Как мы развиваемся из одной-единственной клетки
Поразительно все-таки, что всего одна-единственная клетка, а именно оплодотворенная яйцеклетка, развивается в нечто столь сложное, как человек, или в такое огромное, как слон, или в такое маленькое, как муха. Как же это происходит?
На протяжении многих столетий известно, что мы и другие животные развиваемся из эмбрионов. Загадкой оставалась природа самого эмбриона и то, как именно происходит его развитие. Никакой прогресс в исследовании этого был невозможен, пока не установили, что мы представляем собой набор клеток и происходим из одной-единственной клетки, из яйцеклетки после того, как совершается процесс ее оплодотворения.
Гиппократ в пятом веке до н. э. пытался описать процесс нашего происхождения из огня и воды, объясняя, как взаимодействие этих двух стихий приводит к застыванию при одновременном сохранении влажности. Столетие спустя Аристотель поставил вопросы, для ответов на которые потребовались последующие столетия. Он задался вопросом, формируются органы эмбриона одновременно или последовательно? Возникают органы эмбриона в законченном и упорядоченном виде с самого начала (преформация) или же образуются мало-помалу, и это похоже на постепенное вязание рыбацкой сети (эпигенезис)? Аристотель поддерживал идею эпигенезиса.
Влияние идей Аристотеля на взгляды о развитии эмбриона было колоссальным, и, несмотря на то что не существовало никаких достоверных данных ни за, ни против его теории, она главенствовала вплоть до XVII столетия. Затем теорию эпигенезиса отвергли, поскольку признали невероятным, что физические или химические силы могут привести к формированию эмбриона и породить столь сложные виды жизни, как человеческая. Благодаря этому в ученой среде стал превалировать противоположный взгляд — что эмбрион появляется в законченном виде с самого начала.
Даже блестящий итальянский эмбриолог XVIII столетия Марчелло Мальпиги не мог освободиться от влияния этой доктрины. Детально описывая развитие эмбриона цыпленка, он оставался на позициях теории преформации и заявлял, что ранние стадии развития эмбриона слишком малы, чтобы их можно было увидеть. Другие сторонники этой теории утверждали, что им удавалось увидеть полностью сформированный эмбрион в головке каждого сперматозоида.
Однако открытие клеток привело к полному изменению взглядов на развитие эмбрионов. Окончательно эпигенезис в умах эмбриологов победил в 1840-е годы, когда было признано, что яйцеклетка — это клетка, от которой происходят все клетки организма.
На практике это весьма сложный процесс, включающий взаимодействие различных клеток, которые то и дело перегруппировываются, что по мере роста и развития эмбриона ведет к образованию отдельных типов тканей. Но откуда изначальные клетки эмбриона знают, что им следует делать? Существовало воззрение, что это происходит благодаря структурированности яйцеклетки, которая по мере дальнейшего деления образует различные группы клеток, а они, подобно сложной мозаике, соединяются в необходимые группы тканей. Эта теория несколько напоминала теорию преформации. Однако затем — это случилось более ста лет тому назад — немецкий биолог Ганс Дриш разделил клетки эмбриона морского ежа на двухклеточной стадии развития, и каждая из получившихся отдельных клеток развилась в маленькую, но вполне обычную по форме личинку. Сейчас хорошо известно, что можно получить особи близнецов при разделении на этой стадии развития двухклеточных эмбрионов многих животных. Близнецы человека образуются при разделении эмбриона на значительно более поздней стадии — через две недели после оплодотворения яйцеклетки.
После оплодотворения в яйцеклетке происходит деление клеток, которое, однако, не сопровождается ростом самой яйцеклетки. В результате этого деления образуется группа из 30 клеток, и они формируют полую сферу. Внешняя оболочка этой сферы в последующем развитии эмбриона не участвует — из нее образуются такие структуры, как, например, плацента. Зародыш формируется из клеток внутренней поверхности этой полой сферы; оттуда же происходят эмбриональные стволовые клетки, способные развиться в любой из типов клеток.
На ранней стадии между клетками не наблюдается различий. Интересен вопрос, откуда клетки знают, в каких местах им надлежит быть и что делать. Откуда им становится известно, что они должны четко выполнять свои функции в целях развития эмбриона — стать, например, частью глаза или же образовать часть желудка. Выяснилось, что все это происходит благодаря взаимодействию генов и белков, в результате чего нужные белки синтезируются в нужное время и в нужном месте.
