Изучая историю происхождения и эволюции вещества во Вселенной, мы стремимся заглянуть как можно глубже в ее прошлое, насчитывающее 14 миллиардов лет, и тут же сталкиваемся с тенденцией, требующей разъяснения. В каждом уголке нашего необъятного космоса вещество всегда стремилось объединиться в структурные объекты. Начиная с почти идеально равномерного распределения в пространстве сразу после Большого взрыва, на протяжении всей своей истории частицы вещества тянутся друг к другу в самых разных масштабах, образуя гигантские кластеры и суперкластеры галактик, а также отдельные галактики внутри этих кластеров, отдельные звезды, из миллиардов которых формируются эти галактики, и все остальные, еще меньшие объекты — планеты, их спутники, астероиды и кометы, что вращаются вокруг большей части (если не всех без исключения) звезд.
Чтобы понять происхождение тех объектов, из которых сегодня состоит обозримая Вселенная, нам следует сосредоточиться на механизмах, что когда-то преобразовали рассеянную материю в многочисленные сложные структуры. Если мы хотим получить полноценное описание того, как в космосе смогли сформироваться отдельные структуры, потребуется каким-то образом срастить два свойства реального мира, взаимодействие которых пока ускользает от нас. Как уже говорилось в предыдущих главах, нам нужно понять, как квантовая механика, описывающая поведение молекул, атомов и образующих их частиц, соотносится с общей теорией относительности, которая диктует нам условия и способы взаимодействия между космически огромными объемами вещества и мировым пространством.
Первые попытки создать единый теоретический свод знаний о субатомном малом и об астрономическом большом делал еще Альберт Эйнштейн. С относительно невзрачным успехом они совершаются и по сей день — и так будет еще долго, пока не состоится то самое «великое объединение». Среди всех неизвестностей и загадок, в которых вынуждены жить современные космологи, отсутствие единого свода законов физики для квантовой механики и общей относительности задевает их, несомненно, больше всего. Тем временем эти никак не поддающиеся смешению области физики — наука о малом и наука о большом — равнодушны к нашему невежеству и нашим мучениям: вместо этого они с удивительным успехом продолжают существовать бок о бок внутри одной Вселенной, снисходительно насмехаясь над нашими попытками сделать из них единое целое. Галактике из сотни миллиардов звезд неинтересно, как работают законы физики, согласно которым существуют и взаимодействуют атомы и молекулы, составляющие все ее звездные системы и газовые облака. Столь же равнодушны к этим процессам и более крупные скопления вещества, которые мы называем галактическими кластерами и суперкластерами, которые, в свою очередь, состоят из сотен и даже тысяч самостоятельных галактик. Но ведь самим своим существованием эти крупнейшие структуры во Вселенной обязаны тем самым крошечным квантовым флуктуациям первозданного космоса. Чтобы понять, как могли сформироваться эти структуры, нам нужно приложить максимум усилий с учетом нашей общей сегодняшней неосведомленности и даже невежества, чтобы проследить всю цепочку трансформаций и явлений, весь путь от крохотных частиц, живущих по законам квантовой механики и являющихся ключом к разгадке самого происхождения структуры во Вселенной, до тех громадных объектов, в жизни которых главную роль играет не квантовая механика, а законы и закономерности общей теории относительности.
Таким образом, нам предстоит рассмотреть структурированную Вселенную сегодняшнего дня как итог неких преобразований, через которые прошло все ее содержимое с момента Большого взрыва. Любая попытка нащупать происхождение структур в нашем мире в прошлом невозможна без учета того, в какой Вселенной мы живем в настоящее время. Но даже при выполнении столь скромной задачи астрономы и космологи не избежали ряда фальстартов и ошибок, которые мы (хотелось бы верить!) уже оставили позади, чтобы отныне шагать вперед в ярком свете верных представлений о мироздании.
На протяжении большей части истории современной космологии астрофизики предполагали, что распределение вещества во Вселенной можно охарактеризовать как гомогенное и изотропное. В гомогенной Вселенной любое место выглядит так же, как и любое другое, — как две капли гомогенизированного молока. Изотропная Вселенная выглядит одинаково с любой точки обзора в любой заданный момент времени, простираясь от наблюдателя во все стороны. На первый взгляд может показаться, что это одна и та же концепция, однако это не так. Например, линии долготы на Земле не являются гомогенными, потому что в одних местах они дальше друг от друга, чем в других, при этом в двух точках — на Северном и Южном полюсах — они изотропны, потому что там все линии долготы сходятся. Если встать «сверху» или «снизу» мира, сетка линий долготы будет выглядеть совершенно одинаково, куда бы вы ни посмотрели. Есть и другой пример: представьте себя на вершине идеально ровной конусообразной горы — единственного предмета рельефа в целом мире. С такой «жердочки», куда бы вы ни повернулись, Земля выглядела бы совершенно одинаково. Так же дела обстояли бы, если бы вы жили в самом центре круглой мишени для стрельбы и если бы были пауком в центре идеально симметричной паутины. Во всех этих случаях ваш обзор был бы изотропным, но определенно не гомогенным.
Пример гомогенной, но не изотропной ситуации — стена традиционной кладки из совершенно одинаковых прямоугольных кирпичей, такая, где каждый горизонтальный ряд словно сдвинут вправо или влево на полкирпича относительно предыдущего ряда. В масштабе нескольких расположенных поблизости друг от друга кирпичей и скрепляющего их раствора стена выглядит одинаково, какой ее участок ни выбери — кирпичи да кирпичи, — но взгляд, направленный в какую-либо сторону из разных точек на такой стене, будет натыкаться на разные узоры линий цементного раствора; изотропии не получится.
Самое интересное заключается в том, что математический анализ сообщает: космос может быть гомогенным только в том случае, если он окажется одновременно и изотропным. Еще одна формальная математическая теорема подсказывает нам, что если космос оказывается изотропным в любых трех своих точках, то его изотропия повсеместна. А ведь кто-то отвергает науку математику как «неинтересную» и «неэффективную»!
Хотя космологи и предположили — в первую очередь, именно с эстетической точки зрения, — что распределение вещества во Вселенной гомогенно и изотропно, со временем они приняли эту идею и в качестве фундаментального космологического принципа. Можем назвать его принципом заурядности: с чего бы это одной части Вселенной быть более интересной, чем другой? В малых масштабах расстояний и размеров ошибочность этого заявления сразу бросается в глаза. Мы с вами живем на твердой планете, где средняя плотность вещества составляет 5,5 грамма на кубический сантиметр (фанатам американской системы мер будет понятнее формулировка «340 фунтов на кубический фут»). Средняя плотность вещества на Солнце, типичной звезде нашей системы, составляет 1,4 грамма на кубический сантиметр. Межпланетное пространство между ними при этом отличается существенно меньшей средней плотностью вещества — она примерно в один миллиард раз меньше. Межгалактическое пространство, занимающее большую часть объема всей Вселенной, содержит менее одного атома вещества на каждые десять кубических метров. Здесь средняя плотность вещества еще в один миллиард раз ниже, чем в межпланетном пространстве, — от этих чисел даже начинает казаться, что фразу «Ты довольно плотный!..» следует воспринимать исключительно как комплимент.
