важна, чем в искусстве. Самая смелая его гипотеза — о переменной скорости света, которая в космическом прошлом могла сильно отличаться от наблюдаемой ныне, — опередила свое время почти на десяток лет. Хотя в 1990 году Моффат обнародовал ее в малоизвестном научном журнале, физики всерьез заинтересовались этим вопросом лишь в 1998-м. Да и то пришлось постараться, прежде чем теория получила признание.

Дерзания Моффата продолжаются, на сей раз в царстве темной материи. Ряд его теорий, обосновывающих плоские кривые вращения галактик, известен под общим именем без претензий на изысканность — МОГ, то есть модифицированная гравитация. МОГ немного «подправляет» ньютоновскую гравитацию: на больших расстояниях она действует малость сильнее, чем обычная, привычная нам сила тяготения. И эта «малость», по мнению Моффата, вполне удовлетворительно объясняет результаты наблюдений «Чандры».

Может, там на самом деле есть темная материя, а может, и нет. Остаются альтернативы, и любой беспристрастный наблюдатель должен признать: проблема не решена. Прошло больше шестидесяти лет с тех пор, как обнаружены странности во вращении галактик, и может статься, никто из ныне живущих так и не узнает всей правды о темной материи. А возможно, это случится уже завтра. Но до тех пор, как подчеркивает Адам Рисс, мы не сможем разобраться и с темной энергией.

 

Исследователи этого феномена тоже не опускают рук. НАСА, Национальный научный фонд и Министерство энергетики США подрядили ученых на дальнейшее изучение темной энергии, и в сентябре 2006 года созданная для этой цели группа опубликовала свой доклад. Большинство авторов рекомендовали развивать «наступательную программу» астрономических наблюдений и экспериментов, направленных непосредственно на разгадку этой тайны. Однако самое любопытное здесь то, что руководитель группы, невзирая на все программные призывы броситься в атаку, смотрит на проблему скорее с позиций фаталистического непротивления. Чего на самом деле нам недостает, считает профессор Чикагского университета Эдвард «Роки» Колб (Роки — это его прозвище, означающее «Каменный»), — так это нового Эйнштейна.

Колб полагает, что природу темной энергии можно постичь, открутив физику назад без малого на девяносто лет. В решении проблемы, по его словам, может серьезно помочь предположение, сделанное теоретиками 1920-х годов в попытках найти окончательное решение уравнений Эйнштейна — и, по существу, завершить математическое описание Вселенной. Они исходили из гипотезы, что Вселенная изотропна, то есть ее физические свойства одинаковы во всех направлениях, куда бы и откуда ни двигаться.

Если такое звучит для вас не слишком внятно, тогда представьте, что вы очутились в самой середке огромного черничного пудинга и из этого положения пытаетесь оглядеться кругом. Запеченные ягодки окружают вас со всех сторон, и кажется, что они рассредоточены в тесте абсолютно равномерно. Взгляд изнутри Вселенной — по сути, то же самое. Конечно, пока мы рассматриваем пространство в пределах Солнечной системы или Млечного Пути, обязательно видны хорошо знакомые приметы, но ориентиры исчезнут, стоит лишь выбрать другую область космоса. Если мы выйдем за свою галактическую «околицу», Вселенная станет совершенно одинаковой во всех направлениях, куда ни обрати взор.

Точно ли это так? Мы не знаем наверняка. Среди астрономов есть и иное мнение: характеристики реликтового излучения подсказывают, что Вселенная, наоборот, анизотропна. Некоторые космологи даже всерьез подумывают о реабилитации отвергнутого еще в начале прошлого века «светоносного эфира» — призрачной субстанции, которая в каких-то направлениях облегчает прохождение лучей через пространство, а в каких-то — нет. В этом старинном сценарии изотропия тоже не предусмотрена. Пока у нас слишком мало информации, чтобы судить с уверенностью о подобных вещах; ясно лишь одно: чтобы хоть как-то приблизиться к истине о «вселенских лакунах», необходима теория, свободная от произвольных допусков. Только она сможет гарантировать, что космологи не впадут в очередное заблуждение.

Такое легче провозгласить, чем сделать. Сказать по совести, мы еще не дотянулись умом, чтобы описать Вселенную без подобных — возможно, губительных — упрощений. Однако, насколько известно, задача все же имеет решение. Дело не только в неспособности ученых к научным озарениям, но еще и в неполноте математического аппарата. В этом смысле сегодняшние ученые подобны своим предшественникам из доэйнштейновской эпохи. В один прекрасный день, по убеждению Эдварда Колба, кто-нибудь поймет, как решить уравнения Эйнштейна без притянутой за уши изотропии, и тогда сумеет совершить нечто выдающееся: допустим, объяснить природу темной энергии. Тут и множественность вселенных — если она реально существует — перестанет тяготеть над нашим пониманием космоса.

 

Этого, разумеется, стоит ждать с нетерпением. А пока самое лучшее, что можно сделать, — это уверенно повторить вслед за Слайфером его консервативную максиму: Вселенная неизмеримо больше того, что нам известно о ней в данный момент. И уж космос-то всегда готов к новым открытиям.

Кто знает, какие сюрпризы он для нас припас? Тем более что темная энергия и темная материя — не единственные явления, потенциально способные войти в новый канон физики. Есть причины сомневаться, что ее основные законы непреложны во всем космическом пространстве или действуют одинаково в любой момент времени. Доказательство этого, разумеется, в корне изменило бы все представления о развитии Вселенной. Но прежде чем идти по такому следу, стоит вспомнить о двух исследовательских зондах, запущенных в космос в семидесятые годы. Они сейчас удаляются от Солнечной системы — довольно странным путем, отклонившись от заданного курса на некоторую величину. Быть может, аномалия «Пионеров» подскажет, что же не так в нашем мироздании?

Назад: Пролог
Дальше: 2. «Пионер» — не пример