Во время развития эмбриона оказываются задействованными пять основных клеточных механизмов — деления клеток, образования структур тела, изменения форм, дифференциации клеток, роста клеток.
Деление клеток на ранней стадии развития эмбриона называется дроблением. В этот период яйцеклетка расщепляется на несколько более мелких клеток, и некоторые из них становятся эмбриональными стволовыми клетками.
Процесс образования структур состоит из формирования в эмбрионе органов и частей тела — например, конечностей или такой важной структуры, как нервная система. Клетки закрепляются на отведенных им местах и образуют четкую структуру будущего органа.
Если образование структур тела напоминает собой рисование или, лучше сказать, создание каркаса, то изменение формы походит на процесс лепки скульптуры, во время которого клетки совершают значительные перемещения и ткани меняют форму. Наш позвоночник представляет собой сначала плоскую полоску. Затем края этой полоски начинают закругляться и, встретившись, соединяются для того, чтобы образовать пустотелую трубку, которая и становится впоследствии позвоночным столбом. Разумеется, эта трубка пронизана множеством нервов, и их образование является прямым следствием процесса дифференциации клеток.
Дифференциация клеток приводит к появлению сотен различных типов клеток в нашем организме.
Механизм роста клеток способствует увеличению отдельных частей тела эмбриона. В основном он включается уже после того, как мы появляемся на свет.
Контроль над активностью всех этих клеточных механизмов осуществляется за счет присутствующих в клетках белков, а их деятельность, в свою очередь, определяется теми генами, которые на данный момент находятся в активированном состоянии. Таким образом, фундаментальным механизмом процесса развития клеток является процесс активации и деактивации генов. Гены в клетках растущего носа — такие же, как и гены в клетках растущего пальца, однако активные гены в этих частях тела сильно отличаются друг от друга.
Мы уже видели, что существуют контрольные зоны генов, с которыми связываются белки, участвующие в процессе транскрипции, — тем самым они делают ген активным либо неактивным. Изменения в статусе гена определяются как последовательностью событий внутри клетки, так и сигналами, которыми клетки обмениваются друг с другом.
В процессе развития эмбриона в активированном состоянии находятся несколько тысяч генов, которые осуществляют контроль над его развитием. Существует также множество генов, функция которых заключается в поддержании обычной жизнедеятельности клеток. Эти гены, не имеющие отношения к генетической программе развития эмбриона, присутствуют в большинстве клеток.
Все клетки, из которых состою я и из которых состоите вы, ведут начало от тех клеток, которые формируются из слоя внутренней поверхности оплодотворенной яйцеклетки. Строительство человеческого тела из этого набора клеток является чрезвычайно сложной задачей. Для этого необходимо задействовать не только механизм образования структур тела, чтобы клетки знали, что им следует делать в различных местах в разное время, но и обеспечить возможность изменения форм клеток и их свободное перемещение.
Из клеток внутренней поверхности оплодотворенной яйцеклетки происходят три клеточных слоя, из которых состоит наше тело: эктодерма, мезодерма и эндодерма. Эктодерма — это внешний тканевый слой, в нее входят кожа и нервная система. Находящаяся под ней мезодерма включает в себя мускулы, скелет, сердце, кровь и почки. Третьим, самым глубинным тканевым слоем является эндодерма, из нее состоят кишки, печень и легкие. В процессе формирования клеточных слоев эктодерма, мезодерма и эндодерма должны расположиться в правильном порядке. Этот процесс называется гаструляцией.
Особенность животных в том, что клетки, которым предстоит сформировать их кишечник и мускулы, скелет и сердце, изначально находятся на внешней стороне эмбриона и им необходимо передвинуться во время гаструляции. Определение будущих функций этих клеток на ранней стадии позволяет сформировать основные оси развития эмбриона — в частности, выявить, где будет находиться его голова, а где хвост. При этом определяется расположение трех клеточных слоев, из которых будет состоять тело, в результате чего клетки мезодермы и эндодермы направляются внутрь эмбриона, чтобы занять назначенное положение. Меня знают как автора высказывания «Самым важным моментом вашей жизни является не рождение, свадьбы и смерть, а гаструляция». В нем действительно содержится изрядная доля истины.
