Книга: Леденящие звезды. Новая теория глобальных изменений климата
Назад: 7. Мы — дети сверхновой?
На главную: Предисловие

8. Программа действий для климатологии

Космические лучи высоких энергий объясняют многие детали рассказанной истории.

Нам нужно яснее представлять себе, что происходило с нашей Галактикой.

Хроника климата Земли тоже требует уточнений.

Наша зависимость от Солнца побуждает нас активнее искать внеземную жизнь.

Климатология должна не вещать и не провозвещать, а приносить пользу.

Летом 2006 года Свенсмарк с помощью своего сына Якоба продолжил вычисления параметров, описывающих судьбу космических лучей в земной атмосфере. Немецкая программа «КОРСИКА» помогла им с большой точностью рассчитать, что ослабление магнитного поля Земли не оказывает сколько-нибудь заметного влияния на климат. Как уже было объяснено во второй главе, космические лучи, рождающие те мюоны, которые проникают в нижние слои атмосферы, обладают столь высокими энергиями, что практически «не замечают» никаких изменений в магнитном поле Земли. Если земной магнетизм и влияет на потоки мюонов, то лишь в пределах 3 процентов от общего количества этих частиц, рожденных космическими лучами.

Расчеты, сделанные с помощью программы «КОРСИКА», также пролили новый свет на иные астрономические и солнечные процессы, которые управляют заряженными частицами и климатом, и эти процессы оставляют далеко позади все вопросы, связанные с магнитным полем Земли. После того как несколько остававшихся загадок были решены и многие сомнения растаяли словно по волшебству, Свенсмарк торжествующе воскликнул: «Доказательств множество; наша история похожа на сказку, воплощающуюся в жизнь».

Космические лучи, порожденные каким-либо близким источником, например, сверхновой (именно о них шла речь в предыдущей главе), — это лишь часть общей картины. В гораздо большей пропорции космические лучи содержат в себе другие высокоэнергетические частицы, рожденные очень далеко: многие из таких частиц, покидая Галактику, тоже попадают на Землю. Расчеты показывают, что если взять две равные дозы тех и других космических лучей, то частицы, испущенные взорвавшейся поблизости сверхновой, породят в атмосфере в три раза больше мюонов, чем фоновые космические лучи галактического происхождения. Подсчет бериллия-10 и других специфических атомов, оставленных космическими лучами относительно слабых энергий, которые «работают» лишь на больших высотах, приведет к заниженной оценке воздействия сверхновой на климат. Есть и обратная сторона той же медали: когда магнитное поле Земли ослабевает, число атомов бериллия-10 резко возрастает, однако на высокоэнергетических мюонах, участвующих в облакообразовании и таким образом влияющих на климат, это изменение земного магнетизма почти не отражается.

Магнитное поле Солнца гораздо более влиятельно, чем земное. Расчеты, сделанные Свенсмарком с помощью программы «КОРСИКА», предсказывают, что вариации в ходе одиннадцатилетнего цикла солнечной активности должны приводить к существенным колебаниям в количестве мюонов, достигающих нижнего, двухкилометрового слоя атмосферы, — отклонения могут составлять до 10 процентов. Это совпадает с тем, что фиксируют датчики мюонов близ уровня моря, и объясняет тот факт, что в течение солнечного цикла изменения в облачном покрове составляют 3–4 процента.

Другая загадка, ответ на которую сейчас уже найден, немного напоминала проблему с магнитным полем Земли. Время от времени намагниченная ударная волна, порожденная большим выбросом на Солнце, вызывает резкое снижение числа заряженных частиц, попадающих на Землю, — на 5–10 процентов, а иногда и больше. Как мы рассказывали во второй главе, такие явления получили название Форбуш-эффектов — в честь Скотта Форбуша, их открывшего, — и они должны были бы приводить к заметным сокращениям земной облачности.

Но, как правило, этого не происходит, и отсутствие видимых связей послужило аргументом против гипотезы о том, что космические лучи влияют на образование облаков. Расчеты, сделанные с помощью программы «КОРСИКА», опять подтверждают, что солнечные ударные волны воздействуют на частицы, образующие мюоны, куда в меньшей степени, чем на общий поток космических лучей. Потому-то Форбуш-эффекты и не влияют напрямую на облака, чего от них можно было ожидать. Тем не менее иногда они все же воздействуют на климат. Так, отзываясь на некоторые события, происходившие на Солнце в 1991 году, облачность на Земле действительно уменьшилась.

Занимаясь экспериментальной и теоретической работой одновременно, Свенсмарк, как человек-оркестр, часто работал дома по вечерам и выходным. Маленькая группа его соратников в Датском национальном космическом центре была в основном занята экспериментом «SKY» и изучала химию облакообразования, вызываемого космическими лучами. Не меньше времени отнимали и встречи, разработка документации и прочие подготовительные мероприятия для приближавшегося эксперимента в Женеве. Весной 2006 года Найджел Марш, бок о бок проработавший со Свенсмарком восемь лет, улетел в Норвегию.

Несмотря на эти трудности и постоянные хлопоты, связанные с поиском денег для проекта, Свенсмарк радовался, потому что видел: его работа, начавшаяся в 1996 году, движется вперед и открывает новые темы, которые привлекают разных специалистов из других стран. Космические лучи и их связь с климатом стали предметом быстро развивающейся, полноценной области науки. Свенсмарк придумал для нее название и предложил создать Центр исследований по космоклиматологии.

 

«Эта новая область научных исследований изучает внеземные события, воздействующие на климат Земли на всех временных шкалах — от долей секунды до миллиардов лет, — и рассматривает влияние этих событий на земную жизнь — в прошлом, настоящем и будущем».

 

Курс научных изысканий, видимый уже сейчас, далеко выходит за рамки традиционного обмена «твердой», вошедшей в учебники информацией между специалистами в различных областях знаний. При каждом повороте этот курс прямо выводит нас к передовым рубежам науки, будь то химия атмосферы, астрономия, геология или биология.

Молекулярный механизм формирования облаков

Любой, кто все еще полагает, что исследование связи между космическими лучами и облаками — экстравагантное отступление от традиционных метеорологии и климатологии, предпринятое несколькими чудаками, должен учесть, что в ЦЕРНе сооружается специальная установка для эксперимента «CLOUD», осуществляемого под руководством Джаспера Киркби. На момент написания этой книги к эксперименту привлечены пятьдесят специалистов из семнадцати институтов Австрии, Дании, Финляндии, Германии, Норвегии, России, Швейцарии, Великобритании и США. Мы будем последними, кто объявит, будто численная весомость — надежный индикатор научной добротности, и все же проект с использованием ускорителя частиц, проект, побудивший принять участие в исследованиях такой широкий круг известных специалистов по атмосфере и солнечно-земной физике, вряд ли можно считать легкомысленным. То, что эксперимент проводится именно в ЦЕРНе, вселяет в ученых особый оптимизм.

