Книга: Чудесная жизнь клеток: как мы живем и почему мы умираем
Назад: 9. Как мы растем и почему мы стареем
Дальше: 11. Как рак поражает организм

10. Как мы выживаем

Как клетки обороняются от бактерий и вирусов

Когда мы заболеваем, то это, в сущности, означает, что в ненормальном и болезненном состоянии оказались наши клетки. Человеческий организм выработал специальные механизмы, позволяющие обороняться от вторжения бактерий и вирусов, которые ищут подходящее место, где они могли бы размножаться, и от физического ущерба, который наносят нашим клеткам, например, порезы и ожоги. Особые клетки немедленно устремляются в пораженную область, чтобы ликвидировать повреждение. Ключевую роль в этих процессах играют клетки иммунной системы, распознающие в организме инородные тела.

Главные биологические враги наших клеток — бактерии и вирусы. Инфекционные заболевания являются виновниками каждой третьей смерти. Один лишь только вирус СПИДа унес жизни 20 миллионов людей. Болезнетворные бактерии и вирусы, если им удается проникнуть в клетку, используют для своих целей ее ресурсы — во внутриклеточном пространстве они находят все необходимые для жизни и воспроизводства питательные вещества. Многие болезнетворные микроорганизмы сумели создать защитные механизмы, которые включаются, когда клетка пытается их уничтожить. Они также способны перемещаться из клетки в клетку в поисках более комфортной для себя среды.

Бактерии являются простейшей формой жизни, поскольку они не содержат в себе внутренних структур, таких, как, например, ядро, чтобы хранить там свои ДНК, и не имеют митохондрий для производства энергии. Типичная бактерия имеет сферическую или палочкообразную форму и часто обладает относительно прочной оболочкой. Бактерии делятся каждые 20 минут, в результате чего уже через 11 часов одна бактерия способна породить 5 миллиардов новых. Количество бактерий в наших телах огромно — на каждую человеческую клетку приходится по десять бактерий. Каждый раз, открывая рот, мы выбрасываем в воздух тысячи бактерий.

Основная причина, по которой мы миримся с подобным поведением бактерий и позволяем им вести себя внутри нас как дома, заключается в том, что их присутствие предотвращает вторжение в организм других по-настоящему опасных микроорганизмов, — ведь привычные бактерии уже оккупировали все уютные ниши, возникающие между нашими клетками. К тому же многие бактерии приносят нам не только вред, но и очевидную пользу — так, без бактерий невозможно нормальное пищеварение. Различать нужные человеку бактерии от нежелательных пришельцев позволяет иммунная система.

Дети, находящиеся в утробе матери, не сталкиваются с бактериями, однако вскоре после появления на свет их кишечник становится местом весьма плотного скопления бактерий. Они проникают в организм через нос, задний проход, рот, любую поврежденную область кожи. Важная преграда на их пути — кожный покров. Специальными средствами защиты, позволяющими обезопасить человека от проникновения бактерий, обладают клетки внутренних тканей. А клетки, устилающие наши дыхательные пути, покрыты слоем защитной слизи, которая вместе с бактериями выводится при помощи специальных ресничек.

Что до «полезных» бактерий, то надо иметь в виду: в определенных условиях они могут стать злейшими врагами человека. Например, бактерии, помогающие нам переваривать пищу, несут ответственность за возникновение целого ряда заболеваний, среди которых кишечные воспаления и рак толстой кишки. Язва желудка, как выяснилось совсем недавно, также вызывается бактериями. Сделавший это открытие врач поставил опыт на себе — он принял внутрь чистую культуру «язвообразующей» бактерии, и у него действительно развилась язва желудка.

Само образование язвы чаще всего связано с токсинами, которые выделяются бактериями. Эти токсины разъедают слизистую стенку желудка и создают очаг инфекции, где бактерии размножаются во всевозрастающих количествах и откуда, расширяя сферу своего влияния, распространяются далее. И если бы в борьбу с ними не вступала иммунная система, фатальный результат был бы неизбежен.