Раздвигая горизонты своих научных знаний, астрофизики обратили внимание на то, что галактики вроде нашего родного Млечного Пути состоят из звезд, которые «парят» в практически пустом межзвездном пространстве. Соответственно и галактики тоже объединяются в кластеры, что напрямую нарушает условия как гомогенности, так и изотропии Вселенной. Но оставалась надежда, что стоит астрофизикам нарисовать подробную карту распределения вещества во Вселенной в самых крупных масштабах, как они заметят, что сами по себе галактические кластеры распределены в ней гомогенно и изотропно. Для того чтобы гомогенность и изотропия могли одновременно существовать в конкретно взятом регионе космоса, он должен быть настолько крупным, чтобы внутри него нельзя было обнаружить какие-либо уникальные структуры (или уникальное отсутствие структур). Возьмем какой-то условный фрагмент такого региона: условия гомогенности и изотропии диктуют нам, что общие свойства такого региона должны быть тождественны средним свойствам любого фрагмента из любой части данного региона. Было бы как-то неловко, если бы правая часть Вселенной выглядела совсем не так, как левая, правда?
Какого же размера регион нужно изучить, чтобы обнаружить гомогенную и изотропную Вселенную? Диаметр нашей планеты Земля составляет 0,04 световой секунды. Диаметр орбиты Нептуна примерно равен восьми световым часам. Звезды Млечного Пути образуют собой широкий и плоский диск примерно в 100 тысяч световых лет от края до края. Галактический суперкластер Девы, в который в том числе входит и наш Млечный Путь, достигает в ширину 60 миллионов световых лет. Получается, что подходящий объем, который, возможно, позволит нам обнаружить гомогенность и изотропию во Вселенной, должен превышать собой объем суперкластера Девы. Когда астрофизики занялись исследованием распределения галактик в космическом пространстве, они обнаружили, что даже в столь гигантских масштабах — вплоть до сотни миллионов световых лет — Вселенная местами и временами демонстрирует нам огромные и относительно пустые пробелы в содержимом, окруженные галактиками, которые выстроились вокруг этих «пробелов», по структуре напоминая пересекающиеся листы бумаги или волокна. Нисколько не похожее на бурлящий энергией гомогенный космический муравейник, распределение галактик в таком масштабе напоминает собой большую банную мочалку.
Однако космологам в итоге удалось создать такую карту, в которой гомогенность и изотропия были несомненны. Оказывается, если взять фрагмент Вселенной шириной примерно 300 миллионов световых лет, он будет удивительно похож на любой такой же фрагмент из другого ее региона. Желанный и долгожданный критерий гомогенности был достигнут. Однако в более скромных масштабах все неравномерно распределенное вещество до сих пор выглядит более чем негомогенным и неизотропным.
Три столетия назад Исаак Ньютон задумался над тем, как могло вещество обрести структуру. Его изобретательный ум с легкостью принял концепцию изотропной и гомогенной Вселенной, но в нем не мог не прозвучать вопрос, который многие из нас себе и не задали бы: «Как можно сформировать какую бы то ни было структуру во Вселенной так, чтобы все составляющее ее вещество не собралось при этом в единую целую массу гигантских размеров?» Ньютон считал, что раз мы такого во Вселенной не наблюдаем, значит, она бесконечна. В 1692 году в своем письме к Ричарду Бентли, одному из магистров Тринити-колледжа (или колледжа Святой Троицы) Кембриджского университета, Ньютон выдвинул следующее предположение.
«Мне кажется, что, если бы все вещество нашего Солнца и планет и все вещество Вселенной было бы равномерно рассеяно в небесных глубинах, и если бы каждая частица имела врожденное тяготение ко всем остальным, и если бы, наконец, пространство, в котором рассеяна эта материя, было конечным, вещество снаружи этого пространства благодаря указанному тяготению влеклось бы ко всему веществу внутри и вследствие этого упало бы в середину всего пространства и образовало бы там одну огромную сферическую массу. Однако, если бы это вещество было равномерно распределено по бесконечному пространству, оно никогда не могло бы объединиться в одну массу, но часть его сгущалась бы тут, а другая там, образуя бесконечное число огромных масс, разбросанных на огромных расстояниях друг от друга по всему этому бесконечному пространству».
Ньютон также предполагал статичность своей бесконечной Вселенной — она не расширялась и не сжималась. В такой Вселенной объекты «порождались» силами тяготения, тем притяжением, которым каждый объект, обладающий массой, воздействует на все другие объекты системы. Его заключение о центральной роли гравитации в зарождении структуры пространства актуально и сегодня, хотя перед современными космологами стоит гораздо более тяжелая задача, чем в свое время перед Ньютоном. Вместо того чтобы наслаждаться теми удобствами, которые предлагала бы нам статическая Вселенная, мы вынуждены ни на минуту не забывать о том, что она, начиная непосредственно с момента Большого взрыва, постоянно расширяется, а это естественным образом препятствует скапливанию вещества в единую массу под воздействием гравитации. Задача по преодолению настойчивого противостояния космического расширения каким-либо гравитационным процессам встает еще более остро, когда вспоминаешь, что Вселенная выросла в размерах особенно стремительно в ближайшее после Большого взрыва время — и именно в ту эпоху начали формироваться первые ее структуры. На первый взгляд рассчитывать на то, что в тот период гравитации хватит на формирование огромных объектов из рассеянного газа, глупо. Но каким-то образом гравитации это удалось!
В своем самом нежном возрасте Вселенная разрослась столь быстро, что, если бы она была строго однородной и изотропной в любых своих масштабах, гравитация просто не смогла бы одержать победу над расширением. Сегодня в мире не было бы ни галактик, ни звезд, ни планет или людей, только атомы равномерно заполняли бы собой мировое пространство. В этом скучном и неинтересном космосе не было бы ни одного восхищенного наблюдателя и ни одного достойного восхищения объекта. Но мы живем в веселой и увлекательной Вселенной именно потому, что в эти самые первые мгновения ее существования появились неоднородность и анизотропия вещества. Это как если бы из некоего бульонного кубика планировалось приготовить космический бульон из вещества и энергии самых разных концентраций. Если бы не этот бульонный кубик, стремительно расширяющаяся Вселенная не позволила бы гравитации стянуть хоть сколько-нибудь вещества в единые объекты и позднее сформировать знакомые нам структуры, которые мы сегодня частенько принимаем как должное, не задумываясь об их происхождении во Вселенной.
Откуда взялись эти отклонения — образцы негомогенности и анизотропии, ставшие семенами всей структуры нашей Вселенной? Ответ можно найти в царстве квантовой механики — Исааку Ньютону такое и присниться не могло, но это нужно нам для того, чтобы понять, откуда мы появились в этом мире. Квантовая механика сообщает, что в самых крошечных масштабах сохранить гомогенность и изотропию распределения вещества невозможно. Вместо этого нам предлагаются произвольные колебания в его распределении — компоненты приходят, уходят и возвращаются, и вещество начинает напоминать собой дрожащую массу исчезающих и возрождающихся частиц. В каждый конкретно взятый момент времени в одних регионах космоса частиц было чуть больше, чем в других, то есть плотность вещества там была выше. Из этой противоречащей здравому смыслу и в целом оторванной от реальности фантазии следует все, что мы имеем на сегодня, — все, что существует в мире. У чуть более плотных регионов было больше шансов привлечь к себе дополнительные частицы с помощью силы тяготения, после чего их шансы только возросли… и так до тех пор, пока из соответствующих мест изначально чуть большего скопления вещества не сформировались определенные структуры.