 

«Космические исследования уже показали, как „большая наука“, соединяя специалистов разных дисциплин, может самым поразительным образом умножать наши знания об окружающем мире».

 

Эксперимент «CLOUD» начнется в Женеве в 2010 году. Первым делом ученые повторят эксперимент «SKY», поставленный Свенсмарком, но на усовершенствованном оборудовании, сам же проект «CLOUD» рассчитан на несколько лет. Заряженные частицы, разгоняемые ускорителем, будут имитировать космические лучи, и это позволит лучше понять, какую роль играют реальные космические лучи в создании «точек» облакообразования на всевозможных высотах в атмосфере. В группу вошли пытливые и увлеченные исследователи, прекрасно понимающие, что заря космоклиматологии только начинается.

В ходе эксперимента «CLOUD» ученые будут прослеживать электрические и молекулярные события, которые происходят на отрезках времени, измеряемых долями секунды, часами и днями. Казалось бы, это исчерпывает доступный диапазон временных шкал. Однако экспериментаторы надеются расширить диапазон до миллиардолетий: они получат возможность испытать действие космических лучей в специальных смесях газов, которые воспроизведут атмосферу Земли, существовавшую в древнейшие времена, когда ее состав сильно отличался от сегодняшнего.

В небо поднимутся исследовательские аэростаты и самолеты, несущие специальное оборудование для охоты за «точками». Они должны будут подтвердить: то, что исследователи видят в своих лабораторных экспериментах в Копенгагене или Женеве, происходит также «взаправду», на открытом воздухе. Усовершенствование наших представлений об атомных и молекулярных механизмах формирования облаков — это другая задача. Успех придет только тогда, когда исследователи смогут хорошенько обсчитать воздействие космических лучей на образование облаков и их свойства. Причем обсчитать в такой степени, чтобы точно оценить вклад этих лучей в нынешние изменения климата — как в глобальном, так и в региональных масштабах. Вклад, меняющийся в соответствии с колебаниями потоков заряженных частиц, которые вынуждены подчиняться прихотливому магнитному настроению Солнца.

Лучше узнать Галактику

Астрономам также предстоит немало сделать, чтобы отшлифовать свой вклад в космоклиматологию, и речь идет не только о сверхновых Пояса Гулда, которыми завершилась предыдущая глава. Самое интересное начинается, когда мы задаемся вопросом: откуда вообще берутся заряженные частицы, которые разгоняются в космических ускорителях остатков сверхновых? Сейчас распространено мнение, что производство этих частиц достигает пика через сто тысяч лет после взрыва звезды.

Система наземных гамма-телескопов в Намибии, получившая название HESS, — очень чувствительный инструмент. С его помощью были обнаружены несколько неизвестных ранее объектов. Возможно, это газовые облака, подвергшиеся атакам космических лучей, которые были испущены остатками давней сверхновой, только сейчас вступающими в «рабочий режим». Как было объявлено в 2006 году, один яркий участок неба — яркий в гамма-лучевом смысле — лежит почти точно по направлению к центру Млечного Пути. Астрономы, работающие на HESS, полагают, что космические лучи в этом районе Галактики интенсивнее и быстрее тех, что достигают солнечных владений. Джим Хинтон из Института ядерной физики общества Макса Планка в Гейдельберге сообщил, что идентификация этого яркого объекта была лишь первым шагом:

 

«Конечно, мы все еще продолжаем направлять наши телескопы на центр Галактики и будем работать не покладая рук, чтобы точно определить, где находится космический ускоритель. Я уверен, что нас ждет еще много восхитительных открытий».

 

Орбитальные рентгеновские телескопы «Чандра» и «Ньютон» детально исследовали близлежащие и относительно молодые остатки сверхновой. Хотя эти источники, возможно, еще не стали солидными фабриками по производству космических лучей, они уже показывают ударные волны такого типа, который предположительно разгоняет частицы до очень высоких энергий. Космические обсерватории обнаруживают рентгеновское излучение, испускаемое ускоренными электронами. В 2005 году «Чандра» представила первое убедительное свидетельство ускорения в космосе отдельных протонов и атомных ядер.

«Чандра» также устремила свой взор на остатки сверхновой Тихо Браге, вспыхнувшей на земном небе в 1572 году. Эту сверхновую отнесли к типу 1а, а не к тем типам массивных сверхновых, которые полагают ответственными за большую часть космических лучей в Галактике. Пусть так, однако и остатки сверхновой Тихо Браге подбросили свою загадку: астрономы «Чандры» обнаружили, что атомное вещество, выброшенное из звезды, перемещается в космосе с гораздо большей скоростью, чем это предсказывают стандартные теории. Джессика Уоррен из Рутгерского университета (штат Нью-Джерси, США) подозревает, что теории придется менять:

 

«Наиболее вероятное объяснение такому поведению — это то, что значительная часть энергии ударной волны, направленной наружу, уходит на разгон атомных ядер до скоростей, приближающихся к скорости света».

 

Магнитные поля, пронизывающие Млечный Путь и направляющие космические лучи в наши пределы, должны быть точнее отмечены на карте, для того чтобы мы представляли себе, с каким потоком космических лучей придется столкнуться Земле, когда она будет проходить через спиральные рукава. Ключом к магнитному полю может служить направление колебаний радиоволн (говоря более научно, направленное колебание векторов напряженности электрического поля или напряженности магнитного поля), то есть их поляризация. Ученым, занимающимся исследованиями в этой области, поможет мощный радиотелескоп «SKA». В рамках этого глобального проекта, пока окончательно не утрясенного, на огромной площадке в Австралии или Южной Африке будет построено множество радиоантенн, совокупная площадь которых позволит улавливать самые слабые радиосигналы из космоса.

Неясным остается также вопрос о концентрации заряженных частиц в плоском диске Млечного Пути, куда Солнце ныряет и откуда выныривает каждые 32–34 миллиона лет. Движение Млечного Пути в межгалактическом пространстве вызывает ударные волны, порождающие галактические космические лучи. Порой даже высказывались предположения, что именно магнитное поле Галактики экранирует нас от многих частиц, составляющих подобного рода потоки. Если это так, то Земле должно доставаться больше высокоэнергетических космических лучей, когда Солнце поднимается выше или опускается ниже срединной плоскости диска. По мнению Свенсмарка, климатические данные свидетельствуют об обратном, потому что как раз пребывание Солнечной системы вне срединной плоскости галактического диска связано с теплыми периодами на Земле, соответствующими низкому уровню космических лучей.