Для начала рассмотрим явление воспаления, которое является признаком работы врожденной иммунной системы человеческого организма. Клетки хорошо справляются с лечением таких ран, как порезы кожи, — при условии, правда, что рана не слишком велика. Поврежденные кровеносные сосуды испускают из себя кровь, которая собирается в сгустки благодаря действию тромбоцитов. Эти кровяные клетки собираются вместе и связываются белковыми нитями, образуя своего рода затычку раны, — из нее впоследствии разовьется сухая корка. Нейтрофилы, белые кровяные тельца из кровеносных сосудов, направляются в поврежденную область, и благодаря этому под коркой начинают активно размножаться клетки кожи, образуя новый слой эпидермиса. Сюда же направляются и макрофаги, которые съедают мертвые клетки, чье содержимое может оказаться вредоносным для соседних с ними неповрежденных клеток и затормозить процесс излечения.

При относительно небольших повреждениях рана вскоре затягивается, и след от нее постепенно исчезает. Однако если потеря кожи составляет больше двух дюймов и рана достаточно глубока, для эффективного излечения потребуется пересадка кожи. Эту кожу берут с других участков тела либо, пользуясь современными технологиями, выращивают в искусственной питательной среде.

Если сломана кость, процесс восстановления проходит по-другому. В этом случае определяющую роль в процессе излечения играет состоящая из соединительной ткани покрывающая кость оболочка. Именно она поставляет большую часть клеток, жизненно необходимых для излечения поврежденной кости, — из этих клеток образуется хрящ. После того как происходит повреждение кости, стенки кровеносных сосудов сжимаются и образуется кровяной сгусток, что предотвращает дальнейшее кровотечение. Затем все клетки, образовавшие кровяной сгусток, отмирают. Спустя несколько дней в месте перелома образуется соединительный хрящ, который затем заменяется костной тканью благодаря особым клеткам — остеобластам, вырабатываемым костным мозгом.

Воспаление является первоначальным ответом на травму нашей врожденной иммунной системы. Это тот механизм, который применяется для защиты от практически любого неблагоприятного воздействия — при инфекциях, механических повреждениях тканей или перегреве. Воспалительный процесс вынуждает расположенные в области повреждения клетки просить помощи у других клеток тела, включая клетки иммунной системы. Однако есть момент, который тоже не следует упускать из виду. Воспаление ведет к уничтожению вредоносного микроорганизма, но при этом оно само может причинить вред тканям, как это бывает, например, при туберкулезе.

Проникновение болезнетворных бактерий или вирусов заставляет клетки генерировать три типа химических сигналов. Первая реакция на боль заключается в том, что расположенные в поврежденном месте нервные клетки выделяют особые, «сигнальные», молекулы. Затем каждая из поврежденных клеток выделяет белки, которые сигнализируют о том, что ей требуется помощь. И если клетки идентифицируют присутствие бактерий, то это приводит к испусканию еще одного типа химических сигналов.

В число тех клеток, которые участвуют в генерации сигналов при активизации врожденной иммунной системы, входят так называемые тучные клетки, или мастоциты. Они выделяют вещества, которые увеличивают приток крови, и за счет этого способствуют появлению воспаления. Тучные клетки разбросаны по кожному покрову человека и обеспечивают самую раннюю реакцию на инфекцию, выделяя основные сигнальные молекулы. Их часто называют «химическими фабриками»: тучные клетки производят 10 тысяч различных молекул, способных сделать кровеносные сосуды проницаемыми и активировать иммунную систему. Выделения тучных клеток способны вызвать и зуд на коже, и течь из носа, и даже спровоцировать удушающие приступы астмы. Однако — это стало ясно совсем недавно — они являются ключевыми элементами в деле борьбы с инфекциями, поскольку направляют в инфицированное место лимфоциты и активируют действие иммунной системы. К отрицательным сторонам воздействия тучных клеток относится то, что они могут вызвать ревматоидный артрит и способствуют уничтожению шванновских клеток — защитных оболочек нервов, что вызывает рассеянный склероз, а при заболевании раком они участвуют в привлечении кровеносных сосудов к месту опухоли. Все это наносит вред здоровым клеткам, в силу чего возникла необходимость в развитии механизмов, которые могли бы предотвратить деятельность тучных клеток после того, как опасность со стороны бактерий миновала.

Пример острого воспаления — аппендицит. Больной при аппендиците чувствует боль, а также весьма часто — тошноту и жар. Обычно закупоривание какого-то отдела червеобразного отростка слепой кишки вызывает в нем повышение давления, что влияет на кровоснабжение и повреждает стенку аппендикса. В травмированное место вторгаются бактерии, в результате чего возникает воспаление.