Стремясь отследить формирование структур с эпох, последовавших вскоре за Большим взрывом, мы можем узнать кое-что полезное, если обратимся к уже знакомым нам двум ключевым вехам истории Вселенной: эпохе инфляции, когда она расширилась с выдающейся скоростью, и эпохе разделения примерно через 380 тысяч лет после Большого взрыва, когда реликтовое излучение перестало взаимодействовать с веществом.
Эпоха инфляции длилась где-то между 10–37 и 10–33 секундами после Большого взрыва, в этот относительно короткий срок канва пространства и времени расширялась быстрее скорости света — за одну миллиардную долю одной триллионной одной триллионной доли секунды она выросла от размера в одну сотню миллиардов миллиардов раз меньшего, чем протон, до примерно 4 дюймов в диаметре. Да, наша Вселенная когда-то была размером с грейпфрут. Но что же стало причиной этой инфляции? У космологов есть главный подозреваемый — фазовое превращение, оставившее за собой видимый след в космическом реликтовом излучении.
Фазовые превращения (или переходы) встречаются отнюдь не только в космологическом контексте, например, они часто происходят у нас дома. Мы замораживаем воду, чтобы получить кубики льда, кипятим воду, чтобы получить пар. Сладкая вода способна вырастить сладкие кристаллы на опущенной в нее нитке, а влажное и липкое тесто превращается в пирог, стоит подержать его немного в духовке. Заметили характерную тенденцию? В каждом случае подопытный материал очень сильно различается до и после перехода. Инфляционная модель Вселенной утверждает, что, когда Вселенная была юной, преобладающее в ней энергетическое поле претерпело фазовый переход — один из нескольких, что могли произойти в те далекие времена. Это конкретное событие не только запустило раннее и суперскоростное расширение Вселенной, но и наделило ее особенной тенденцией к переменному формированию более и менее богатых на вещество регионов. Эти переменные колебания впечатались в расширяющуюся канву пространства, создавая что-то вроде чернового наброска для будущего расположения галактик, которым еще только предстояло сформироваться. В лучших традициях Пу-Ба, персонажа из оперы Гильберта и Салливана «Микадо», который с гордостью отследил свое происхождение до «первозданной горстки атомов», мы тоже можем списать свое происхождение и начало формирования всех структур на колебания распределения вещества в субъядерном масштабе, которые имели место быть в эпоху инфляции.
Какие факты можно привести в поддержку этого смелого заявления? Астрофизики не могут заглянуть в прошлое вплоть до первой 0,000 000 000 000 000 000 000 000 000 000 000 001 секунды в истории Вселенной, поэтому им остается лишь основная тому альтернатива — использовать научную логику для того, чтобы связать ту раннюю эпоху с другими, наблюдать за которыми у них возможность есть. Если теория инфляции верна, тогда изначальные колебания, образовавшиеся в ту эпоху (как неизбежное отражение законов квантовой механики, которая утверждает, что небольшие вариации плотности в целом гомогенной и изотропной жидкости время от времени неизбежны), вполне могли стать основой для формирования регионов с различной степенью концентрации вещества и энергии. Мы можем надеяться обнаружить доказательства таких вариаций где-то в реликтовом излучении, служащем авансценой, отделяющей текущую эпоху от первых моментов жизни новорожденной Вселенной и одновременно с этим помогающей связать одно с другим.
Как мы уже знаем, реликтовое излучение состоит из фотонов, образовавшихся в первые несколько минут после Большого взрыва. В самом начале истории Вселенной эти фотоны еще взаимодействовали с веществом, врезаясь в любые атомы, что умудрялись сформироваться, на полной скорости — и так энергично, что атомы распадались обратно под этой бурной атакой. Но непрекращающееся расширение Вселенной, по сути, отобрало у фотонов их энергию. В конце концов в момент наступления эпохи разделения ни у одного из таких фотонов уже не хватало энергии на то, чтобы прерывать движение электронов по своим орбитам вокруг протонов и ядер гелия. С тех самых пор, начиная примерно с 380 тысяч лет после Большого взрыва, атомы непоколебимы, за исключением некоторых локальных нарушений вроде излучения близлежащей звезды. В свою очередь фотоны, продолжающие терять энергию, так и путешествуют по Вселенной, формируя во всем своем множестве то самое фоновое космическое, или реликтовое, излучение.
Реликтовое излучение — это историческое вещественное доказательство, своеобразная фотография того, как выглядела Вселенная в эпоху разделения. Астрофизики научились изучать эту фотографию со все возрастающей точностью. Во-первых, сам факт существования реликтового излучения доказывает, что их базовое понимание устройства и истории Вселенной верно. Во-вторых, они провели многие годы, совершенствуя свои навыки и методики измерения этого самого реликтового излучения, и их замысловатые аэростаты и спутники подарили им карту микроскопических отклонений реликтового излучения от своей общей однородности. Эта карта словно документ, отражающий крохотные в прошлом колебания, размеры которых возрастали по мере расширения Вселенной в течение первых нескольких сотен тысяч лет после эпохи инфляции и доросли — за следующий миллиард лет или около того — до космических масштабов распределения вещества во Вселенной.
Каким бы удивительным это ни казалось, реликтовое излучение — тот самый инструмент, который позволяет нам выявить следы давным-давно исчезнувшей в реальности Вселенной и определить местонахождение вплоть до расстояний в 14 миллиардов световых лет в любом от нас направлении — регионов чуть большей плотности вещества: им-то и предстоит стать галактическими кластерами и суперкластерами. Регионы с плотностью вещества чуть выше среднего оставили за собой чуть больше фотонов, чем регионы с плотностью чуть ниже средней. В то время как Вселенная неумолимо обретала прозрачность, что происходило за счет постепенной утраты фотонами энергии (из-за чего они все хуже взаимодействовали с формирующимися атомами), каждый фотон отправлялся в путешествие, уносясь очень и очень далеко. Наше непосредственное окружение (в космосе) покинуло множество фотонов, которые в течение 14 миллиардов световых лет разбегались от нас во всех направлениях, становясь частью реликтового излучения, которое, возможно, в этот самый момент изучают сторонние наблюдатели — представители далеких неземных цивилизаций на том краю Вселенной, а «их» фотоны, в свою очередь, добравшись до нас, рассказывают нам о том, как обстояли дела в далеком и глубоком прошлом — в те времена, когда наша Вселенная лишь начинала обретать свою структуру.