Приключения Солнца и Земли в их путешествии по Млечному Пути говорят нам о том, что бывают разные ситуации, влияющие на приток космических лучей и, соответственно, на климат Земли. Однако наши представления о том, что делали наши соседи-звезды и вся Галактика в далеком прошлом, все еще очень поверхностны.

Каждый раз, когда Солнце входит в относительно плотное облако межзвездного газа во время своего путешествия по Галактике, происходит сжатие гелиосферы и содержащегося в ней солнечного магнитного поля. Эта картина заставляет предположить, что, проходя через такое облако, Земля подвергается атаке большого количества заряженных частиц, и подтверждение этому находится в виде бериллия-10, попавшего в гренландский и антарктический льды приблизительно 60 тысяч и 33 тысячи лет назад. Столкновения с «Местным пухом» — небольшими плотными газовыми облаками в той области Местного межзвездного облака, по которой Солнечная система летит в настоящее время, — могут уменьшить гелиосферу на четверть ее сегодняшнего диаметра и удвоить интенсивность галактических космических лучей.

Присцилла Фриш из Чикагского университета рассмотрела воздействие газовых облаков на космическую среду, окружающую Землю, и на то, что она назвала «галактической погодой». Сегодня Солнце находится в той области, где межзвездный газ необычайно разрежен. В принципе, реконструкции прошлых столкновений Солнечной системы с газовыми облаками должны бы стать частью общего анализа истории космических лучей в масштабе геологического времени, но, если говорить о практической стороне дела, события, произошедшие более миллиона лет назад, могут быть недоступны для научного поиска. Что же касается будущего, то новые прохождения Солнечной системы через «Местный пух» весьма вероятны. Однако, изучив карту Галактики, Фриш пришла к утешительному выводу: «Траектория Солнца позволяет предположить, что Солнечная система, возможно, не столкнется с большим плотным облаком по меньшей мере еще несколько миллионов лет».

Если говорить о вкладе астрономии в космоклиматологию, то самый важный из намечающихся проектов — это европейский спутник «Гайя», который станет преемником «ГИППАРКОСа», уже составившего карту звездного неба с небывалой доселе точностью. «ГИППАРКОС» скрупулезно измерил расстояния до звезд и тем самым дал астрономам возможность уточнить их возраст, благодаря чему ученые узнали о всплесках звездной рождаемости, а эти «детские бумы», как выяснилось, непосредственно связаны с чрезвычайно холодными периодами «Земли-снежка». Тем не менее «ГИППАРКОС» охватил не так много звезд («всего» миллион), и в его измерениях присутствуют неточности, а это означает, что история звездообразования все еще неполна. Более того, пока нам доступна для анализа лишь та «провинция» Млечного Пути, где находится наша Солнечная система, а это небольшая область диска, сильно удаленная от центра Галактики.

Будучи выведена на орбиту, «Гайя» превзойдет «ГИППАРКОС» в точности и масштабе исследования звезд. Международная команда ученых, собравшаяся в проекте «Гайя», намеревается поведать миру всю историю формирования звезд в Млечном Пути за десять с лишним миллиардов лет его существования — и в центральной перемычке, и в различных кольцах диска, и в звездном гало. Только тогда можно будет получить ясный ответ на вопрос: был ли процесс образования звезд относительно ровным и непрерывным, или же он представлял собой крайне хаотичную цепочку случайных эпизодов? Чем более эпизодичным будет представляться этот процесс, тем шире будет поле поиска тех эффектов, которые мощные потоки космических лучей производят на Земле.

Наградой за долгое ожидание станет для нас более детальное представление о спиральных рукавах. «ГИППАРКОС» составил очень неплохую карту локального рукава Ориона, где сейчас находится Солнце. «Гайя» же отметит все главные рукава на ближайшей к нам стороне Галактики и определит местоположение новорожденных звезд, которые их населяют. Высокоточные измерения дадут наконец ответ на вопросы: с какой скоростью спирали обращаются вокруг галактического центра и что представляет собой орбита Солнца — круг или эллипс. Тогда мы сможем вернее рассчитать, когда Солнце и его планеты посещали спиральные рукава и испытывали на себе воздействие космических лучей, повинных в ледниковых периодах геологического времени.

К сожалению, пока «Гайя» не вышла на орбиту, нельзя ожидать значительного расширения наших знаний о темпах звездообразования на протяжении того срока, что существует планета Земля. Спутник будет запущен не раньше 2012 года, и понадобится не менее пяти лет, чтобы он завершил свою программу. Тем не менее астрофизики уже предоставили нам достаточно информации, включая данные о других спиральных галактиках, чтобы теоретикам было над чем поразмышлять. Например, они могут попробовать разобраться в том, почему столь контрастно поведение галактического магнитного поля и потоков космических лучей в ярких спиральных рукавах, с одной стороны, и в темных областях между ними — с другой.

Другая важная задача — лучше понять гравитационный танец Большого и Малого Магеллановых Облаков и других соседних маленьких галактик, таких как Карлик Стрельца, что гостит сейчас на дальней стороне нашей Галактики. Это помогло бы определить, как и когда схватки с этими галактическими соседями запустили процесс звездообразования в Млечном Пути. Более точные вычисления станут возможны, если ученые научатся делать поправки на невидимую темную материю, значительно увеличивающую массу маленьких галактик. Так как поиск темной материи — одна из важнейших задач астрофизики, это еще один пример того, как прогресс в климатологии будет зависеть от фундаментальных достижений в самых различных областях науки.

Озадачивающие ритмы планеты

Изучив непосредственно Землю и ее геологическую историю, мы смогли обобщить свидетельства, доказывающие, что на протяжении миллиардов лет космические лучи сильно влияли на климат нашей планеты. Но пока мы получили лишь приблизительную картину. Для детального анализа необходимо принять во внимание много иных процессов, также воздействующих на климат. К ним относятся: рост континентов, горообразование, хоровые выступления вулканов, движения континентов, влияющие на океанские течения и околополярные ледовые щиты, изменения в составе атмосферы, геохимические процессы и столкновения Земли с кометами и астероидами.

Есть немало проблем, не дающих ученым покоя. Один из примеров такого рода — это эффект Миланковича, названный по имени сербского инженера, климатолога и геофизика Милутина Миланковича, который в 1920-е годы предложил свое объяснение последних ледниковых периодов. Он показал, что поступление солнечного света в разных областях земного шара и в разные сезоны менялось на протяжении веков. Причина этого, как полагал Миланкович, заключается в том, что гравитационное воздействие других объектов Солнечной системы изменяет положение Земли в космосе и, соответственно, параметры ее орбиты.

