Действия наподобие почти моментального отдергивания руки от пламени являют собой жизненно необходимый защитный механизм. Те животные, которые не обладают быстротой реакции, позволяющей избежать опасности, неизбежно вымерли бы, предоставив выживать существам вроде нас, у которых такая способность есть и которые передают ее по наследству своим потомкам. Такие действия называются рефлекторными и сильно отличаются от большинства наших повседневных занятий.
Рассмотрим последовательность событий, из которых складывается наша реакция на увиденный стакан лимонада:
1. «Ага, я вижу стакан лимонада»;
2. «Хочу ли я пить?»;
3. «Да, хочу»;
4. «Сейчас мне надо бы отдать команду мышцам руки и пальцам поднести стакан ко рту»;
5. «А теперь не помешало бы открыть рот и выполнить сосательное движение, чтобы лимонад попал в полость рта», и так далее и тому подобное.
Хотя чисто теоретически информация от органов чувств, поступающая в мозг при соприкосновении с огнем, отчасти схожа со зрительной информацией о стакане лимонада, наши реакции при этом существенно различаются. Мы не говорим про себя:
1. «Ага, обжигающе горячее пламя»;
2. «Хочу ли я избежать соприкосновения с ним?»;
3. «Да, хочу»;
4. «Тогда надо бы отдать команду мышцам руки и убрать ладонь подальше от пламени».
Если бы мы каждый раз проходили через все эти стадии, у нас сейчас были бы обугленные культи вместо пальцев.
Мы и другие существа выработали некоторые действия, которые ради экономии времени происходят, минуя процесс принятия решений. Когда речь идет о рефлекторных действиях, путь от внешнего импульса (пламя) до реакции (движение мышц) проходит не через головной мозг, а по гораздо более короткому, «бессознательному» маршруту — через соответствующие отделы спинного мозга. На деле это вовсе не означает, что мы не осознаем происходящего, просто к тому времени, когда мы отмечаем болезненные ощущения от пламени, рука уже оказывается отдернута.
Нервную деятельность живых организмов часто изучают на примере пресноводных раков. В случае неминуемой угрозы у рака срабатывает очень важный рефлекс, который можно было бы назвать «прыжок на хвосте назад», — рак делает мощный гребок хвостом и, отскочив назад, избегает опасности. Мускулы, позволяющие сделать такой прыжок, срабатывают при получении сигнала от гигантского нервного волокна, расположенного у рака в брюшке. Отдельные предостережения от органов чувств об угрозе — будь то всплеск воды или тычок хищника — поступают по разным нервным волокнам к этому огромному волокну (оно называется брюшной нервной цепочкой), а места соприкосновения нервных волокон называются синапсами. Брюшная нервная цепочка, в свою очередь, пересылает информацию мышцам, когда количество импульсов от органов чувств, поступающих одновременно, достигнет критической массы — примерно так внезапный шквал звонков в службу спасения заставляет предположить, что случилось нечто действительно неприятное.
Ученые много лет бились над одним из аспектов этого рефлекса: как все эти сообщения от органов чувств попадают к гигантскому нервному волокну в одно и то же время, если воздействие происходило в самых разных уголках тела рака? Если бы сигналы о раздражении поступали с разными интервалами, брюшная нервная цепочка так никогда и не среагировала бы, поскольку отдельные части тела рака постоянно подвергаются некоему воздействию извне, и только когда все тело испытывает раздражение одновременно, это расценивается как угроза.
Почему это воспринимается как загадка? А потому, что органы чувств у рака очень разной длины. Две его антенны, шевелящиеся в воде, длиннее всего тела, а микроскопические усики, растущие из головы, намного короче. К тому же импульс о раздражении может возникнуть на любом участке антенны, а иногда и на нескольких участках сразу. И если бы все эти сигналы тревоги достигали синапсов в разное время, механизм реакции на раздражитель не был бы запущен. Хотя расстояния, преодолеваемые импульсами, чрезвычайно малы, рефлекс срабатывает за пятидесятую долю секунды, и, если бы одним импульсам пришлось проходить путь вдвое длиннее, чем другим, и тратить на это вдвое больше времени, рак никуда и не отпрыгнул бы.
Так или иначе, ученым все же удалось установить, что импульсы в организме рака синхронизируются и поступают в брюшную нервную цепочку одновременно. Но как это происходит?
Загадка была разгадана в 2008 году. Измерение скорости передачи нервных импульсов показало, что импульсы от кончиков антенн движутся быстрее, чем импульсы, возникшие ближе к месту соединения антенны с телом. То есть если один и тот же всплеск воды одновременно запускает импульсы в разных точках антенны, то сигнал от сенсоров, расположенных ближе к телу рака, плетется медленнее и поджидает, когда его догонят сигналы из более отдаленных участков, с тем чтобы они все смогли достигнуть пункта назначения одновременно.
Из такого объяснения может показаться, будто это сложный процесс, однако на практике синхронизация достигается довольно просто. Скорость движения импульса по нервному волокну связана с диаметром волокна. Нервные волокна в антеннах рака по мере приближения к телу увеличиваются в диаметре, в результате импульсы, подобно застенчивым подросткам, приходящим на вечеринку не по одному, а сразу кучей, прибывают к гигантскому волокну одновременно и приводят в действие рефлекс.