Гаструляция в ходе развития человеческого эмбриона крайне сложна и трудно поддается описанию. Однако основные стороны этого процесса можно наглядно проиллюстрировать на примере гаструляции эмбриона морского ежа, яйцеклетки и эмбрионы которого являются превосходными объектами для наблюдения за поведением клеток, поскольку они, во-первых, легкодоступны и, во-вторых, прозрачны. Достаточно просто извлечь из особей морского ежа женского пола во время брачного периода яйцеклетки и поместить в пробирку. Затем в пробирку следует ввести каплю спермы морского ежа мужского пола, дабы произвести оплодотворение. Через час каждая яйцеклетка начнет делиться, причем процесс повторится на протяжении следующих десяти часов примерно десять раз, в результате чего из оплодотворенной яйцеклетки образуется полая сфера толщиной всего в одну клетку.
После этого яйцеклетка проходит период гаструляции и образует личинку. Первой стадией гаструляции эмбрионов морских ежей является движение примерно шестидесяти клеток, находящихся в той области, где будет сформирован кишечник эмбриона, в пустую внутреннюю полость оплодотворенной яйцеклетки. Эти клетки порождают мезодерму, мускулы эмбриона и те клетки, из которых будет сформирован скелет. Они направляются в нужное место, выбрасывая длинные пальцеобразные усики-филоподии, которые сокращаются и за счет этого двигают клетку вперед. Когда в пределах досягаемости филоподий появляется другая клетка, с нею устанавливается прочная связь.
Затем образуется кишечник морского ежа — за счет того, что клетки свертываются, образуя подобие трубочки, которая протягивается через все полое внутреннее пространство оплодотворенной яйцеклетки, пока не вступит в соприкосновение с клетками на противоположной стороне. Это похоже на то, как если бы у вас в руках был воздушный шарик и вы давили бы на одну его сторону пальцем до тех пор, пока не коснулись бы им противоположной стороны шарика.
После этого клетки, находящиеся на конце кишечника, выбрасывают филоподии, которые вытягивают кишки — также к противоположной стороне яйцеклетки. Здесь они сращиваются со встреченными клетками и образуют ротовую полость. Этот процесс представляет собой удивительное зрелище — он заснят, и его можно наблюдать. Он демонстрирует, что все изменения форм эмбриона объясняются довольно простыми растяжениями и сокращениями клеток. Подобные процессы происходят и во время гаструляции человеческого эмбриона, только проявляются они в более сложном виде. Разумеется, все это происходит, потому что в нужное время и в нужном месте синтезируются определенные белки, а это становится возможным благодаря активации и деактивации соответствующих генов.
Первый явный признак гаструляции в человеческих эмбрионах — формирование плотного слоя клеток, который разрастается и формирует желоб, соответствующий основной оси нашего тела. На конце этого слоя находится область, организующая рост и движение, которая называется наростом. По мере продвижения нароста к противоположному концу яйцеклетки образуется новый слой клеток. Клетки, находящиеся по разные стороны от этого слоя, перемещаются под него и формируют эндодерму и мезодерму. Когда эти перемещения заканчиваются, новообразованный плотный слой начинает сдвигаться в направлении заднего конца эмбриона. Теперь на его кончике находится будущая голова эмбриона.
При этом поверхностный слой клеток, эктодерма, начинает разворачиваться в районе срединной линии, образуя трубку, из которой впоследствии будут сформированы спинной мозг и головной мозг. Находящаяся под ней и возвращающаяся назад мезодерма оставляет за собой пары небольших комочков ткани, по одному на каждой стороне, которые известны под названием сомитов; впоследствии сомиты сформируют позвоночный столб, мускулы спины и конечностей. Таким образом становится очевидна основная структура эмбриона; конечности же его разовьются позже из отростков, которые вырастут из тела.
Но если теперь можно определить, где находится голова и где будут находиться ноги эмбриона, то по-прежнему остается не ясно, где будут правая и левая его стороны. Несколько органов нашего тела являются симметричными, как, например, конечности, однако сердце располагается слева, у печени имеется только левая доля, слева располагаются желудок и селезенка.