В нынешнюю эпоху Антарктика всегда покрыта льдом, следовательно, критические моменты связаны с наступлением и отступлением льда в Северном полушарии. А это зависит (так гласит теория) от того, достаточно ли сильно светит летнее Солнце, чтобы растопить лед, образовавшийся за зиму. Иногда Солнце находится относительно близко и стоит высоко в небе в течение северного лета — тогда ему под силу прогнать снег и лед прочь. Однако низкое Солнце, находящееся дальше, может посмотреть на лежащий снег сквозь пальцы — и тот будет накапливаться год от года, собираясь в ледовые пласты.

Астрономы могут просчитать эти изменения. Ось Земли медленно колышется, как у неустойчиво вращающегося волчка (это называется прецессией), что устанавливает для сезонного солнечного освещения в Северном полушарии ритм примерно в 20 тысяч лет. К тому же Земля покачивается, как корабль, соответственно покачивается и мачта, то бишь ось (такие долгопериодические колебания угла наклона земной оси к плоскости ее орбиты носят название нутации), и это задает еще один цикл — примерно в 40 тысяч лет. Наконец, есть третий, более медленный цикл — приблизительно в 100 тысяч лет, — в ходе которого меняется форма орбиты (так называемые долгопериодические колебания эксцентриситета орбиты), и Земля в разные сезоны оказывается то ближе, то дальше от Солнца.

В середине 1970-х годов исследователи обнаружили, что содержание тяжелого кислорода в кернах, поднятых с морского дна, четко отражает ритмы Миланковича. К этим морским приключениям некоторое время был причастен и Найджел Колдер — ему тогда очень хотелось принять участие в научной экскурсии. В 1976 году американские и английские ученые назвали изменения земной орбиты «ритмоводителем ледниковых периодов». С тех пор подтверждения ритмов Миланковича обнаружились в самых древнейших отложениях, уходящих в прошлое на сотни миллионов лет — даже в те эпохи, когда не было никаких ледниковых периодов. В сущности, геологи наших дней используют эти ритмы как камертон, чтобы настраивать свои временные инструменты. Нет никакого сомнения в их истинности.

С другой стороны, роль эффекта Миланковича в последние ледниковые периоды, с которых началась наша научная история, выглядит менее выразительной или, во всяком случае, более озадачивающей. Самое поразительное, что за прошедший миллион лет переключения с ледниковых интервалов на относительно теплые промежутки и обратно происходили приблизительно каждые сто тысяч лет. Загадка в том, почему довольно слабые изменения в эксцентриситете земной орбиты должны были вызывать столь трагические последствия. Так или иначе, кажется, что влияние солнечного освещения сильно преувеличено.

В климатическом дневнике планеты записаны более короткие интервалы потеплений или похолоданий, и они твердо ассоциируются со значительными изменениями в потоках космических лучей. Эти потепления и похолодания скорее были связаны с магнитной активностью Солнца, чем с его положением в небе. Эффекты, производимые высокой или низкой интенсивностью космических лучей, четче всего прослеживаются в периоды прошлых оледенений и потеплений, а вот нынешняя тепловая интерлюдия в этом смысле не столь типична. Вероятно, Земля могла изменить свою чувствительность по отношению к климатическому воздействию любого рода, будь то солнечное освещение по Миланковичу, космические лучи или любой другой агент.

Следовательно, если мы установим, почему изменилась климатическая чувствительность Земли, мы сможем решить загадку, которую задают нам ритмы планеты. Первый очевидный фактор — это уровень моря, который во времена ледникового периода был крайне низким, так как на создание ледовых покровов на Земле ушло колоссальное количество воды. В те времена огромные площади континентальных шельфов были свободны от воды — в частности, Ла-Манш, Северное, Ирландское, Адриатическое моря, Берингов пролив и значительная территория северной Сибири, называемая Берингией, Южно-Китайское море. Большинство морских путей между островами Индонезии также «пересохли», и ход важных океанских течений был нарушен. Если уровень моря был низкий, это помогает понять, почему мир во время ледниковых периодов был более чувствителен к климатическим воздействиям, а вот объяснить быстрое переключение на теплые условия межледниковья гораздо труднее.

Разобраться в эффекте Миланковича — одна из важных задач в списке дел космоклиматологии. Подойти к решению этого вопроса можно путем создания простых теоретических моделей, в которые будут заложены вариации космических лучей и добавлены некоторые другие процессы, происходящие на земном шаре. Теоретиков должен воодушевить тот факт, что ледниковые периоды последних двух миллионов лет исключительно хорошо изучены геологами: легкодоступные отложения на небольших океанских глубинах, керны, извлекаемые при бурении ледниковых щитов, поверхностные слои земной коры дали ученым массу разнообразных сведений. Но чем глубже вы спускаетесь под землю и чем дальше уходите назад во времени, тем темнее и туманнее становится ваше понимание изменений климата и их возможных причин.

Узнать лучше Землю

Первый известный ледник мелового периода — ледник, которому около 140 миллионов лет, — был открыт в 2003 году. Это открытие положило конец спорам между геологами о том, приходилась ли эпоха царствования динозавров на ледниковую эру. До 1990-х годов не было надежных свидетельств о том, что в древности Земле пришлось столкнуться с ужасным холодом, который полностью заковал ее в ледяной панцирь. Эти важные находки, обнаруженные так недавно, иллюстрируют то, как мало мы знаем о климатической истории Земли. Какие еще сюрпризы припасли для нас древние горы?

В 1960-х началось активное бурение морского дна и ледниковых щитов, благодаря чему мы имеем сегодня большую часть сведений о климате прошлого. Однако древнейшему океанскому дну лишь около 180 миллионов лет, а керны, извлекаемые из ледниковых щитов, покрывают еще более короткие промежутки времени. Возраст старейших горных пород — 3,8 миллиарда лет, таким образом, 95 процентов земной истории могут быть объяснены лишь за счет геологических изысканий на континентах, а эти изыскания сопряжены с колоссальными трудностями.

На суше возможности геологов ограничены: они могут изучать лишь те породы, которые случайно оказались доступными. Это могут быть пласты, обнажившиеся благодаря эрозии, или подповерхностные слои, сквозь которые пробиваются шахтеры, горнопроходчики и нефтеразведчики. На суше очень редко бурят скважины чисто в исследовательских целях. Как астрономы испытывают потребность в создании более мощных телескопов, так и геологам нужны новые возможности, чтобы лучше исследовать земную кору. В 2004 году симпозиум по климату прошлых эпох, организованный Национальным научным фондом США, призвал разработать грандиозную программу континентального бурения, взяв за образец успешный опыт бурения в океане.