Начиная с 1965 года, когда впервые было обнаружено реликтовое излучение, астрофизики вот уже более четверти века пребывают в поисках в нем анизотропий. С теоретической точки зрения найти их — острая необходимость, потому что без наличия в реликтовом излучении анизотропий на уровне нескольких сотенно-тысячных долей вся их базовая модель о зарождении структуры потеряет актуальность. Без тех крошечных посевов вещества, о которых говорят отклонения от равномерного распределения реликтового излучения, у нас нет никакого объяснения того, почему мы с вами существуем. И ученым снова повезло! Обнаружение анизотропий состоялось словно по заранее оговоренному расписанию. Как только космологам удалось создать инструменты, способные обнаружить анизотропии на соответствующем уровне, они их и обнаружили: сначала с помощью спутника COBE в 1992 году, а затем и при участии много более точных инструментов, увлекаемых в небо аэростатами, и, конечно же, спутника-зонда WMAP из главы 3. Крошечные разночтения в локальной концентрации микроволновых фотонов, образующих собой реликтовое излучение, определенные со впечатляющей точностью спутником WMAP, несут в себе, как записи в личном дневнике Вселенной, картину космических флуктуаций в то время, когда после Большого взрыва прошло 380 тысяч лет. Типичные колебания приходятся всего лишь на несколько стотысячных долей градуса — выше или ниже средней температуры реликтового излучения, поэтому находить их — словно выискивать едва различимые пятна масла на поверхности пруда диаметром в одну милю, делающие местами воду лишь чуть более плотной на вид. Как бы малы ни были эти анизотропии, их оказалось достаточно для того, чтобы запустить механизм формирования структуры.
На современных картах реликтового излучения более крупные и «горячие» участки соответствуют тем регионам, в которых гравитация смогла преодолеть процесс постоянного расширения Вселенной и собрать в одном месте достаточное количество вещества, чтобы в итоге создать из него галактические суперкластеры. Сегодня эти регионы вмещают в себя около тысячи галактик каждый, а каждая такая галактика состоит из сотен миллиардов звезд. Если мы добавим нужное количество темной материи в такой среднестатистический суперкластер, его суммарная масса достигнет величины, равнозначной массе 1016 Солнц. Соответственно более крупные и «прохладные» участки, лишенные возможности противостоять расширению Вселенной, в итоге превратились в огромные пустоты, практически лишенные каких-либо крупных структур. Астрофизики называют такие регионы «войдами»: сам термин подразумевает, что такой космический участок окружают непустые «не войды». Получается, что гигантские стены и нити галактик, которые мы видим в небе, не только формируют кластеры в местах своего пересечения, но и очерчивают собой самые причудливые с точки зрения геометрии границы космических пустырей.
Галактики не появились просто так, сами по себе, не сформировались полностью в мгновение ока из скоплений вещества, чуть более концентрированных, чем в среднем по Вселенной. Начиная с 380 тысяч лет после Большого взрыва и еще примерно в течение 200 миллионов лет после этого вещество продолжало понемногу накапливаться, но в той Вселенной еще ничего не сияло — ее первым звездам пока только предстояло появиться на свет. В эту темную эпоху космической истории во Вселенной было только то, что она произвела в первые несколько минут своего существования: водород и гелий, а также ничтожное количество лития. Более тяжелых химических элементов (углерода, азота, кислорода, натрия, кальция и т.д.) еще просто не было, и в космосе не нашлось бы ни одной из широко известных сегодня молекул или атомов, которые могли бы поглощать излучение новорожденной звезды. Сегодня в присутствии таких молекул и атомов свет заново сформировавшейся звезды оказывает на них давление, отталкивая от себя огромные объемы газа, который в противном случае упал бы на саму звезду. Подобное отталкивание накладывает естественное ограничение на максимально возможную массу новорожденной звезды: она составляет менее одной сотой доли от массы Солнца. Но когда начали формироваться самые первые звезды, отсутствие таких молекул и атомов, которые могли бы поглотить их сияние, стало причиной того, что этот газ состоял почти целиком из водорода и гелия, чего даже формально не хватало для того, чтобы противостоять звезде. Это позволило сформироваться звездам с многократно большими массами — в сотни и даже тысячи раз тяжелее Солнца.
Звезды с большой массой живут на полную катушку, и чем больше такая звезда, тем короче ее жизненный цикл. Они переводят вещество в энергию с ошеломляющей скоростью, вырабатывая более тяжелые химические элементы и умирая в пламени взрыва еще «совсем юными». Продолжительность их жизни составляет не более нескольких миллионов лет, а это, в свою очередь, менее одной тысячной доли от предполагаемой продолжительности жизни Солнца. Сегодня вряд ли осталась хотя бы одна звезда из той далекой эпохи: эти ранние пташки должны были выгореть многие миллионы лет назад. Более того, сегодня, когда более тяжелые химические элементы встречаются в самых разных уголках Вселенной, формирование новых подобных звезд с огромной массой в принципе невозможно. И действительно — на сегодня ученым не удалось обнаружить и изучить хотя бы одну звезду-гиганта «тех времен». Но мы приписываем им ответственность за то, что когда-то они впервые привнесли во Вселенную все те ее столь знакомые элементы, которые мы сегодня воспринимаем как должное: углерод, кислород, кремний и железо. Хотите называйте это «обогащением» или «загрязнением». Однако отрицать нельзя: жизнь впервые зародилась в тех самых первых звездах-гигантах.
В первые несколько миллиардов лет после эпохи разделения провоцируемый гравитацией коллапс шел довольно азартно: сила тяготения сгоняла вещество в различные скопления самых разных масштабов. Одним из естественных последствий бесперебойной работы гравитации служит формирование сверхмассивных черных дыр, масса каждой из которых в миллионы и даже миллиарды раз больше, чем масса Солнца. Диаметр черных дыр, обладающих подобной массой, соответствует диаметру орбиты Нептуна, и они наносят основательный ущерб своему ближайшему окружению. Газовые облака, которые притягивает к таким черным дырам, стремятся набрать скорость, но не могут, потому что на пути у них встречается слишком много препятствий. Вместо этого они врезаются и впечатываются во все те препятствия на их пути к черной дыре, образуя в своем окружении нечто вроде бушующего водоворота. Но буквально перед тем, как такие облака исчезнут навсегда, все эти столкновения с их раскаленным веществом становятся источниками титанических объемов энергии, в миллиарды раз превышающих сияние Солнца, и все это в пределах Солнечной системы. Громадные потоки вещества и излучения выплескиваются вперед, оставляя след в сотни тысяч световых лет над и под вихреобразными потоками газа, в то время как энергия рвется наружу, стремясь во что бы то ни стало покинуть эту воронку. Пока коллапсирует одно облако, а другое уже ждет своей очереди, подтягиваясь все ближе, яркость свечения всей системы колеблется, демонстрируя то повышенное, то пониженное излучение в течение часов, дней или недель. Если потоки энергии будут направлены прямо на вас, система покажется вам еще более яркой, а вариации в ее свечении — более явными. Это в отличие от тех случаев, когда такие потоки движутся куда-то вбок. Если взять все участки, попадающие под описание в стиле «у нас есть черная дыра, и в нее падает вещество», они окажутся на удивление небольшими и при этом очень яркими по сравнению с той галактикой, что мы можем наблюдать сегодня. Дело в том, что во Вселенной есть еще один тип объектов, чье рождение мы только что проследили на словах, — квазары.