Во время развития эмбриона левую сторону от правой отличают реснички. Благодаря им активируется особый ген, который в свою очередь активирует гены левой стороны тела. У одного из десяти тысяч человек обычная асимметрия правой и левой стороны нарушена. Такие люди во всем остальном являются совершенно нормальными; правда, некоторые, очень немногие, могут испытывать проблемы с дыханием.
Все это развитие происходит за счет деятельности клеток, которая контролируется генами и теми белками, которые закодированы в них. Важно понимать, что гены не содержат в себе готовый чертеж того взрослого человека, в которого должен превратиться эмбрион. Скорее, содержащиеся в тканях эмбриона гены обеспечивают основу для выполнения программы развития новорожденного человеческого существа, в которой каждая предыдущая фаза обусловливает последующую.
Хорошей аналогией в этом смысле является оригами — искусство создания фигурок из бумаги. Довольно легко, например, последовательно сгибая листок бумаги, превратить его в сложную фигурку птицы, однако эта фигурка не появляется сама собой из складок бумаги, ведь каждое складывание листка оказывает сложное воздействие на то, каким будет эффект от последующих складок. То же самое происходит и с действием генов — каждая фаза развития эмбриона определяется тем, как была выполнена ей предшествующая.
Развитие эмбриона, подобно созданию оригами, зависит от реализации наследственной программы. Важно отметить, что развитие эмбриона определяется в первую очередь поведением отдельных клеток, а не сложностью взаимодействия, происходящего между клетками. Сигналы, которыми обмениваются клетки между собой, не приводят к передаче сложной информации, а прежде всего определяют выбор того состояния клетки, в которое клетка может войти в конкретный момент. Таким образом, в развитии эмбриона по-настоящему определяющим фактором является именно внутреннее состояние клетки.
Связь, которая осуществляется между различными клетками в развивающемся эмбрионе, позволяет активировать нужные гены в нужное время, чтобы белки могли выполнять свою работу. Подобно инструкциям по составлению оригами, которые предписывают, когда и как следует сгибать бумагу, гены активируются тогда и в тех местах, когда там необходимо синтезировать определенные виды белков. Сигнал, который получает при этом клетка, редко проникает внутрь нее. Почти всегда этот сигнал, являющийся в форме некоего вещества, воздействует на внешнюю оболочку клетки и вызывает ряд цепных реакций внутри клетки, которые приводят к активации либо деактивации определенных генов. Это немного напоминает то, как если бы вы нажимали определенные кнопки на музыкальном автомате, чтобы заставить его играть нужные вам мелодии. Таким образом, развитие эмбриона проистекает в результате последовательных реакций внутри клетки, которые вызываются сигналами, поступающими извне.
Сигнал, достигший клеточной оболочки, передается далее путем последовательного взаимодействия белков. Это приводит к добавлению фосфата к целому ряду белков, располагающихся как в клеточной оболочке, так и в клеточном ядре, что стимулирует либо останавливает работу гена. Это сложный процесс, известный под названием сигнальной трансдукции.
Клетки редко передают соседним клеткам новую информацию — никакого обмена записками или письмами между ними не происходит. Возможно, кому-то в голову приходит мысль, что такие сообщения могут содержать белки, которые передаются от одной клетки другой, однако это не так. Белковые сигналы лишь активируют рецепторы, которые далее посылают соответствующие сигналы внутрь самой клетки. И лишь очень небольшое число белков непосредственно проникает в клетку. Обычно это — гормоны.
Многие из ключевых генов, контролирующих развитие человеческого организма, а также развитие других позвоночных, были впервые обнаружены и исследованы в плодовых мушках дрозофилах. Исследователи использовали мушек, чтобы выяснить, как гены и белки контролируют поведение клеток. Благодаря дрозофилам удалось прояснить многие аспекты генетики. Возможно, после этого мушки стали с удивлением говорить друг другу, до какой же степени механизмы их собственного развития схожи с человеческими…
Использовался, в частности, следующий метод: ученые брали гены, игравшие важную роль в развитии дрозофил, и затем искали соответствующие гены в организмах позвоночных животных. Хороший пример — ген, получивший название «Акустический еж». Он был обнаружен в плодовой мушке и назван так потому, что, во-первых, при его мутации поверхность личинки мухи становится похожей на спину ежа. И во-вторых, потому, что, когда сходный ген был открыт у позвоночных животных, сын ученого, который его обнаружил, увлекался компьютерной игрой «Акустический еж». Биологи, занимающиеся подобными исследованиями, имеют право сами подбирать имена новым генам, и им явно нравится этот процесс.