Пока суд да дело, можно попытаться обработать уже имеющуюся информацию с помощью простых расчетных моделей, которые соединили бы данные об интенсивности космических лучей со сведениями о других действующих агентах. Уже прозвучало предложение датских ученых расширить временной охват таких моделей и выйти за пределы двух миллионов лет. Начать следует с эпохи фанерозоя (это последние 500 миллионов лет) — здесь связь климата с теми периодами, когда Солнечная система пересекала спиральные рукава, достаточно понятна, — затем перейти к протерозою с его эпизодами «Земли-снежка» и, наконец, добраться до ранних гадея и архея, когда под относительно слабым Солнцем на Земле зародилась жизнь.

Удивительно, что, несмотря на некоторые погрешности, сигналы, оставленные космическими лучами, недвусмысленно звучат во всех геологических данных. Среди агентов, которые могли бы воздействовать на климат, космические лучи — единственные, которые оставляют четкий след при любом временном масштабе, будь то миллиардолетия или месяцы.

Что ж, пусть бремя ответственности теперь лежит на тех, кто хочет ввести в климатическое действо других участников — дрейф континентов, вулканы, падения комет и астероидов, океанские течения, парниковые газы, — но только они должны продемонстрировать, каким образом на разных этапах истории эти участники изменяли или отменяли приказы леденящих звезд.

Жизнь в яростной Вселенной

В начале двадцать первого века одна из важнейших задач для исследователей — поиск жизни на других планетах. Ученые продолжают искать следы живых организмов (существующих ныне или существовавших в прошлом) на Марсе, Европе и других «жизнепригодных» объектах Солнечной системы. Но, помимо этого, астробиологи ищут планеты, которые, подобно Земле, обращаются вокруг других звезд. И Европейское космическое агентство, и Национальное управление США по аэронавтике и исследованию космического пространства вынашивают честолюбивые планы отправить в космос целые флотилии телескопов — реализация этих планов начнется с 2015 года. Телескопы будут «обучены» распознавать инфракрасные лучи, испускаемые водяным паром и другими газами в атмосфере внесолнечных планет, а присутствие этих составляющих может послужить признаком существования там жизни.

Философские вопросы о существовании иной жизни в нашей яростной Вселенной перестают быть уделом умозрительных рассуждений — в наши дни они тесно увязываются с развитием космонавтики, обеспечивающим возможность конкретного поиска жизни вне Земли. Современная астрофизика хорошо знает, что Вселенная устроена парадоксальным образом: чтобы плодиться и размножаться, живым организмам нужны мягкие и теплые условия, но само создание и дальнейшее поддержание таких условий сопряжено с событиями, в высшей степени опасными для жизни, — это противоречие существует от начала времен.

Атомы наших тел были выкованы в колоссальном очаге Большого взрыва и кузницах вспыхивающих звезд. Под воздействием космических лучей при температуре минус 250 градусов Цельсия они слепились в необходимые для жизни соединения, включая воду и моноокись углерода. Сама Земля сформировалась в результате столкновений астероидов, врезавшихся друг в друга на огромных скоростях, а океаны, возможно, произошли из кометного льда. Столкновения Земли с астероидами и кометами, хотя и сильно уменьшившиеся в количественном отношении, время от времени продолжают сеять смерть и разрушения на планете.

Недавно астробиологи попытались оценить роль магнитного поля в создании и поддержании условий жизни на Земле, а также, возможно, и на внесолнечных планетах. В 2005 году Европейское космическое агентство разработало долгосрочную программу изучения и мирного освоения космоса. Доклад об этой программе, озаглавленный «Взгляд во Вселенную: космическая наука в Европе в 2015–2025 годах», был подготовлен под руководством итальянского астрофизика Джованни Биньями. Авторы доклада в самом начале своей работы говорят о необходимости понять, какие физические условия влияют на появление жизни во Вселенной, и подчеркивают магнитную взаимозависимость между звездой и ее системой планет:

 

«Условия жизни на Земле поддерживает медленно эволюционирующее Солнце, которое обеспечивает почти постоянную освещенность планеты, а также защищает нас от высокоэнергетических частиц, поступающих от сверхновых Галактики. Солнечный ветер, срывающийся с горячей солнечной короны, пронизывает всю гелиосферу и выносит вихревые магнитные поля к периферии Солнечной системы, что решительным образом снижает приток космических лучей. Таким образом, чтобы дать полную характеристику условий, необходимых для поддержания жизни, особенно в ее развитой форме, мы должны как можно глубже понять магнитную систему Солнца, ее изменчивость, ее взрывчатый характер, проявляющийся в гигантских выбросах солнечного вещества, и взаимодействия между гелиосферой и магнитосферами и атмосферами планет».

 

Таким образом, вклад космоклиматологии сейчас более чем своевременен, ведь она показала, что во время бурного звездообразования интенсивные космические лучи преодолевают магнитную защиту Солнца. До сих пор жизни удавалось устоять даже в суровые времена «Земли-снежка». Что помогает нашей планете оставаться обителью жизни? Может быть, ее особенное местоположение в Галактике? Или тут работает гелиосфера, окружающая Землю и заботливо охраняющая ее? Если да, насколько необычна наша планета в этом отношении? И произошла ли жизнь на Земле только благодаря отсутствию космических лучей, то есть благодаря сильному солнечному ветру, испускаемому юным Солнцем? Ответы на эти вопросы помогут астробиологам сузить их список планет для поисков внеземной жизни.

Есть еще одна находка, которая рассказывает нам что-то очень важное об условиях жизни на Земле, — пусть даже мы не вполне понимаем, в чем смысл этого рассказа. Существует на удивление тесная связь между крайними значениями интенсивности космических лучей и крайними значениями колебаний в продуктивности биосферы (включая те пики высокой и низкой продуктивности, которые твердо установлены современной наукой) — связь, отчетливо проявляющаяся при подсчете углерода-13. Очевидно, космоклиматологический «стресс» может оказывать как благотворное, так и вредоносное воздействие на продуктивность биосферы. Возьмем для примера цветущие растения. Что вызвало их появление? Может быть, этому способствовало наступление ледников, сопровождавшееся бодрящими погодными условиями, быстрой континентальной эрозией и благодатным распространением питательных веществ?