Квазары были обнаружены в начале 1960-х годов, когда астрофизики стали переходить на телескопы с детекторами, достаточно чувствительными для того, чтобы реагировать на невидимое излучение, такое как радиоволны и рентгеновские лучи. Новые портреты галактик теперь могли также включать в себя информацию о том, как выглядят галактики в гораздо более широком диапазоне спектра электромагнитного излучения. Добавьте сюда дальнейшие улучшения в составе и работе фотоэмульсий — и из глубин космоса уже выглядывает целый новый зоопарк различных видов галактик. Наибольший интерес среди них представляли объекты, которые на фотографиях выглядели как обычные звезды, но, в отличие от звезд, обладали исключительно высоким радиоизлучением. В качестве рабочего описания для этих объектов был выбран термин «квазизвездный источник радиоизлучения», быстро сократившийся до одного слова — «квазар». Еще больший интерес вызвало даже не радиоизлучение данных объектов, а их удаленность: как отдельный класс небесных тел они оказались самыми далекими из всех известных нам объектов во всей Вселенной. Будучи столь небольшими и при этом обладая столь высокой светимостью, которая делала их видимыми на немыслимо огромных расстояниях, квазары явно походили на принципиально новый тип небесного объекта. Что значит «небольшими»? Не больше Солнечной системы. Что значит «высокая светимость»? Это значит, что даже самый захудалый и бледный квазар излучает больше света, чем среднестатистическая галактика.
К началу 1970-х годов астрофизики сошлись на том, что двигателем и сердцем квазаров являются сверхмассивные черные дыры, поглощающие за счет своей гравитации все, до чего «могут дотянуться». Такая модель объясняет относительно малый размер квазаров и их яркость, но ничего не рассказывает нам об источниках питания черных дыр. Только в 1980-х годах астрофизики начали проникать в устройство окружающей среды квазаров. Огромная яркость центральных регионов квазара не давала толком рассмотреть его более бледное окружение, однако с помощью новых методик визуального приглушения центрального свечения квазаров астрофизикам удалось обнаружить слабосветящиеся туманности, окружающие некоторые из менее ярких квазаров. По мере совершенствования методик и технологий обнаружения излучения было продемонстрировано, что такая туманность есть вокруг каждого квазара, более того, выяснилось, что некоторые из них обладают спиральной структурой. Оказывается, квазар — это не новый тип объекта, а, скорее, новый тип галактического ядра.
В апреле 1990 года Национальное управление по аэронавтике и исследованию космического пространства (NASA) отправило в космос один из самых дорогих астрономических инструментов в истории человечества — космический телескоп Хаббла. Размером с крупный автобус и управляемый с Земли, телескоп Хаббла занял наблюдательную позицию на орбите за пределами нашей атмосферы, частично искажающей получаемые с Земли картины космоса. Как только астронавты установили линзы, исправляя ошибки в рабочих характеристиках его основного зеркала, телескоп получил возможность заглядывать в ранее не описанные учеными регионы обычных галактик, включая их самый центр. Бесстрастно изучая эти центры, телескоп обнаружил в них звезды, движущиеся с неприлично высокой скоростью — это с учетом воздействия на них гравитации других близлежащих звезд, обнаруживаемых за счет своего излучения. М-м-м… сильная гравитация… малая площадь… да это же черная дыра! Одна за другой, целыми десятками, галактики обнаруживали в самом своем центре подозрительно проворные звезды. Всегда, когда телескопу Хаббла удавалось получить ясный и четкий обзор центра такой галактики, там находились такие звезды.
Теперь уже не кажется невероятным, что внутри каждой огромной галактики находится сверхмассивная черная дыра, которая могла бы служить неким гравитационным зерном, вокруг которого постепенно собирается вещество, в том числе с самых окраин галактики. Но не все галактики в своей молодости представляли собой квазары.
От постоянно растущего списка обычных галактик, в сердце которых обнаруживались черные дыры, исследователи постепенно испытывали все большее изумление: сверхмассивная черная дыра, которая не является квазаром? Квазар, вокруг которого расположилась целая галактика? Отогнать от себя вырисовывающуюся новую картину мироздания становится все труднее. Эта картина повествует о том, что некоторые галактики начинают свое существование в качестве квазаров. Чтобы быть квазаром, который, по сути, представляет собой яростно сияющее ядро в остальном заурядной галактики, системе нужна не только массивная и голодная черная дыра в самом своем центре, но и щедрый запас падающего в нее газа. Как только сверхмассивная черная дыра поглотит всю доступную в ее окружении пищу, оставляя нетронутыми более далекие звезды и газ, занимающие безопасно удаленные орбиты, квазар просто «выключается». И мы получаем смирную галактику, в центре которой спит, сладко посапывая, сытая черная дыра.
Астрофизики нашли и другие новые типы объектов, которые они классифицировали как нечто среднее между квазарами и нормальными галактиками. Их свойства тоже зависят от хулиганского поведения сверхмассивных черных дыр. Иногда потоки вещества, падающего в направлении центральной черной дыры, движутся медленно и однообразно. В других случаях эти потоки «рваные» и эпизодичные. Подобные системы населяют мировой зверинец галактик с активными, но не агрессивными ядрами. За прошедшие годы для разных типов таких объектов сформировались и устоялись определенные названия: слабоионизированные регионы с узкими эмиссионными линиями (англ. LINERs — low-ionization nuclear emission-line regions), сейфертовские галактики, N-галактики, блазары. Все вместе они называются АЯГ, что расшифровывается как «активные ядра галактик». В отличие от квазаров, которые можно обнаружить лишь на огромных расстояниях от нас, АЯГ появляются как далеко от нас, так и относительно близко. Получается, что АЯГ дополняют собой список непослушных галактик-хулиганок. Квазары уже давным-давно «отобедали», и мы можем видеть их лишь тогда, когда заглядываем в далекое прошлое, изучая их излучение. Зато АЯГ отличаются более скромным аппетитом, поэтому для некоторых из них «обед» может затянуться на несколько миллиардов лет.
Классификация АЯГ исключительно на основании их внешнего вида, безусловно, не позволяет составить полноценное представление об их природе, поэтому астрофизики делят АЯГ на категории по спектру и по диапазону их электромагнитного излучения. В период середины и конца 1990-х годов исследователи усовершенствовали свою модель черных дыр и обнаружили, что могут достаточно точно описать практически всех обитателей разношерстного зверинца АЯГ, измерив лишь несколько параметров: массу черной дыры объекта, скорость поглощения ею окружающего материала и наш угол обзора аккреционного диска и его потоков материала. Если бы, к примеру, нам довелось проследить взглядом прямо в направлении такого потока, появляющегося из окрестностей сверхмассивной черной дыры, мы увидели бы гораздо более яркий объект, чем если бы смотрели на него сбоку под принципиально другим углом. Вариации данных трех параметров позволяют описать практически весь впечатляющий диапазон квазаров, который на данный момент знаком астрофизикам, и свести на нет определенные видовые классификации, в обмен предлагая более глубокое понимание того, как формируются и эволюционируют галактики. Сам факт того, что столь многое можно отразить всего лишь несколькими переменными (различия в формах, размерах, светимости и палитре), является незаслуженно невоспетым триумфом астрофизики конца XX века. Да, на это ушло много лет, много часов, проведенных у телескопа, на это были положены усилия множества людей, поэтому в вечернем выпуске новостей об этом не всегда услышишь, но в том, что это самый настоящий триумф, нет ни малейшего сомнения.