«Акустический еж» — это сигнальный белок, который неоднократно используется в процессе развития нашего организма. Клетки по-разному реагируют на его появление, поскольку у всех у них разная история и они содержат различные белки.
Большой вклад в понимание закономерностей развития нашего организма внесло изучение лягушек и цыплят. Ведь в большинстве живых существ задействованы одинаковые или очень похожие механизмы. Эволюция раз за разом без стеснения идет одним и тем же путем, что, однако, не мешает создавать видовое разнообразие.
Для того чтобы проиллюстрировать действие механизма, отвечающего за создание структуры тела, и понять принципы его работы, мы прибегнем к аналогии с французским флагом, который состоит из трех одинаковой величины полос синего, белого и красного цветов, расположенных на одной оси. Сам флаг может быть любого размера, однако схема его раскраски всегда остается неизменной. Если мы имеем популяцию клеток, которые способны раскраситься в синий, красный и белый цвета, и при этом знаем, что число клеток в популяции может меняться, то какой же механизм с гарантией расположит их в виде французского флага? Представьте, что вы стоите вместе с другими людьми и у каждого из вас имеется по куску бумаги синего, белого или красного цвета. Вы ждете известного французского деятеля и хотите приветствовать его французским флагом — для этого люди с листами разных цветов должны выстроиться в строгой последовательности. Это реально только в том случае, если вы будете твердо знать свое место в общем ряду, которое, разумеется, будет соответствовать цвету листа бумаги у вас в руках. Без постоянного обмена сигналами между участниками мероприятия добиться успеха вам не удастся.
Точно так же выстраиваются в необходимом порядке и клетки эмбриона. Клетки получают соответствующую информацию и, согласно ей, занимают позицию в ряду других клеток, ориентируясь на границы этого ряда. После обретения клетками своих мест в них включаются генетические программы: клетки из левой трети становятся синими, из центральной трети — белыми, а из правой трети — красными. Смысл этого механизма в том, что на основе использования одного и того же позиционного значения могут развиться различные формы клеток — это происходит благодаря тому, что, в соответствии с заложенной в них генетической программой, клетки способны интерпретировать свое позиционное значение различным образом. Этот же механизм с успехом действует и в двухмерной системе координат, в которой интерпретирование позиционного значения происходит по двум осям. Далее мы рассмотрим подобные примеры.
Как клетки определяют свою позицию по отношению к начальной и конечной границам группы клеток, к которой они принадлежат? Это непростая проблема. Поскольку все схемы последующего развития клеток изначально формируются внутри небольших клеточных групп, протяженность линии клеток по прямой в любом направлении составляет меньше тридцати клеток. Это заставило Френсиса Крика предположить, что клетки определяют свою позицию благодаря считыванию информации о концентрации того или иного химического соединения. Однако как бы привлекательно ни выглядела эта теория, в настоящее время считается, что распространение сигнала в виде определенной концентрации химического вещества слишком ненадежный способ для получения столь важной информации. Ученые продолжают спорить о том, каким именно образом клетки обретают свои позиционные значения. Возможно, это происходит за счет непосредственного обмена сигналами между клетками в местах их соединения друг с другом.
Как бы то ни было, исследования регенерации тканей дают убедительные доказательства того, что клетки действительно обладают позиционными значениями. Несколько видов лягушек способны регенерировать свои конечности, что требует, чтобы клетки обладали позиционными значениями относительно утраченной конечности, то есть чтобы процесс регенерации начинался с того места, в котором конечность подверглась ампутации, и далее по направлению к кончикам утраченных пальцев.
Ученые выявили специфический белок на оболочках клеток конечности лягушки, концентрация которого уменьшается от плеча к конечностям лягушки. И при этом установили, что возможно изменить позиционные значения клеток, обрабатывая регенерируемую конечность ретиноевой кислотой, которая приводит к появлению у клеток в районе пальцев более высокой концентрации этого белка и уподобляет их клеткам в районе плеча. Если ампутировать лягушке кисть, то при обычных условиях у нее будет регенерирована именно кисть. Но если в процессе регенерации ввести в ткани ретиноевую кислоту, то регенерируемые клетки решат, что они являются клетками плечевой области, и тогда на месте отрезанной кисти вырастет целая лапка.