Ну хорошо, продуктивность биосферы связана с изменениями климата. А какова связь между климатом и биоразнообразием, количеством видов? Ведь биоразнообразие — это еще один показатель благополучия жизни, весьма отличный от биопродуктивности. Как давно известно палеонтологам, исчезновение старых видов и появление новых, более приспособленных к изменившейся окружающей среде, — это свидетельство того, что изменения климата могут подталкивать эволюцию. Но история взаимоотношений земной жизни и космических лучей осложняется вмешательством комет и астероидов. Обрушиваясь на нашу планету, они приводят к колоссальным потерям в биоразнообразии, причем сопутствующие таким катаклизмам массовые вымирания не зависят от состояния климата в ту или иную эпоху. После вымираний появляется большое количество новых видов, пустоты заполняются, и биопродуктивность вновь набирает обороты. Такая жизнестойкость наводит на мысль, что жизнь каким-то образом запрограммирована справляться с кризисами, которые подкидывает нам яростная Вселенная.

Заряженные частицы из космоса также могут влиять на скорость эволюции более непосредственно, вызывая мутации генов. Когда поток космических лучей возрастал особенно сильно, ускоряла ли эволюция свой шаг?

И каковы были последствия этого возрастания для молекулярных часов, которые эволюционисты используют для определения сроков тех или иных событий? Ход часов во многом зависит от незначительных генных мутаций, выявить которые можно путем сравнения измененных и неизмененных участков ДНК, а для этого надо либо непосредственно читать молекулу ДНК, либо изучать небольшие отклонения в белках, создаваемых по указанию генов. Апеллируя к сравнительной геномике и протеомике, космоклиматология выходит на передовой рубеж биологии.

Прочесть руны Солнца

Исследования космических лучей, описанные в этой книге, начались с анализа вариаций в нынешнем поведении Солнца и рассмотрения того, как эти вариации влияют на изменения климата. Европейское космическое агентство выступило за более широкое изучение роли Солнца. В результате этой инициативы родился проект ISAC, в котором объединили свои усилия ученые из Имперского колледжа (Лондон), Шведского института космической физики (отделение в городе Лунд) и Датского национального космического центра (Копенгаген). Солнце проявляет себя трояким образом: оно испускает видимый и невидимый свет, гонит солнечный ветер, воздействующий на геомагнитное поле, и модулирует потоки космических лучей. Цель нового проекта — изучить все аспекты этого тройственного поведения и подсказать разработчикам климатических моделей, как они могут учесть влияние Солнца в компьютерных программах, имитирующих изменения климата.

По мнению Свенсмарка, заряженные частицы, проникающие в нижние слои атмосферы, оказывают большее влияние на климат, чем любые другие «агенты солнечного влияния». И уж куда большее, чем природные силы Земли, будь то извержения вулканов или события Эль-Ниньо, которые придают тепла восточной части Тихого океана и миру в целом.

Связь между космическими лучами, облаками и климатом остается сегодня такой же важной, какой она была на протяжении миллиардов лет. Любая попытка предсказать климат на годы и десятилетия вперед будет, следовательно, опираться на возможность прогнозировать вариации космических лучей. На таких коротких отрезках времени вряд ли можно ожидать серьезных перемен в нашем галактическом окружении, поэтому колебания потоков космических лучей, значимые для земного климата, полностью зависят от изменений в солнечном магнитном поле. И если кто-то хочет составить серьезный климатический прогноз, он должен прежде всего научиться предсказывать поведение нашего светила.

Вся ответственность здесь ложится на плечи физиков, специализирующихся на изучении Солнца. От них и так уже требуют предсказывать солнечную магнитную активность, потому что солнечные бури угрожают здоровью и даже жизни космонавтов, работающих на орбите, нарушают работу спутников в космосе и энергетических и коммуникационных систем на Земле. Те, кто планирует отправить пилотируемый корабль на Луну или Марс, тоже хотели бы уменьшить возможные риски и выбрать более спокойный период.

Попытки предсказать количество солнечных пятен в одиннадцатилетнем цикле предпринимаются в течение долгого времени, но успешными их пока не назовешь. В любом случае связь между числом солнечных пятен и частотой солнечных бурь весьма приблизительна. Например, в сентябре 2005 года, когда число пятен снизилось, приближаясь к солнечному минимуму, небольшая группа солнечных пятен разразилась девятью выбросами в течение одной лишь недели, обозначив тем самым начало одной из самых мощных хромосферных вспышек за последние полвека. Дэвид Хатауэй из Национального центра космических наук и технологий в Хантсвилле (штат Алабама, США) был донельзя удручен этим событием: «Солнечный минимум выглядит странно похожим на солнечный максимум».

Интенсивность космических лучей также весьма вольным образом согласуется с количеством солнечных пятен. Да, в общем и целом, когда солнечных пятен мало, интенсивность космических лучей достаточно высока, а когда пятен много, приток лучей снижен, и тем не менее здесь нет простого соотношения «один к одному». Реакция космических лучей на поведение Солнца может опережать рост или убыль солнечных пятен либо отставать от этих изменений на год и даже больше. В 2000 году продолжался солнечный максимум, и пятен на Солнце было весьма много, а вот количество заряженных частиц, проникающих в атмосферу Земли, снизилось без соблюдения каких бы то ни было «пропорций» — оно упало до уровня 1979 года, когда солнечных пятен было намного больше.

История космических лучей, рассказанная радиоактивными атомами, предполагает, что у Солнца есть долгие циклы в 200 и 1400 лет, связанные с усилением и ослаблением его магнитного щита. Некоторые доблестные эксперты пытаются прочесть будущее по солнечным рунам, прокрутив циклы вперед. Одни утверждают, что солнечное магнитное поле, более чем удвоившее свою силу в течение двадцатого века, будет оставаться сильным до 2020-х годов, а это означает, что приток космических лучей не увеличится, облаков станет еще меньше, и продолжится рост среднемировой температуры. Другие подозревают, что напряженность поля достигла своего пика и вскоре начнет падать.

Кто прав? Ответ туп и печален: никто. Поведение Солнца пока предсказать невозможно. Даже одиннадцатилетний и двадцатидвухлетний солнечные циклы не поняты до конца. Причины более продолжительных циклов ускользают от исследователей, хотя кое-какие идеи и возникают. Например, было высказано предположение, что все дело — в покачиваниях солнечного ядра, вызываемых гравитационным воздействием планет, которые обращаются вокруг нашего светила. Если мы хотим грамотно предсказывать поведение космических лучей и, таким образом, составлять надежные климатические прогнозы, нужно, чтобы физика Солнца — и теоретическая, и наблюдательная — сделала не один шаг вперед.