При травме к месту повреждения увеличивается поступление крови, и там накапливаются красные кровяные тельца. Одновременно в дело вступают лейкоциты — белые кровяные тельца иммунной системы. Они проникают сквозь растянувшиеся стенки сосудов и принимаются за важную работу по уничтожению инородных тел и «поеданию» остатков умерших клеток. Лейкоциты включают в свой состав такие клетки, как макрофаги, чья функция заключается в очистке организма от ненужного мусора. Эти клетки устремляются к месту повреждения, следуя за особыми химическими сигналами о помощи и именно в том направлении, где концентрация таких сигналов наивысшая. Очень часто так сигнализируют о себе продукты жизнедеятельности вторгшихся бактерий. Когда лейкоциты оказываются поблизости от скопления бактерий, они могут даже пройти через слой тканей для того, чтобы подобраться к нему вплотную; затем они обволакивают и убивают бактерии. При этом выделяются энзимы, которые атакуют вредоносные микроорганизмы. У лейкоцитов есть биологические механизмы для распознавания инородных тел. Однако они порой уничтожают и здоровые ткани в непосредственной близости от себя. Ведь убить вторгшиеся бактерии, не нанеся при этом вреда нормальным клеткам, не так-то просто; это показывает, например, развитие в организме туберкулеза.

Заболевание туберкулезом вызывается бактерией, открытой Робертом Кохом в 1878 году. Несмотря на успехи, достигнутые в борьбе с этой болезнью, ныне по меньшей мере треть населения земного шара подвержена воздействию палочки Коха; считается, что каждую секунду в мире заражается туберкулезом один человек. Однако туберкулез вызывает не сама пробравшаяся в наш организм вредоносная бактерия и не выделяемые ею токсины — болезнь возникает как ответ человеческого организма на проникновение туберкулезной бактерии. Когда туберкулезные палочки через дыхательные пути проникают в легкие, они обычно вызывают повреждение ткани легких диаметром примерно в один сантиметр и начинают в этом месте размножаться. Макрофаги, естественно, реагируют на это вторжение и принимаются пожирать вредоносные бактерии. Затем к этому месту прибывают Т-лимфоциты, о которых пойдет речь ниже; они связываются с макрофагами, заставляя эти клетки уничтожать оказавшиеся внутри них бактерии. Все это вызывает местное воспаление, из-за которого гибнут многие нормальные клетки легких.

Еще одно тяжелейшее заболевание — воспаление легких, которое вызывается либо бактериальной, либо вирусной инфекцией. Бактерии или вирусы вторгаются в легкие и вызывают местное воспаление, которое наполняет воздушные полости легких жидкостью и тем самым препятствует усваиванию кислорода. Эти респираторные инфекции распространяются воздушно-капельным путем; они являются причиной смерти большого количества людей, и прежде всего детей, во всем мире.

Существует множество других болезней, вызываемых бактериями, и среди них есть очень опасные. Гигантское число людей выкосила чума, известная под названием «черная смерть». В прошедшие эпохи она распространялась чрезвычайно широко и быстро вела к летальному исходу — в несколько недель вымирали целые города.

Бактерия, вызывающая чуму, практически всегда вносится в кожу через укус зараженной блохи и затем распространяется по лимфатическим путям. Блохи же заражаются чумными бактериями от грызунов, на которых живут. Когда блоха кусает инфицированную крысу, она проглатывает бактерии, которые размножаются в ее пищеварительном тракте и образуют твердую массу, закупоривающую кишечник. Блоха из-за этого теряет способность глотать кровь и испытывает постоянное чувство голода. В желании насытиться она многократно кусает животное-хозяина, изрыгая при этом обратно в его кровоток возбудителей чумы. Места укусов действуют как очаги их распространения. Если животное погибает, что и происходит в большинстве случаев, блоха перескакивает на другую живую крысу. Если количество живых крыс снижается, блохи перемещаются на другого теплокровного хозяина — им может быть человек или домашние животные. Так создаются условия для начала эпидемии. Поэтому люди заражаются лишь в тех случаях, когда они находятся рядом с мертвыми грызунами. Лишь в редчайших случаях бактерии чумы передаются от человека к человеку. Ныне, к счастью, заболевания чумой крайне редки и обычно связаны с передачей чумной бактерии человеку от диких животных.