Другой пример того, что клетки обладают позиционными значениями, дало изучение тканей дрозофилы. В ходе экспериментов ученые установили, что позиционные значения клеток ног и усиков дрозофилы одинаковы, но по-разному интерпретируются из-за воздействия особых контролирующих генов. И ноги, и усики дрозофилы являются довольно длинными образованиями, но при этом ноги вырастают из тела мушки, а усики — из ее головы и весьма сильно отличаются друг от друга по форме. Однако мутация одного-единственного гена может привести к тому, что у дрозофилы вместо усика вырастет нога.
Ученым еще предстоит понять, как действуют контрольные гены, которые следят за интерпретацией клетками своих позиционных значений. Но как бы то ни было, поразительно, что один-единственный ген может иметь столь мощное значение для формирования эмбриона.
Важность контрольных зон генов в деле образования структур тела подтверждается другим примером, почерпнутым из изучения особенностей развития дрозофилы. На ранней стадии развития некоторые гены проявляются в спинной области мушки семью полосками — их можно увидеть, если промаркировать белок, который они кодируют. Изначально исследователи думали, что эти полоски наделяет особыми свойствами и точно устанавливает их очертания и границы лежащая под ними волнообразная структура — что полоски развиваются в районе гребней каждой из волн. Но на самом деле механизм установления очертания и границ полосок основан на других принципах, в число которых, однако, не входит принцип позиционной информации. Дело в том, что каждая полоска отличается от всех остальных. Это происходит из-за того, что имеется семь различных контрольных зон, в результате чего образуется семь разных полосок. Каждая из контрольных зон активируется разными белками, которые играют роль транскрипционных факторов, присутствующих в области каждой полоски.
Формирование структур тела во время развития эмбриона хорошо наблюдать на примере образования конечностей. Особенно полезными в этом плане оказались исследования эмбриона цыпленка, поскольку за развитием его конечностей очень легко вести наблюдение — для этого достаточно вскрыть скорлупу яйца и увидеть эмбрион во всех деталях.
Конечности начинают расти, когда само тело уже достаточно хорошо сформировано. Их зачаток на раннем этапе развития похож на сплюснутый воздушный шарик. При этом одни клетки создают его «оболочку», внутри которой делятся другие клетки; это деление и ведет к росту «шара». Впоследствии внутренние клетки образуют зародышевые элементы костной системы — предтечи костей. На верхушке оболочки «шара» находится утолщенный гребень; он и придает лапке цыпленка ее окончательную форму.
То же самое происходит с конечностями человека. На краю зоны развития в том месте, где будет сформирован мизинец, находится особая сигнальная зона, в которой образуется белок «Акустический еж». Он передает информацию по линии, которая пролегает от большого пальца к мизинцу. Концентрация «Акустического ежа» наивысшая в районе формирования мизинца, она снижается ближе к зоне, где образуется большой палец. Ученые полагают, что степень концентрации «Акустического ежа» определяет позицию клеток, а значит, и то, какой именно палец здесь сформируется.
Присвоим трем пальцам цифры 4, 3, 2 по направлению от мизинца к большому пальцу. Они обычно располагаются согласно формуле «4-3-2», и палец «4» характеризуется высоким содержанием «Акустического ежа», а палец «2» — низким. Если взять у одного эмбриона участок тканей с присутствием «Акустического ежа» и пересадить в область зачатка конечностей другого эмбриона, где должен будет вырасти большой палец, то конечность расширится и на ней появится шесть пальцев по формуле «4-3-2-2-3-4».
«Акустический еж» помогает контролировать развитие пальцев как на руках, так и на ногах. Ответная реакция на него клеток, располагающихся на руках и на ногах, не одинакова — дело в том, что на верхних и нижних конечностях активируются разные гены. Иногда — к счастью, довольно редко — дети рождаются с лишними пальцами; это происходит из-за того, что в районе формирования большого пальца образуется дополнительная сигнальная область с «Акустическим ежом».