Как упоминалось в пятой главе, Юджин Паркер из Чикагского университета, пионер исследований солнечного ветра, хотел бы, чтобы число солнцеподобных звезд, за магнетизмом которых налажено постоянное наблюдение, возросло с десяти до тысячи. Это помогло бы лучше понять поведение нашего Солнца и осознать, на какие крайности оно способно. Исследователи уже зафиксировали на других звездах спады магнитной активности, которые можно сопоставить с малым ледниковым периодом на Земле, но вот пики активности, аналогичные той, которая, возможно, происходила на Солнце при внезапных потеплениях в ходе последнего ледникового периода, пока засечь не удалось.

Ученых, стремящихся научиться предсказывать поведение нашего светила, обескураживает то, как трудно оказалось измерить силу его магнитного поля. Это связано с тем, что области над солнечными полюсами мы видим сбоку — и с Земли, и с большинства космических станций. Космический аппарат «Улисс» ходит по околосолнечной орбите над полюсами и измеряет магнитное поле Солнца в космосе, однако на аппарате нет приборов, способных дистанционно измерить напряженность поля на видимой поверхности светила. Этот недостаток будет устранен при последующих космических полетах к Солнцу.

Космическому аппарату ЕКА «Спутник Солнца» (Solar Orbiter) предстоит долгий путь к нашему светилу. В течение семи лет он будет маневрировать в космосе, используя сближения с Венерой, чтобы в конечном итоге выйти на удобную околосолнечную орбиту, откуда инструменты аппарата увидят один из полюсов Солнца под углом 38 градусов (с Земли этот полюс можно увидеть лишь под углом 7 градусов).

Есть также предложение запустить в космос аппарат «Околополярный спутник Солнца» (Solar Polar Orbiter) с солнечными парусами, который обращался бы вокруг Солнца таким образом, чтобы проходить над северным и южным полюсами светила на расстоянии, равном половине дистанции от Земли до Солнца. Это даст физикам возможность впервые воочию увидеть, как работает магнитное поле на видимой поверхности Солнца. Ученые надеются, что с помощью «Околополярного спутника» они смогут лучше предсказывать солнечное поведение.

Вы рано затаили дыхание. «Спутник Солнца» выйдет в космос не раньше 2015 года, а взглянуть на полюс Солнца под хорошим углом ему удастся только в 2020-м. Что касается «Околополярного спутника», то он пока существует лишь в воображении проектировщиков. Хотя ЕКА запланировало начать его разработку в 2015–2025 годы, ученые и инженеры, привлеченные к конструированию аппарата, будут считать, что им повезло, если их солнечный парусник выйдет в плавание вокруг Солнца к концу этого срока.

Между тем переменчивое настроение Солнца слишком плохо изучено, чтобы делать хоть какие-то прогнозы о солнечной активности, а ведь космические лучи должны стать основой серьезных предсказаний изменений климата в двадцать первом веке. В 2005 году шведские ученые сообщили, что следующий солнечный цикл начнется в 2006 году и будет самым слабым за сто лет. Напротив, американский прогноз, сделанный всего лишь на несколько месяцев позже, гласил, что солнечный цикл начнется в 2007 году и будет очень похож на энергичные циклы 1970-х и 1980-х.

В 2006 году британские математики, специализирующиеся на изучении солнечных процессов, иронично прокомментировали эти потуги. Обратив внимание, что гипотезам не хватает твердого физического обоснования, Стивен Тобиас, Дэвид Хьюз и Найджел Вайсс предложили свою догадку:

 

«Конечно, интересно размышлять на тему, в каком направлении двинется солнечный магнетизм в будущем. Последние циклы солнечных пятен были исключительно энергичными… Хорошо известно, что в прошлом после подобных эпизодов высокой активности наступали драматические периоды почти полного прекращения магнитной деятельности, такие как Великий Минимум. Хотя мы не осмелимся предположить, что это случится скоро, было бы явно интересно понаблюдать такой коллапс магнитного поля».

 

Часто говорят, что жить в интересные времена — это проклятие. Великий Минимум, упомянутый здесь, — это минимум Маундера, случившийся триста лет назад и совпавший с самой холодной фазой малого ледникового периода. Похожие приостановки в солнечной деятельности довольно часто вызывали оледенения, описанные в первой главе, как те, что время от времени перекрывали Шнидейохский перевал в Альпах. Так как физика Солнца полна неопределенностей, космоклиматологи, возможно, не должны торопиться со своими выводами о том, что случится в двадцать первом веке.

Конструктивный взгляд на сегодняшнее изменение климата

Так как космические лучи — это главная движущая сила изменений климата, любая попытка предложить публике надежный климатический прогноз на десятилетия вперед будет, с точки зрения науки, поспешностью. Неправильно предсказанное повышение или понижение среднемировой температуры может направить политических деятелей по ложному пути и окажет людям медвежью услугу. Джозеф Смагорински еще в 1970-е годы, на заре компьютерного моделирования климата, предупреждал: «Дать неверный прогноз погоды хуже, чем не дать его вовсе».

С той поры компьютеры стали намного мощнее, однако допущения и методы, используемые в климатических моделях, кажутся даже более туманными. Возможное влияние двуокиси углерода на среднемировую температуру оставлено на личное усмотрение разработчиков моделей. Несмотря на неоднократные заявления о том, что нужно сузить поле прогнозов, предсказания потепления в двадцать первом веке варьируются в широком диапазоне — от робкого повышения среднемировой температуры на 0,5 градуса Цельсия до скачка на целых 6 °C, однако большинство специалистов предсказывают повышение среднемировой температуры на 3–4 градуса Цельсия. Журналисты, борцы за окружающую среду, политики и некоторые ученые из числа наиболее ярых приверженцев ТГП обсуждают последствия потепления в духе: «Близится конец света!»

Уточнить воздействие двуокиси углерода — не то же самое, что посоветовать беззаботно жечь ископаемое топливо. Это клевета, что любой, кто сомневается в неизбежном ужасном глобальном потеплении, льет воду на мельницу нефтяных компаний. На самом деле есть весомые причины экономить природное топливо: снизить уровень вредного для здоровья дыма, сберечь ограниченные топливные запасы нашей планеты, удержать низкие цены на энергетические ресурсы, чтобы помочь беднейшим нациям. Но это не имеет ничего общего с климатом.

Как было отмечено в третьей главе, форсированное образование облаков за счет воздействия космических лучей объясняет важные черты нынешних изменений климата от десятилетия к десятилетию. Пересмотр климатической роли углекислого газа — это уже вчерашний день. Теперь срочная задача климатологии — объяснить, почему воздействие двуокиси углерода оказывается меньше, чем ожидалось.