Бактерия, вызывающая дифтерит, выделяет токсин, который блокирует синтез белков. Это приводит к прогрессирующей деградации защитных миелиновых покровов нервных клеток, входящих в состав центральной и периферической нервной системы, что приводит к ухудшению контроля за моторикой мышц и потере осязания. Эта бактерия распространяется воздушно-капельным путем и способна сохраняться даже в сухих местах.

Бактерия столбняка представляет собой подвижную палочкообразную структуру, живущую в бескислородной среде, — часто она встречается в земной почве. При попадании в глубокую рану эти бактерии выделяют токсин, который связывается с синапсами нервов-ингибиторов, в результате чего моторные нервы, освобожденные от сдерживающего влияния нервов-ингибиторов, вызывают ненормальные сокращения мускулатуры.

Бактерия проказы поражает многие органы — кожу, глаза, кости, яички. Сифилитическая инфекция передается половым путем. Начинаясь в виде небольшого поражения ограниченного участка ткани, он может затем распространиться по всему организму, поразив многие органы тела.

Кариес вызывается бактериями, которые вырабатывают кислоту. Обязательное условие их деятельности — присутствие на поверхности зубов сахаров. Увеличение уровня кислотности во рту негативно воздействует на зубы, разрушая их минеральное основание.

В 1928 году Александр Флеминг открыл пенициллин, способный уничтожать многие виды бактерий. Работая в лаборатории госпиталя Святой Марии в Лондоне, он заметил, как вокруг пятнышка плесени, оказавшегося в чашке с искусственной питательной средой, где размножались бактерии, образовался круг, в пределах которого бактерии не могли размножаться. Флеминг пришел к выводу, что плесень выделяет вещества, сдерживающие рост бактерий и убивающие их. Термин «пенициллин» Флеминг предложил для того, чтобы обозначить фильтрат чистой культуры плесени. На ранних стадиях исследований пенициллина Флеминг обнаружил, что он наиболее эффективен лишь против определенных видов бактерий. Это несколько охладило его пыл. Сначала Флеминг выразил оптимизм по поводу того, что пенициллин может стать панацеей от многих болезней, однако в ходе дальнейших экспериментов пришел к выводу о том, что пенициллин не в состоянии находиться в человеческом теле достаточно долго, чтобы успеть поразить бактерии.

Но в 1939 году австралийский ученый Говард Флори и группа исследователей из Оксфордского университета сумели доказать, что, будучи впрыснутым в ткани животных, пенициллин чрезвычайно эффективно расправляется с бактериями. Попытки этих ученых лечить людей оказались поначалу не слишком успешными из-за недостаточных объемов вводимого пенициллина, но тем не менее им удалось значительно продвинуться вперед и заложить фундамент для дальнейших исследований свойств чудесной плесени. В 1942 году группе исследователей из Оксфордского университета впервые в мире удалось успешно применить пенициллин для лечения человека. К 1944 году пенициллин производился уже в массовом порядке. Во время Второй мировой войны применение пенициллина стало основным фактором снижения уровня смертности в войсках антигитлеровской коалиции — считается, что благодаря пенициллину удалось спасти от 12 до 15 процентов от общего числа раненых. Воздействие пенициллина на болезнетворные бактерии происходит за счет того, что он взаимодействует с определенными белками, входящими в состав оболочек бактериальных клеток, и тем самым приводит к смерти бактерии. Но вот воздействовать на вирусы пенициллин уже не может.

Вирусы являются мощными источниками инфекции. В состав вирусов входят те же самые молекулы, которые присутствуют и в клетках, однако вирусы не способны размножаться самостоятельно — в этом смысле они не являются вполне живыми существами. Размножаться они могут, лишь попав в клетку и используя для этого клеточные механизмы. Их называют «химическими зомби», и эти «зомби» причиняют серьезный вред, когда им удастся проникнуть внутрь клетки. Вирусы исключительно малы и поэтому способны свободно проходить через самые совершенные фильтры. Они содержат в себе относительно малое число генов — от трех до нескольких сотен, которые заключены в белковую оболочку. В дополнение к нуклеиновым кислотам, из которых построены ДНК либо РНК вирусов, вирусы содержат также три класса белков: белки, необходимые для их размножения, белки, необходимые для создания структуры вирусов, и белки, которые будут воздействовать на клетку, когда вирус в ней окажется.