В развитии конечностей большую роль играет программируемая смерть клеток — апоптоз, которая заставляет умирать те клетки, которые располагаются между пальцами. Если бы этого не происходило, на руках были бы перепонки и они походили бы на утиные лапки. Апоптоз является частью механизма образования структур тела; он контролируется генами.
По мнению ряда ученых, позиции клеток на основной оси руки, от плеча до кисти, определяются временем, которое клетки проводят в зоне развития. Те клетки, которые находятся в зоне развития дольше всего, становятся пальцами. Те же клетки, которые покидают ее раньше других, образуют кости — лучевые и локтевые. Такая модель, в которой за позиции клеток отвечает механизм, регулирующий время, объясняет эффект препарата талидомида — его прием беременными женщинами приводил к деформациям конечностей у новорожденных младенцев. Талидомид, вероятно, убивает клетки в зоне развития и ломает график их распределения вдоль оси конечности. Это приводит к тому, что из всех тканей руки развиваются только ткани в районе кисти. Есть данные, что талидомид блокирует развитие кровеносных сосудов, и это вызывает незапланированный природой апоптоз в зоне развития, из-за чего дети рождаются с кистью, которая начинается прямо от плеча.
Все клетки мускулов в наших конечностях мигрируют туда из сомитов, о которых мы уже упоминали. В отличие от клеток конечностей, клеткам, которым предстоит развиться в клетки мускулов, не присвоено на ранней стадии никаких позиционных значений; они совершенно одинаковы — в этом смысле между ними царит подлинная демократия. Когда будущие мускульные клетки проникают в ткань конечностей, клетки конечностей, обладающие позиционными значениями, направляют их в нужные места, где эти клетки превращаются в мускульные и прикрепляются к костям и сухожилиям. Они и на этой стадии развития ведут себя абсолютно демократично, без каких-либо претензий, и готовы соединиться с любой костью и сухожилием, с какими войдут в непосредственный контакт. Это показали многочисленные эксперименты на эмбрионах цыплят.
Существует и пока еще до конца не понятый механизм, который определяет позиции клеток, располагающихся вдоль основной оси тела, то есть от него зависит, где разовьются шея, ребра, конечности и нижняя часть спины. Этот механизм активирует специальный набор генов, известных как гены Хокса, которые также были открыты во время исследований на дрозофилах. У дрозофилы набор этих генов отображается вдоль ее тела в той последовательности, в которой они отражены в хромосоме. Это — единственный известный пример пространственной взаимосвязи между порядком генов в хромосоме и их расположением в эмбрионе. У нас имеется четыре набора, в которые входят до тринадцати таких генов, называемых гомеотическими, — расположенные на четырех различных хромосомах, что объясняется удвоением первоначального набора в ходе эволюции, они тесно связаны между собой.
Наборы гомеотических генов отображаются на различных позициях вдоль оси нашего тела, идущей от головы к копчику, и определяют развитие тканей в различных локальных секторах — например, то, где вырастут ребра или где разовьются зачатки будущих конечностей. Так, например, ген Хокса А1 отображается в той части тела, которая относится к голове, а ген Хокса А13 — в нижней части нашего позвоночника.
Спинной мозг — это хороший пример морфогенезиса (изменения формы), в основе которого лежат механические процессы, способные восхитить любого инженера. Ткань, из которой в будущем разовьется головной и спинной мозг, выделяется на весьма ранней стадии нашего развития и представляет собой узкую полоску. Формирование трубки, из которой затем разовьется спинной мозг, похоже на складывание листка бумаги. Первой ступенью является образование борозды вдоль срединной линии, в результате чего области ткани, располагающиеся по обеим сторонам от борозды, поднимаются вверх, двигаются в направлении срединной линии, встречаются и соединяются. В результате образуется трубка, состоящая из всего лишь одного слоя клеток и пустая внутри.
За все изменения формы отвечает программа, заложенная в клетках, образующих полоску. Формирование первоначальной борозды вызывается клетками, располагающимися на срединной линии. Они приобретают клинообразную форму — возможно, из-за сжатия клеток, находящихся под оболочкой трубки.
После соединения краев полоски и образования трубки трубка отделяется от окружающей ее ткани. Это становится возможным в результате изменения молекул, располагающихся на клеточных оболочках, которые ранее способствовали соединению и сцеплению клеток, а теперь не препятствуют их разъединению. Обретя самостоятельность, трубка превращается в сплошной стержень, но затем клетки в сердцевине стержня начинают отмирать, в результате чего он вновь превращается в трубку. О развитии спинного мозга мы поговорим далее — в контексте развития всей нервной системы.