Не будем делать поспешных заключений о том, что сверхмассивные черные дыры являются ключом к объяснению всех и вся. Даже несмотря на то что они обладают массой, в миллионы и миллиарды раз превосходящей массу Солнца, их вклад незначителен по сравнению с вкладом тех галактических масс, внутри которых они расположены. Как правило, масса черной дыры составляет менее 1 % суммарной массы крупной галактики. Принимая во внимание существование темной материи или других невидимых нам источников гравитации во Вселенной, мы можем считать такие черные дыры несущественными и не принимать их гравитационное воздействие в расчет. Но когда мы подсчитываем, сколько энергии они производят (речь об энергии, излученной в процессе формирования), то оказывается, что черные дыры играют преобладающую роль в энергетическом обороте формирования галактик. Вся энергия всех орбит всех звезд и газовых облаков, составляющих собой галактику, меркнет в сравнении с энергией, необходимой для существования черной дыры. Без сверхмассивных черных дыр где-то в подвалах мироздания галактики могли вообще никогда не сформироваться. Когда-то сияющая, а ныне невидимая черная дыра, парящая в центре каждой гигантской галактики, является тайной связкой — физическим объяснением того, как могло вещество собраться в сложную систему из миллиардов звезд, вращающихся вокруг общего для них центрального ядра.
Более широкое объяснение принципа формирования галактик основано не только на гравитации сверхмассивных черных дыр, но и на гравитации в более традиционном астрономическом ее понимании. Что соединило миллиарды звезд в одну галактику? Это заслуга гравитации, благодаря которой в одном облаке газа и материи образовывалось до сотен тысяч звезд. Большинство звезд галактики рождается в довольно «демократичных» скоплениях вещества. Более компактные регионы звездообразования остаются различимыми «звездными скоплениями», внутри которых звезды вращаются вокруг центра скопления, прокладывая себе траектории в пространстве и повинуясь хореографии чудесного космического балета, поставленного главным маэстро — гравитацией, которую излучают все остальные звезды внутри скопления. Не забывайте о том, что каждое такое скопление — кластер — само вращается по своей собственной орбите вокруг центра галактики, пребывая в безопасном удалении от разрушительной силы центральной черной дыры.
Внутри самого кластера звезды движутся с разной скоростью, некоторые из них так быстро, что рискуют вообще покинуть систему, «вылетев» из нее. Иногда это действительно происходит — особенно быстрые звезды вырываются из-под влияния гравитации всего кластера и отправляются в свободное плавание по галактике. Такие свободно пасущиеся звезды вместе с так называемыми шаровыми звездными скоплениями, содержащими сотни тысяч звезд каждое, становятся частью сферических гало галактик. Изначально светящиеся, но на сегодня уже лишившиеся своих самых ярких звезд из-за их короткой продолжительности жизни, галактические гало — самые древние видимые объекты во всей Вселенной; их свидетельства о рождении можно проследить вплоть до формирования самих галактик.
Последние в очереди на коллапс, а значит, и последние в очереди на превращение в звезды — это газ и звездная пыль, которые притягивает и удерживает на себе галактическая плоскость. В эллиптических галактиках ее не существует, так как в них весь газ уже давно превратился в звезды. Зато в спиральных галактиках вещество распределено очень «плоско»: для них характерна некая центральная плоскость, внутри которой самые молодые и яркие звезды формируют спиральные нити, что является доказательством крупнейших вибрирующих волн плотного и разреженного газа, сменяющих друг друга и вращающихся вокруг центра галактики. Как горячие кусочки зефира, мягко слипающиеся, если прижать их друг к другу, весь газ в спиральной галактике, который не смог принять участие в создании звездных кластеров, уже упал в направлении галактической плоскости, собрался в единое целое и сформировал собой диск вещества, из которого там будут медленно создаваться звезды. Так было на протяжении последних миллиардов лет, и так будет продолжаться еще многие миллиарды лет: в спиральных галактиках будут формироваться звезды, и каждое поколение будет все богаче на тяжелые химические элементы, чем предыдущее. Эти тяжелые элементы (под ними астрофизики подразумевают все, что тяжелее гелия) были выпущены в межзвездное пространство исходящими потоками вещества от стареющих и слабеющих звезд или попали туда после взрыва какой-нибудь звезды с большой массой, одной из сверхновых. Их существование располагает галактику, а значит, и всю Вселенную к тем химическим процессам, что необходимы для зарождения и поддержания жизни.
Мы описали в общих чертах процесс рождения классической спиральной галактики, взяв за основу эволюционную последовательность, которая повторялась в мире десятки миллиардов раз, создавая галактики самых разных формирований: кластеры галактик, нити и ленты галактик, а также пласты галактик.
Так как, заглядывая в глубину космоса, мы смотрим в прошлое, у нас есть уникальная возможность рассматривать галактики не такими, какие они есть сейчас, а такими, какими они были миллиарды лет назад. Для этого нам достаточно лишь поднять глаза к небу. Однако воплотить это в реальность не так уж просто: расположенные от нас в миллиардах световых лет галактики выглядят ужасно маленькими и бледными, и даже наши лучшие телескопы могут лишь с трудом зафиксировать их общие очертания. Тем не менее астрофизики сделали существенный прорыв в этом направлении за последние несколько лет. Главный успех пришелся на 1995 год, когда Роберт Уильямс, занимавший тогда должность директора Института исследования космоса с помощью космического телескопа при Университете Джона Хопкинса, направил телескоп Хаббла в одном-единственном направлении — примерно в сторону Большой Медведицы — и оставил его записывать наблюдения в течение целых десяти дней. Это считается заслугой в первую очередь Уильямса потому, что Комитет по распределению рабочего времени телескопа, дающий к нему ограниченный доступ на основании одобренных им же заявок на различные космические исследования, изначально отказал Уильямсу в его запросе. Уильямс просил десять дней на изучение региона, специально выбранного за отсутствие в нем чего-либо откровенно интересного, — типичного «скучного» участка неба. Соответственно от его исследований другим текущим проектам не было бы особой пользы, а ведь конкуренция за драгоценные часы у телескопа и так была очень высокой. К счастью, Уильямс, как директор Института исследования космоса, имел право на бронирование времени у телескопа в «личных директорских целях» и не постеснялся воспользоваться этим преимуществом. По итогам проекта Hubble Deep Field получил одну из самых знаменитых фотографий в мире астрономии.
Десятидневное наблюдение, случайно совпавшее с временным прекращением работы американского правительства в 1995 году, подарило миру самый изучаемый и исследуемый снимок в истории астрономии. Усыпанный галактиками и галактикообразными объектами, он предлагает нам своеобразный космический палимпсест, на котором объекты, находящиеся на самых разных расстояниях от Млечного Пути, оставляли свои автографы светом на протяжении многих лет. На фотографии мы видим объекты такими, какими они были, скажем, 1,3 миллиарда, 3,6 миллиарда, 5,7 миллиарда или 8,2 миллиарда лет назад; эпоха каждого объекта определяется его удаленностью от нас. Сотни астрофизиков уцепились за этот кладезь информации, уместившийся на одном-единственном снимке, чтобы получить новые данные о том, как эволюционировали галактики, и о том, как они выглядели в ближайшее время после своего формирования. В 1998 году телескоп добавил к этому снимку еще один — так называемый Hubble Deep Field South. На этот раз в течение десяти дней наблюдения непрерывно велись на другом участке неба — в противоположном направлении от первого, над Южным полушарием. Сравнение двух снимков позволило астрономам убедиться, что результаты первого из них не являются аномальными (например, если бы оба снимка получились совершенно идентичными или же категорически разными вплоть до мельчайших подробностей, мы могли бы заподозрить тут происки потусторонних сил), а также дополнительно скорректировать умозаключения о том, как рождаются и формируются разные типы галактик. После успешного ремонтного обслуживания, в рамках которого телескоп Хаббла был оснащен еще более чувствительными детекторами, Институт исследования космоса с помощью космического телескопа не смог устоять перед тем, чтобы в 2004 году не дать разрешения на проект Hubble Ultra Deep Field, в рамках которого предстояло проникнуть в еще более далекие регионы Вселенной.