При попадании вируса в клетку она предпринимает попытки предотвратить его размножение, для которого вирус использует особую молекулу РНК, состоящую из двойной спирали. Один из способов защиты клетки заключается в производстве белка интерферона, стимулирующего активность гена, который повреждает РНК и тем самым предотвращает размножение вирусов. Но при этом клетки подвергают опасности свои собственные РНК, над которыми также нависает угроза уничтожения, и порой случается так, что клетка уничтожает саму себя ради того, чтобы предотвратить размножение вируса. Интерферон также усиливает активность отдельных клеток-убийц, входящих в состав адаптивной иммунной системы, — они призваны уничтожать клетки, инфицированные вирусами. Несмотря на это, многим вирусам удается беспрепятственно проскользнуть через защитные рубежи.

Первый шаг на пути распространения вирусной инфекции состоит в установлении связи вируса с клеточной оболочкой. Вирус соединяется с оболочкой, становится ее частью — и просачивается внутрь клетки. Так поступает, например, вирус СПИДа. Существует и более сложный способ проникновения в клетку, связанный с «пробиванием» бреши в клеточной оболочке. В любом случае, оказавшись в клетке, вирус начинает паразитировать на ней, активно используя ее биологические механизмы для синтеза своих собственных белков. Это происходит благодаря наличию во многих вирусах белков, которые воздействуют на деятельность клеток таким образом, что они вместо производства собственных белков начинают вырабатывать белки вируса. Образовавшиеся внутри клетки белки и нуклеиновые кислоты вируса тут же соединяются и образуют новые вирусы.

Размножение вирусов внутри инфицированной клетки может привести к тому, что клеточная оболочка лопнет, клетка разорвется и из нее наружу будет выброшено множество новых вирусов, которые станут заражать соседние клетки. Так происходит, когда мы простужаемся, — существует около сотни вирусов, вызывающих простуду. Вирус простуды предпочитает инфицировать клетки, выстилающие носовые и дыхательные пути. Обычные для простуды симптомы, такие, как жар, головная боль и усталость, вызываются веществами, которые выделяют инфицированные клетки. Впрочем, эти вещества не причиняют вреда тканям организма.

В отличие от вируса, вызывающего обыкновенную простуду, вирус гриппа способен наносить вред тканям; поэтому сопровождающие грипп болезненные симптомы не являются следствием лишь одной воспалительной реакции организма на вирус. В тяжелых случаях грипп может привести к воспалению легких. До начала XX века воздействие вируса гриппа на людей было относительно мягким, однако затем появились новые его разновидности. Одна из них вызвала эпидемию 1918 года, которая унесла жизни более 40 миллионов человек по всему миру — больше, чем погибло за всю Первую мировую войну. Этот вирус провоцировал иммунную систему организма на чрезмерную реакцию: сигналы, которые призывали клетки иммунной системы к месту заражения, оказывались настолько сильными, что место заражения начинало буквально кишеть клетками иммунной системы, из-за чего дыхательные пути блокировались и разрушались ткани.

Гены некоторых вирусов записаны не в ДНК, а в РНК. Когда такие вирусы проникают внутрь клеток, то их РНК преобразуется в ДНК, и эта ДНК начинает синтезировать белки, из которых образуются новые вирусы. Так происходит с вирусом СПИДа, гены которого закодированы в РНК; образующаяся на ее основе ДНК может скрываться в ДНК хозяйской клетки, находящейся в хромосоме. Это затрудняет борьбу с ней при помощи антивирусных препаратов. Еще один пример вируса на базе РНК — вирус бешенства. Он размножается в клетках мышц и в нервных окончаниях и по нервам мигрирует в центральную нервную систему, вызывая схожие с гриппом симптомы, которые могут привести к частичному параличу, деменции (слабоумию) и даже к смерти.