Наше лицо в основном образуется группой клеток, принадлежащих к нервному гребешку. Первоначально они обладают способностью превращаться в различные типы клеток и, таким образом, являются мультипотентными клетками. Но позже, начав миграцию, они дифференцируются на клетки различных типов (мой большой нос также обязан своим происхождением нервному гребешку). Путь, проделываемый этими клетками в ходе миграции, определяется клетками, поверх которых они движутся, — движение зависит от выделений, испускаемых нижним слоем клеток. Эти выделения могут как увеличить, так и уменьшить сцепление между клетками и, следовательно, затруднить или ускорить их перемещение. Кроме того, на скорость и направление движения влияет выпячивание клеточной оболочки в нижнем слое.
По мере миграции способность клеток к мультипотенции уменьшается. Причина этого в сигналах, получаемых ими от слоя, над которым они движутся. Эти сигналы направляют их в совершенно определенные места, и то, в какой тип клеток они разовьются, зависит от места, в котором они в конце концов окажутся. Когда клетки прибывают в пункт назначения, они получают сигналы, благодаря которым начинается активация одних и подавление других генов, отвечающих за превращение этих клеток. Что же до числа сигналов, которыми обмениваются клетки, то оно очень велико, и все эти сигналы так или иначе связаны между собой — как правило, каждый следующий сигнал клетки модифицируется на основе информации, пришедшей с предыдущим сигналом. Все это вместе составляет весьма сложную, постоянно меняющуюся картину. Правда, надо иметь в виду, что изменения происходят в заданных рамках.
Наша сосудистая система — это первое, что развивается в эмбрионе. Сердце, вены, артерии и другие сосуды формируются из одних и тех же клеток. Эти клетки, соединяясь, образуют трубки, и один из концов каждой трубки становится центром роста, где клетки размножаются. Клетки, находящиеся на кончике сосуда, имеют длинные сокращающиеся отростки, которые вытягиваются вперед и направляют рост сосуда. При этом они чутко реагируют на сигналы от клеток той ткани, через которую сосуд прорастает.
Трубки, из которых образуются сосуды, уже на самой ранней стадии, еще до того, как они начинают расти, имеют характерные признаки либо артерий, либо вен, однако в процессе развития эти особенности могут исчезнуть. Во время развития сосудов у них появляются многочисленные отростки, на возникновение и направление движения которых опять-таки влияют сигналы, получаемые от локальных групп клеток. Поскольку функция сосудов заключается в том, чтобы доставлять кровь в различные части тела, сигналы им посылают именно те клетки, которые строят органы, нуждающиеся в притоке крови.
Процесс дифференциации, в результате которого образуется множество разных типов клеток, определяется изменениями в поведении генов и процессами синтеза различных белков. Транскрипция гена определяется белковыми транскрипционными факторами, которые связываются с контрольными зонами. В клетках человека существует около 3000 различных транскрипционных факторов, но не все они вовлечены в деятельность по контролю за развитием тканей — некоторые отвечают лишь за контроль над генами, которые необходимы для поддержания обычной жизнедеятельности клетки. При этом многие гены активируются любыми из множества транскрипционных факторов, однако есть и такие, для активации которых нужны совершенно определенные факторы.
Красные кровяные тельца не обладают ни ядром, ни митохондриями. Они наполнены белком гемоглобином, который окрашивает их в красный цвет. Именно гемоглобин, с одной стороны, захватывает кислород в наших легких и снабжает им клетки, а с другой — забирает из клеток двуокись углерода и переносит ее в легкие.
Наш гемоглобин состоит из белковой части — глобина и небелковой — железосодержащего гема, причем молекула гема встроена в каждую цепь глобина. Содержащийся в геме атом железа и связывает кислород. Каждая молекула гемоглобина содержит две цепи альфа-глобина и две бета-глобина, которые кодируются генами, находящимися на различных хромосомах. Цепи альфа-глобина и бета-глобина создаются на разных этапах развития эмбриона, поскольку они с разной степенью силы связывают кислород. Связано это с тем, что потребность в кислороде на разных этапах развития не одинакова.