Разработчики климатических моделей в последние годы двадцатого столетия сосредоточивались именно на углекислом газе, потому что, казалось, без учета этого парникового газа предсказание климата становилось недостижимым. Якобы, если у вас будут правильные цифры — в смысле, если вы хорошенько оцените вероятное увеличение доли углекислого газа в атмосфере и его влияние на температуру, — то легко сможете подсчитать изменения среднемировой температуры и выведете ожидаемые количества осадков. То, что подобные компьютерные модели страдали врожденными дефектами из-за их неумения учитывать фактор облаков, нисколько не умеряло амбиции разработчиков. Однако и поныне долгосрочные климатические предсказания невозможны в принципе, потому что никто не может сказать, что Солнце будет делать завтра или как оно повлияет на земную облачность.

То, что удручает мнимых предсказателей климата, может приободрить мир в целом. И не только потому, что большинство тревожных прогнозов о глобальном потеплении, похоже, были сильно преувеличены. Если мы будем лучше понимать механизм климатических изменений, то сможем дать более осмысленный совет тем, кто живет в беднейших странах мира и для кого никогда не прекращающиеся изменения климата могут означать нищету или смерть.

Если людям, пытающимся совладать с разрушительным наводнением, или сильной засухой, или страшным ураганом, рассказать, что всему виной глобальное потепление, это даст примерно такой же эффект, как если бы жертвам дорожного происшествия предложили выслушать лекцию о международном положении. Подобные слова не ведут к конструктивным действиям. Что касается предсказаний вероятных наводнений, засух или ураганов, то сегодня компьютерные модели, построенные на том, что климатом управляет углекислый газ, выдают для разных регионов до смешного противоречивые предсказания.

Даже если космоклиматологи не будут предпринимать попытки делать долгосрочные прогнозы и ограничатся средне- и краткосрочными, они должны предложить более обоснованный взгляд на причины и тенденции климатических перемен в различных регионах. Их прогноз должен помочь населению этих районов предотвратить или смягчить тяжелые последствия. Точно вычисленные изменения облачности помогут нам заранее знать, каким будет потепление или похолодание, и Антарктика с ее диссидентским поведением — только один пример преимущества такого знания.

Но, пожалуй, самое важное — это научиться предсказывать азиатские муссоны в тропических и субтропических широтах. Яркий летний свет приводит муссоны в действие, и они покрывают огромные пространства пуховым одеялом облаков. Благосостояние миллиардов людей зависит от муссонных дождей. В прошлом выпадение муссонов вело к массовому голоду, а иногда и к исчезновению цивилизаций. Огромное количество ливневых дождей приводит к катастрофическим наводнениям в Индии, Бангладеш и Китае.

Группа китайских ученых под руководством профессора Ван Юнцзиня из Нанкинского университета изучала сталагмиты в одной из пещер южного Китая. Проанализировав слои годового роста сталагмитов, ученые пришли к выводу, что на протяжении последних девяти тысяч лет прослеживается четкая связь между солнечной активностью и влажностью в сезон дождей. Хотя из доклада группы Ван Юнцзиня, сделанного в 2005 году, следовало, что причиной всему — яркость Солнца, данные тем не менее говорят сами за себя. Высокая интенсивность космических лучей ослабляет муссоны, а низкая интенсивность — наоборот, провоцирует щедрые осадки. Если изучить метеосводки за последние пятьдесят лет, то такую же связь между солнечной активностью и летними дождями можно усмотреть не только в Азии, но и в других регионах, даже в подверженной засухам африканской Сахели.

Более определенно высказался К. М. Хиремат, гелиофизик из индийского Института астрофизики в Бангалоре, изучивший вариации индийских муссонов за последние сто тридцать лет. На конференции по международной программе «Жить со звездой», состоявшейся в Гоа в 2006 году, Хиремат вспомнил теорию Свенсмарка о космических лучах и облачности: «Похоже на то, что причинно-следственная связь между выпадением осадков, солнечной активностью и галактическими космическими лучами все-таки существует».

В результате появилась увлекательная задачка о трехсторонней связи между муссонами, Солнцем и событиями Эль-Ниньо, повышающими морские температуры в экваториальной части Тихого океана. Суровые засухи в Индии иногда следуют за событиями Эль-Ниньо, но не всегда, и слепое использование тихоокеанских данных приводит и к ложным тревогам, и к неудачно предсказанным засухам. Метеорологи только выиграют, если примут в расчет Солнце.

И если окажется, как предполагает Хиремат, что циклы влажных и сухих муссонов связаны с двадцатидвухлетним солнечным циклом, тогда можно планировать хозяйственные мероприятия в соответствии с этими данными. Фермеры могли бы решить вопрос с посевами, а оросители — приспособить водоразборные системы к требованиям космических лучей. И для агентств по оказанию помощи пострадавшим от голода или стихийных бедствий совет будет таким же, какой дал Иосиф фараону: запастись едой в урожайные годы, чтобы спастись от неминуемых семи лет голода. Климатическая наука должна быть полезной. Мы бы хотели закончить на этой ноте, а не на длительных размышлениях о продолжающемся парниковом потеплении или похолодании, возможном в том случае, если Солнце вернется к своему угрюмому настроению малого ледникового периода. Желание во что бы то ни было предсказывать будущее еще до того, как процессы полностью осознаны, может сбить ученых с пути. Каждому, кто нетерпеливо ждет предсказаний погоды, следует вспомнить ректора Тюбингенского университета Иоганна Штёфлера, чьи прогнозы были увековечены Вольтером в «Философском словаре».

 

«Один из самых знаменитых математиков в Европе, а именно Штёфлер, процветавший в конце пятнадцатого — начале шестнадцатого столетий и долго трудившийся над реформой календаря, предложенной еще Констанцским собором, предсказал вселенский потоп на 1524 год. Потопу следовало нагрянуть в феврале месяце. Ничего более правдоподобного и быть не могло — ведь Сатурн, Юпитер и Марс сошлись в знаке Рыб! Все народы Европы, Азии и Африки, услышавшие о предсказании, пришли в смятение. Все ожидали потопа, хотя в небесах сияли радуги. Несколько писателей-современников отметили, что жители приморских краев Германии поспешили продать свои земли за бесценок тем, у кого было больше денег и кто оказался не столь легковерен, как они. Все обзавелись лодками на манер ковчега. Тулузский доктор по имени Ориоль распорядился о сооружении большого ковчега — для него самого, его семьи и друзей. Такие же меры предосторожности принимались почти по всей Италии. Наконец наступил февраль, а с неба не упало ни капли воды: никогда ранее февраль не был столь сухим, и никогда ранее астрологи не были столь сконфужены. Тем не менее ни разочарования в них, ни небрежения к ним с нашей стороны не последовало: почти все князья продолжают обращаться к ним за советами».

Назад: 7. Мы — дети сверхновой?
На главную: Предисловие