Антивирусные препараты действуют на болезнетворные штаммы вирусов — они связываются либо с находящимися на клеточной оболочке рецепторами (с ними вступает в контакт сам вирус, когда пытается проникнуть в клетку), либо с той частью оболочки вируса, которая контактирует с клеточной оболочкой; в обоих случаях вирус теряет способность проникнуть в клетку. Но к сожалению, вирусы и бактерии в состоянии вырабатывать сопротивляемость лекарствам. Бактерии даже способны обмениваться между собой генетической информацией путем передачи генов и за счет этого передавать невосприимчивость к антибактериальным препаратам новым поколениям бактерий. Соединение двух бактерий с передачей через это соединение ДНК со стороны похоже на примитивный половой акт.

Неправильное использование антибиотиков помогает вредоносным бактериям вырабатывать защиту от действия лекарств. Если не соблюдать должный уровень дозировки антибактериального препарата, то можно довести дело до того, что бактерии, имеющие мутации в сторону повышенной сопротивляемости, получат шанс выжить и, следовательно, передать свои качества новым бактериям, которые разовьют их еще больше. Вот почему так важно продолжать принимать предписанную дозу антибиотиков даже тогда, когда вы уже почувствовали себя лучше: необходимо уничтожить всех нежелательных пришельцев, проникнувших в организм.

Существуют также вредоносные организмы, не являющиеся ни бактериями, ни вирусами. Малярия — инфекционное заболевание, распространенное в тропических и субтропических регионах, ежегодно поражает от 300 до 500 миллионов человек, проживающих в Африке к югу от Сахары, и вызывает от одного до трех миллионов смертных случаев в год, в основном среди детей. Эта болезнь вызывается укусом комара, который впрыскивает в кровь одноклеточного паразита, живущего в комарином кишечнике. Эти паразиты размножаются внутри красных кровяных телец, уничтожая их и вызывая различные болезненные симптомы — анемию, жар, озноб, рвоту.

Мутация гена, кодирующего синтез гемоглобина в красных кровяных тельцах, способна защитить от развития малярии. Процент содержания такого гена намного выше у людей, живущих в тех районах, где малярия является эндемическим заболеванием. Люди, в организме которых есть мутировавший ген (не важно, от кого он достался — от отца или от матери), известный как ген серповидной анемии, имеют пониженный уровень гемоглобина в крови, однако при этом они живут нормальной жизнью и, главное, малярией болеют редко. В то же время люди, в организме которых присутствует не один, а сразу два гена серповидной анемии — и отцовский, и материнский, — страдают от анемии и редко доживают до наступления половой зрелости.

К повышенному иммунитету от заболеваний малярией ведет и еще один вид генных мутаций, который одновременно вызывает расстройство работы кровеносной системы, — эта болезнь известна как талассемия.

В начале 1980-х годов по Великобритании распространилась паника после того, как довольно большое число людей заболело, а некоторые умерли от последствий инфекции, которая прежде встречалась крайне редко. Болезнь вела к деградации мозговых тканей и напоминала симптомами и течением коровье бешенство. Ученые пришли к выводу, что по крайней мере часть заболевших ела мясо, зараженное возбудителем коровьего бешенства.

Микроскопический возбудитель, вызывающий это заболевание, весьма примечателен. Его нельзя отнести к вирусам обычного типа, поскольку он не содержит нуклеиновых кислот, а лишь одни белки. Такого рода микроорганизмы называют прионами; они не только вызывают заболевания, ведущие к разрушению нервной системы, но и вовлечены в длительные процессы воспроизводства красных кровяных телец. Белок приона присутствует в качестве обычного безопасного белка во многих наших клетках. Полагают, что он становится вредоносным и начинает неконтролируемо размножаться только в том случае, если по каким-то причинам его структура меняется, то есть происходит мутация.

Эволюция не позволяет себя обмануть. Наши клетки за время эволюции обзавелись отличной оборонительной системой, известной как адаптивная иммунная реакция, которая включается после того, как отработает врожденная иммунная система. Целью этой реакции является уничтожение вторгшихся инородных тел — бактерий и вирусов, а также вредоносных токсинов, которые те производят. Иммунная система вырабатывает особые белки — антитела, способные связываться с инородными молекулами, которые именуются антигенами. Связывание антител с антигенами приводит к уничтожению антигенов и тех клеток, к которым прикреплены антигены, на самой ранней стадии их существования.

Именно адаптивная иммунная система является основной защитой от всех окружающих человека инфекций. Она может спасти от смерти, которой грозит инфекция, и, что очень важно, вырабатывает иммунитет, способный защитить нас от всех будущих нападений этого вредоносного микроорганизма.