К сожалению, самые ранние стадии формирования галактик, которые можно было бы оценить, наблюдая за еще более далекими звездными скоплениями, оказались недоступными даже для телескопа Хаббла — не в последнюю очередь потому, что космическое расширение сместило бо́льшую часть их излучения в инфракрасный диапазон спектра, который остается недоступным для оборудования телескопа. Для того чтобы увидеть эти еще более дальние галактики, астрофизики долго ждали появления преемника телескопа Хаббла — космического телескопа имени Джеймса Уэбба (James Webb Space Telescope, или JWST). Он получил свое название в честь главы NASA времен программы «Аполлон» и был запущен в Рождество 2021 года.
Телескоп JWST оснащен в два с половиной раза большим зеркалом, чем хаббловский, причем оно сделано не из цельного куска стекла, а собрано из 18 зеркал в форме шестиугольных сот, развертывающихся и раскрывающихся в космосе в виде замысловатого механического цветка. Это сделано для того, чтобы сформировать отражающую поверхность, превышающую по площади любую из тех, что вообще можно разместить на борту наших космических ракет. Новый космический телескоп также оснащен богатым инструментарием, превосходящим оснащение телескопа Хаббла, которое было изначально разработано в 1960-х годах, построено в 1970-х и запущено в работу в 1991 году. По этой причине, хотя в 1990-х годах оно и было усовершенствовано, оборудование «Хаббла» все-таки не обладает фундаментальными возможностями вроде умения обнаруживать инфракрасное излучение. Некоторые из подобных возможностей сегодня есть у космического телескопа «Спитцер», запущенного в космос в 2003 году и выведенного из эксплуатации в 2020 году: он вращался вокруг Солнца и располагался гораздо дальше от Земли, чем телескоп Хаббла, что позволяло ему обходить помехи в виде бесчисленных потоков инфракрасного излучения, источником которого является наша планета. По этой же причине телескоп выведен на более удаленную орбиту, чем телескоп Хаббл и телескоп JWST. В точке L2, которая находится в космосе на расстоянии, в четыре раза превышающем расстояние до Луны, и в направлении, точно противоположном Солнцу, JWST сохраняет постоянное положение относительно Земли, вместе с ней вращаясь вокруг нашей звезды. Большое расстояние до точки L2 — 1,5 миллиона километров — и наши текущие возможности не позволяют отправить к телескопу команду техобслуживания, поэтому NASA пришлось приложить все силы, чтобы все получилось с первого раза. После нескольких месяцев испытаний в середине 2022 года JWST начал полноценную работу и готов предоставить человечеству все свои уникальные возможности для дальнейшего изучения Вселенной.
Получение новых знаний о Вселенной станет возможным в первую очередь благодаря способности JWST наблюдать Вселенную в инфракрасном спектре, которой очень не хватает в наборе возможностей Хаббла. Длина волны света, исходящего от объектов, которые удалены от нас на многие миллиарды световых лет, больше длины волны видимого света в 5, 10 или даже 20 и более раз. Значительная часть излучения, испускаемого в видимом и даже в ультрафиолетовом диапазоне, сместилась в инфракрасную область спектра, и для его регистрации требуются специализированные детекторы. Возможность воспринимать инфракрасное излучение позволит телескопу JWST наблюдать эпоху формирования галактик, которая началась менее чем через миллиард лет после Большого взрыва.
В дополнение к этим новшествам в арсенале традиционных методов астрономических наблюдений в последние несколько лет появились также новые средства исследования космоса. Например, в 2015 году благодаря первому обнаружению «гравитационного излучения» было прорублено новое окно во Вселенную, позволяющее наблюдать за ней.
В мире науки слово «излучение» имеет несколько значений. Обычно оно описывает электромагнитное излучение — потоки фотонов, не имеющих массы, разные типы которых несут разное количество энергии. Термин же «ядерное излучение», вносящий некоторую путаницу в определение, включает в себя как фотоны, так и частицы с массой, которые участвуют в ядерных реакциях. От этих видов излучений полностью отличается гравитационное излучение, также называемое гравитационными волнами. Это рябь самого пространства, которая заставляет все, что в нем находится, покачиваться ей в такт. Фотоны путешествуют в пространстве, но гравитационные волны — это само пространство, точнее, ритмическое искривление пространства, которое распространяется со скоростью света. Если бы гравитационные волны не были такими слабыми (напомню, что гравитация считается самой слабой из основных сил природы), мы бы чувствовали, что нас вместе с нашей планетой постоянно качает на волнах интенсивного гравитационного излучения, вызванного самыми разрушительными событиями во Вселенной, которые заставляют пространство дрожать.
Хотя существование гравитационных волн было предсказано еще Эйнштейном, обнаружить их получилось только столетие спустя. Еще в 1916 году, развивая свою общую теорию относительности, которая утверждает, что гравитационные силы искривляют пространство, Эйнштейн пришел к выводу, что источник с сильной гравитацией, движущийся чрезвычайно быстро, может создавать заметные волны в космосе, и эта рябь должна распространяться, теряя силу подобно световым волнам. Но как выделить гравитационные волны на фоне электромагнитного излучения? Нужен был совершенно новый вид приборов.
В своей теории Эйнштейн отметил крайнюю слабость гравитационных волн. Он глубоко сомневался, что их вообще удастся обнаружить непосредственно, и это суждение оставалось верным на протяжении нескольких поколений. Однако в последние десятилетия XX века астрофизики открыли системы, в которых пары «нейтронных звезд» — коллапсирующие ядра звезд, взорвавшихся как сверхновые, — регулярно испускают импульсы радиоволн, вращаясь вокруг общего центра масс. Нейтронные звезды движутся в такой непосредственной близости и на таких высоких скоростях, что гравитационные волны уносят энергию в количествах, достаточных для уменьшения размеров их орбит. Потрясающая регулярность радиоимпульсов и крохотные изменения времени их прибытия позволили измерить изменение размеров орбит нейтронных звезд. А полученные данные опосредованно подтвердили верность предсказания Эйнштейна о существовании гравитационного излучения. Это открытие принесло выполнившим измерения Расселу Халсу и Джозефу Тейлору Нобелевскую премию по физике в 1993 году.
