Построить атомную электростанцию стоит в среднем около 1,5 миллиарда фунтов стерлингов. Посреди станции располагается ядерный реактор — тонкое и сложное устройство, снабженное системами контроля, чтобы отслеживать события, занимающие всего лишь долю секунды, и обеспечивать постоянную выработку тепла, которое приводит в действие турбины, производящие электричество. В некоторых типах реакторов исходным веществом в процессе выработки электричества служит уран. Общеизвестно (ведь именно это многие считают существенным недостатком использования атомной энергии), что атомные электростанции производят радиоактивные отходы. В этих отходах содержится непереработанный уран, обладающий весьма характерными свойствами. В общем, если ученые наткнутся на это конкретное вещество, то не ошибутся, предположив, что где-то поблизости находится ядерный реактор, созданный человеком.
Единственным исключением из этого правила стало центрально-африканское государство Габон. Здесь геологи, работавшие на урановом месторождении в местечке Окло, обнаружили в 1972 году образцы урана, обладавшие явными чертами радиоактивных отходов. Но в те времена на всем африканском континенте не было ни одной атомной электростанции. Судя по всему, в этом месте произошло что-то очень странное.
Горные породы с естественным содержанием урана включают в себя атомы урана двух типов: U238 и U235. Преобладают атомы U238, а на долю U235 приходится всего 0,7 %. В ядерном реакторе атомы U235 бомбардируют ядерными частицами под названием «нейтроны». Один нейтрон, попавший в атом U235, выбивает из него еще два или три нейтрона, те бомбардируют другие атомы, из которых вылетают новые нейтроны, и так далее. При соблюдении всех условий запускается цепная реакция, в ходе которой все большее количество атомов распадается, выделяя тепло, которое перерабатывается в энергию. В числе этих необходимых условий — присутствие замедлителя нейтронов (чаще всего это обычная или тяжелая вода; последняя вместо водорода содержит его изотоп дейтерий), который действует как защитная оболочка: не дает излишкам нейтронов вылететь наружу из среды, где происходит реакция, что привело бы к остановке цепной реакции.
Отходы, образующиеся при работе ядерного реактора, содержат куда меньшую долю U235, чем изначальные 0,7 %, ведь большинство атомов было расщеплено в ходе цепной реакции. В горных породах из месторождения в Окло было найдено то же небольшое количество этого изотопа урана, как если бы на этом месте когда-то произошла цепная ядерная реакция. Большинство ученых отказывались в это верить, но, как выяснилось, американский химик японского происхождения Пол Курода (он же Кадзуо Курода, 1917–2001) еще в 1956 году высказал гипотезу о возможности при определенных обстоятельствах протекания цепной реакции с распадом урана в естественной среде. Среди упомянутых обстоятельств фигурировали более высокая доля U235, чем в большинстве ураносодержащих пород, и наличие воды в качестве замедлителя нейтронов.
Ученые, исследовавшие найденные в Окло породы, наконец пришли к заключению, что требуемые условия сложились примерно два миллиарда лет назад, когда доля урана U235 была значительно выше и доходила до 3 %. Сейчас уровень содержания этого вещества намного ниже, потому что, как и все радиоактивные элементы, уран со временем распадается на другие атомы (см. главу «Что ускоряет ускоритель ядерных частиц?»). Скорость распада урана зависит от параметра, получившего название «период полураспада», — это время, за которое данное количество того или иного радиоактивного элемента уменьшается вдвое по сравнению с первоначальной массой. Период полураспада U235 составляет 704 миллиона лет. Итак, несколько периодов полураспада назад, то есть примерно за 2 миллиарда лет до нас, в залежах горных пород содержалось намного больше U235 — а именно как раз то количество, которое вызывает устойчивую цепную реакцию. При этом поблизости была вода — естественный замедлитель, не позволявший беглым нейтронам вырываться на свободу. Вот такое стечение обстоятельств наблюдалось тогда в Окло. Более того, нынешние ученые, детально обследовав местность, установили, что ядерная активность происходила в интересном ритме: это был циклический процесс, который длился миллионы лет. Цепная реакция возникала в горных породах, окруженных водой, атомы при расщеплении выделяли тепло, вода под действием высокой температуры испарялась и лишалась свойств замедлителя, в результате нейтроны разлетались кто куда и цепная реакция прекращалась. Пар конденсировался и снова превращался в воду, та, словно одеяло, укрывала нейтроны, которые все еще выделял уран. Большая их часть теперь не улетучивалась, а оставалась в породе, расщепляя атомы урана и снова запуская цепную реакцию.
В 2004 году группа американских ученых, исследовав обломок скальной породы из Окло шириной всего несколько миллиметров, пришли к выводу, что природный реактор производил тепло примерно в течение получаса, потом «отключался» на два с половиной часа, после чего вновь начинал работать. В таком состоянии он находился в течение 150 миллионов лет, работая со средней мощностью 100 киловатт — примерно такова мощность двигателя обычного автомобиля.
Под конец этих изысканий всплыл один приятный сюрприз — приятный прежде всего для тех, кого беспокоит проблема захоронения радиоактивных отходов. Продукты распада, образовавшиеся в ходе естественной цепной реакции, не вызвали радиоактивного заражения окрестной природы, а спокойно лежали себе на месте, окруженные со всех сторон скальной породой, состоящей из гранита, песчаника и глины. За два миллиарда лет эти отходы, включая наиболее токсичный элемент плутоний, проникли в скалу не более чем на три метра. Взяв в Окло пробы пород, ученые укрепились во мнении, что отходы современных атомных электростанций можно будет точно так же держать под контролем, поместив их в подземные каменные хранилища, — именно подобным образом намереваются решать проблему отходов в будущем.