Поскольку клетки нашей адаптивной иммунной системы атакуют гигантское многообразие инородных клеток и молекул, они должны принимать особые меры предосторожности, чтобы не навредить при этом нормальным клеткам собственного тела. Они обязаны в любой момент различать своих и чужих. Иммунная система также не должна атаковать полезные инородные тела — например, молекулы пищи и полезные бактерии, которые живут в кишечнике и помогают переваривать пищу. Когда же вследствие какого-либо сбоя клетки адаптивной иммунной системы ошибаются, развивается аутоиммунная болезнь, при которой антитела атакуют органы собственного тела. Но к счастью, так происходит нечасто — в действительности умение клеток различать своих и чужих просто поразительно.

За адаптивный иммунитет отвечает особый класс белых кровяных телец — лимфоциты. В нашем теле содержится примерно столько же лимфоцитов, сколько и нервных клеток, — то есть миллиарды. Лимфоциты начинают действовать только тогда, когда врожденная иммунная система активизируется из-за вторжения инородных микроорганизмов, которые ищут для себя в теле человека удобное убежище с богатой питательной средой. Лимфоциты адаптивной иммунной системы способны узнавать весьма специфические признаки отдельных вредоносных микроорганизмов и деятельно атаковать незваных пришельцев.

Существует два основных типа лимфоцитов. В-лимфоциты вырабатывают антитела — белки, способные распознавать чужеродные антигены, а затем помечать их особым химическим кодом, чтобы в дальнейшем они были уничтожены другими клетками. Т-лимфоциты защищают тело, убивая инфицированные клетки организма или же побуждая инфицированные клетки освободиться от инфекции. Кроме того, они помогают В-лимфоцитам вырабатывать антитела.

Истоки происхождения этих двух видов лимфоцитов заключаются в кроветворной системе организма, однако происходят они при этом из различных органов тела. Местом зарождения и В-лимфоцитов, и Т-лимфоцитов является костный мозг, однако затем Т-лимфоциты переходят в вилочковую железу, чтобы продолжить там свое развитие и «научиться» не нападать на себе подобных. Те лимфоциты, которым сделать это не удается, подвергаются уничтожению.

По внешним признакам В-лимфоциты и Т-лимфоциты различить невозможно — даже с помощью электронного микроскопа. Их свойства активизируются лишь тогда, когда они входят в соприкосновение с антигеном. Тогда В-лимфоциты выделяют антитела, которые дезактивируют токсины, выделенные бактериями. Когда же антитела связываются непосредственно с бактериями или вирусами, они помечают их, чтобы впоследствии их могли распознать и уничтожить макрофаги. Т-лимфоциты не только убивают зараженные инфекцией клетки, но и содействуют активизации В-лимфоцитов и макрофагов. Благодаря Т-лимфоцитам в организме сохраняется иммунная память о конкретных бактериях и вирусах, что и служит основой вакцинации.

Каждый В-лимфоцит вырабатывает лишь один тип антител. Молекула антитела внедряется в клеточную оболочку, где служит в качестве клеточного рецептора, позволяющего опознавать соответствующий антиген. Затем, когда антиген связывается с этим рецептором, в В-лимфоците начинают вырабатываться и в значительном количестве выделяться необходимые антитела.

Простейшие антитела представляют собой молекулы в форме буквы «Y». Антиген связывается в этом случае с двумя поднятыми вверх «руками». Обычно же антитела — это весьма сложные по структуре белки, имеющие дополнительные участки для связывания с антигенами. Базовая структура наиболее распространенного типа антител состоит из четырех коротких белковых цепочек — двух тяжелых и двух легких (последние легче за счет того, что располагают меньшим числом аминокислот). Концы этих цепочек сходятся вместе, образуя участки для связывания с антигенами. Именно последовательность аминокислот в участках для связывания с антигенами придает антителам неповторимость и разнообразие.