Прошло два десятилетия, прежде чем начала работать система, способная напрямую регистрировать рябь, о которой говорил Эйнштейн. Для этого потребовалось создать совершенно одинаковые детекторы и разместить их в штатах Луизиана и Вашингтон — так была образована лазерно-интерферометрическая гравитационно-волновая обсерватория LIGO. Каждый детектор — это Г-образная система из двух четырехкилометровых туннелей с почти идеальным вакуумом. На концах туннелей установлены зеркала, отражающие лазерные лучи в направлении других зеркал, расположенных в месте соединения туннелей. Таким образом два луча проходят через туннели взад-вперед сотни раз, прежде чем встретиться в центральной точке буквы Г. Такое устройство позволяет ученым обнаруживать различия всего в десять миллиардно миллиардных долей сантиметра в общей длине путей, пройденных лазерными лучами. Согласно расчетам, любые такие крошечные различия, зарегистрированные почти одновременно в двух детекторах, разделенных тысячами километров, могут быть обусловлены настоящей рябью пространства, а не близлежащими возмущениями. В 2018 году после модернизации, улучшившей чувствительность детекторов, в обсерватории LIGO были зафиксированы первые гравитационные волны. Затем к экспериментам присоединились третий детектор, названный VIRGO и расположенный недалеко от города Пиза в Италии, и четвертый, KAGRA, в центре Японии, что позволило ученым регистрировать самые крошечные, обусловленные конечной скоростью света различия во времени при прохождении ряби и определять, откуда приходят гравитационные волны. В 2017 году Райнеру Вайсу и Кипу Торну, специалистам по теории гравитационного излучения, а также Барри Баришу, ключевой фигуре в строительстве LIGO, была присуждена Нобелевская премия по физике.
Основными источниками гравитационных волн (по крайней мере, в масштабах человеческого времени) являются столкновения и слияния массивных и плотных объектов. За годы исследований многочисленное сообщество ученых-физиков, изучающих гравитационные волны, создало мощную теоретическую базу, описывающую, какой узор гравитационных возмущений будут создавать конкретные пары масс по мере их сближения по спирали, прежде чем они внезапно сольются в единый объект. Временные характеристики этих узоров гравитационных возмущений, достигающих каждого детектора и поочередно сжимающих и растягивающих каждый туннель, позволяют с высокой точностью рассчитать массы сливающихся объектов. Кроме того, характерные особенности чередования событий во времени предполагают, что в слияниях должны участвовать объекты с высокой плотностью, такие как черные дыры или нейтронные звезды, и позволяют определить массы сливающихся объектов.
К настоящему времени сеть гравитационно-волновых обсерваторий обнаружила почти 100 событий, в которых участвуют пары сливающихся объектов, чьи массы можно определить. Подавляющее большинство этих объектов настолько велики, что масса каждого в отдельности в несколько десятков раз превышает массу Солнца. Это означает, что в слияниях могут участвовать не только нейтронные звезды, теоретический предел масс которых составляет примерно 2,2 массы Солнца, но и черные дыры, для которых нет такого предела. Фактически астрофизики подсчитали, что типичные черные дыры должны иметь массу от десяти до пятидесяти раз бо́льшую, чем масса Солнца, потому что они образуются в результате коллапса чрезвычайно массивных звезд, потерявших способность противостоять собственной гравитации. Накопленные к настоящему времени данные показывают, что в прошлые эпохи черные дыры сливались намного чаще, а наиболее интенсивное звездообразование происходило около восьми миллиардов лет назад. Именно в ту пору, предполагается, возникли самые массивные звезды, чья жизнь длится всего несколько миллионов лет и чья смерть приводит к появлению самых массивных черных дыр.
Некоторые из гравитационно-волновых событий обусловлены слиянием объектов с массой менее 2,2 массы Солнца, а это означает, что они действительно являются нейтронными звездами, а не черными дырами. В августе 2019 года детекторы зафиксировали необычное слияние двух объектов, чьи массы превосходили массу Солнца в 23 и 2,6 раза. Первый объект, вне всяких сомнений, — это типичная черная дыра, но вот второй... Второй являлся либо самой маленькой черной дырой из всех когда-либо обнаруженных, либо самой большой нейтронной звездой, масса которой превысила расчетный предел. Если, конечно, расчеты верны, что, учитывая определенные сложности, может и не подтвердиться. На примере данного события мы можем убедиться в том, что применение новых методов наблюдения за Вселенной практически всегда приводит к открытию новых граней космоса. А то, что мы можем изучать его с помощью явления, которое впервые удалось наблюдать напрямую всего несколько лет назад, открывает перед нами невообразимые перспективы. Вдруг мы встретили объект, который принадлежит к типу, который астрономическое сообщество еще никогда не наблюдало?
Используя расчеты, основанные на общей теории относительности Эйнштейна, ученые могут по временным характеристикам гравитационного излучения определить не только массы двух сливающихся объектов, но и силу гравитационных волн, созданных в результате слияния. Сравнение наблюдаемой силы гравитационной волны с расчетной позволяет определить расстояние до объектов. Следуя этой логике, в 2017 году исследователи гравитационных возмущений обнаружили волны, исходящие от двух сливающихся нейтронных звезд. Таким источникам астрофизики дали название «стандартные сирены», понимая под ними объекты, расстояние до которых можно определить по гравитационным волнам, а скорость удаления — по гамма-излучению, которое также возникает в результате слияния. Возможность определить расстояние до события и скорость его удаления дает новый способ вычисления постоянной Хаббла. (Совпадение времени прихода гамма-лучей и гравитационных волн также доказывает, что гравитационное излучение распространяется со скоростью света.) Наблюдаемая пока единственная стандартная сирена дала значение постоянной Хаббла, близкое к значению, определенному более известными методами, но с гораздо большей погрешностью, около 15 %. Со временем наблюдение за другими слияниями поможет повысить точность и, следовательно, разрешить космическое напряжение, описанное в главе 6.
Карл Саган любил повторять, что только сделанный из дерева человек не способен испытывать восхищение и уважение ко всему, что на сегодня удалось сотворить космосу. Благодаря новым возможностям наблюдения мы теперь знаем больше, чем Саган в свое время, о той изумительной последовательности событий, что легли в основу нашего существования. Знаем о квантовых флуктуациях в распределении вещества и энергии в масштабе менее одного протона, которые в результате привели к формированию суперкластеров галактик размером до 30 миллионов световых лет от края до края. От хаоса к космосу эта причинно-следственная связь охватывает более 38 степеней десяти в размере и более 42 степеней десяти во времени. Словно микроскопические нити ДНК, которые предопределяют сущность макроскопического биологического вида и уникальные характеристики составляющих его особей, современный образ Вселенной был вплетен в ее канву с самого начала и пронесен сквозь время и пространство. Мы ощущаем это, когда смотрим вверх. Мы ощущаем это, когда смотрим вниз. Мы ощущаем это, когда заглядываем внутрь самих себя.
Джинс Дж. Вселенная вокруг нас. — Л.; М.: Гостехиздат, 1932.
10,16 см.
От англ. void — «пустота».
Англ. термин quasistellar radio source, давший название квазарам (quasar), означает «похожий на звезду источник радиоизлучения».
Англ. Space Telescope Science Institute at John Hopkins University.
С англ. Hubble Deep Field можно перевести как «Глубинное месторождение Хаббла»; термин deep field относится к области добычи нефти, а в данном контексте отсылает к «месторождениям звезд».
Полное название — Инфракрасный телескопический аппарат им. Спитцера (Spitzer InfraRed Telescope Facility, или сокращенно SIRTF).
Laser Interferometer Gravitational-Wave Observatory.