Установлено, что иммунная система способна вырабатывать многие триллионы различных молекул антител. Очевидно, что за выработку каждого отдельного типа антител не может отвечать отдельный ген, поскольку количество вариаций антител намного превышает общее количество генов в организме человека — их насчитывается около 30 тысяч. Вместо этого клетки изобрели весьма умный механизм, основанный на принципе соединения относительно небольшого количества генных сегментов в различных комбинациях, чтобы синтезировать белки антител. Например, комбинация так называемой «легкой цепочки» молекулы антитела определяется определенным участком одной из наших хромосом. В состав этого участка хромосомы входят наборы копий сегментов генов «V» и «J». Прежде чем может быть синтезировано антитело, один из отрезков сегмента гена «V», например отрезок V34, комбинируется с одним из отрезков сегмента гена «J», например J21, и создает последовательность цепочки ДНК, которая станет кодировать изменяемую часть легкой цепочки антитела. После того как эти изменения в структуре В-лимфоцита состоятся, ничего больше в нем меняться уже не будет — этот лимфоцит станет вырабатывать только антитела с отрезками сегментов V34 и J21, которые будут содержаться в легкой цепочке этих антител. В результате схожего процесса образуется и работающая генная матрица для синтеза «тяжелой цепочки» антитела.

Процесс комбинирования сегментов генных участков происходит в каждом развивающемся лимфоците. Эти комбинации способны привести к образованию гигантского разнообразия вариаций антител, исчисляемого миллиардами.

Комбинация молекул в разном порядке с целью придания получающимся образованиям различных функций является крайне важным и мощным инструментом в арсенале клеток.

Лимфоциты постоянно циркулируют в крови, но лишь некоторые из них столкнутся с конкретным антигеном и опознают его. Когда В-лимфоцит встречает антиген, который связывается с его антителом, то он начинает делиться и образует большое количество одинаковых клеток, предназначенных для производства и выделения в кровь этого конкретного антитела. Некоторые из этих клеток сохраняются в организме на протяжении длительного времени, так что если соответствующий антиген объявится вновь, то его сразу встретят готовые к борьбе лимфоциты. Этот механизм лежит в основе принципов вакцинации: иммунная система запоминает взаимодействие с антигеном, определяющим конкретный вредоносный микроорганизм — такой, как, например, вирус гриппа, — и если этот вирус вновь пойдет в атаку, организму будет чем ответить.

В число клеток, которые выявляют проникшие в организм антигены, входят макрофаги, В-лимфоциты и дендритные клетки иммунной системы, исполняющие эту функцию наиболее действенно. Недоразвившиеся дендритные клетки располагаются во всех разделах тканей человеческого организма. Когда они сталкиваются с вторгшейся в организм бактерией, они поглощают либо ее саму, либо продукты ее жизнедеятельности и затем находят и активируют Т-лимфоциты, чтобы те завершили работу по уничтожению инородного микроорганизма. При этом необходимо отметить, что для бактерий и вирусов, которые прячутся в атакуемых Т-лимфоцитами инфицированных клетках, антитела, производимые В-лимфоцитами, не страшны — их защищает оболочка клеток. То есть вся надежда тут на Т-лимфоциты. И в целом они со своей задачей справляются, вынуждая инфицированные клетки совершить самоубийство — апоптоз.

Рядом с Т-лимфоцитами действуют особые клетки, Т-помощники, которые сами бактерии и вирусы не убивают, но способствуют активизации как Т-лимфоцитов, так и макрофагов, побуждая их утилизировать остатки инородных тел, уничтоженных лимфоцитами.

Т-помощники являются объектами нападений вируса иммунодефицита. В вирусе иммунодефицита всего девять генов — ничтожное количество по сравнению с тем множеством проблем, которые этот вирус порождает. Главная же из них — это синдром иммунодефицита, при котором иммунная система начинает давать сбои, позволяя действовать в организме угрожающим жизни инфекциям. Когда вирус иммунодефицита проникает в клетку, он заставляет ее сделать ДНК-копию своих генов, которые затем помещаются среди генов клетки-хозяйки. Если этот вирус проникает в клетку Т-помощника, он доводит ее до истощения и неминуемой гибели. Когда же число Т-помощников в организме становится меньше определенного критического уровня, теряется иммунитет, и организм раскрывается инфекциям и раку. Создать вакцину против этого вируса, которым заражено до одного процента населения планеты, пока не удается.

Назад: 9. Как мы растем и почему мы стареем
Дальше: 11. Как рак поражает организм

Андрей
Спасибо большое, очень хорошо обьяснили.