Книга: Мозг и его потребности 2.0. От питания до признания
Назад: Глава 3. Мозг и любопытство
Дальше: Поисковое поведение

Ориентировочный рефлекс

Посмотрите на рисунок среднего мозга в поперечном срезе (рис. 3.1, вверху). В его верхней части расположены холмики четверохолмия (1), которые являются древними зрительными и слуховыми центрами. Сюда непрерывно приходят сигналы от сетчатки и внутреннего уха, и нейроны четверохолмия сравнивают поток внешней информации, в котором мы находимся сейчас, с тем, который был, например, 0,2–0,3 секунды назад. Если что-то изменилось в окружающем мире, запускается тот самый ориентировочный рефлекс. Он заключается в повороте глаз, головы и, если нужно, всего тела в сторону нового сигнала. Чтобы это сделать, четверохолмие передает информацию на глазодвигательные центры (2) и мотонейроны, управляющие мышцами шеи и туловища.



Рис. 3.1. Вверху: поперечный срез среднего мозга человека.

Обозначения:

1 – четверохолмие;

2 – глазодвигательные центры;

3 – покрышка среднего мозга, а также схема нейронной сети, реагирующей на появление нового стимула.

Внизу: ДН – нейрон-детектор новизны, ТИ – тормозный интернейрон





У позвоночных с каждым глазом связано по целых шесть мышц, которые должны очень слаженно работать, вращая глазное яблоко, в том числе для реализации исследовательского поведения. Пять из шести глазодвигательных мышц управляются мотонейронами, расположенными в нижней части среднего мозга, и лишь одна, шестая, – мотонейронами моста. Кроме того, сигнал из четверохолмия уходит на область, которая называется вентральная покрышка, или просто покрышка среднего мозга (3). Это значимая зона, ведь именно здесь находятся нервные клетки, которые отвечают за положительные эмоции, возникающие от того, что мы воспринимаем что-то новое. Увидеть, услышать, каким-то иным образом ощутить что-то, чего мы не видели, не слышали и не ощущали раньше, – важно, интересно и позитивно для организма. Поехать в экзотическую страну и попробовать там какой-то необычный фрукт. Или отправиться за полярный круг и впервые увидеть огни северного сияния – это тоже будет позитивной новизной. Центр этого позитива – вентральная покрышка, и аксоны ее нейронов поднимаются в большие полушария – как в кору, так и в базальные ганглии.

Нейромедиатором при этом является дофамин – важнейшая молекула, отвечающая за наши положительные эмоции.

Ориентировочный рефлекс – самый древний вариант любопытства. Если вы подойдете к аквариуму и постучите по стеклу, то рыбки к вам повернутся и посмотрят, что же за «умник» там стучит. Если кто-то из идущих позади вас прохожих шумно споткнется и чертыхнется, вы обязательно обернетесь узнать, что случилось. И сделаете это раньше, чем осознаете шум. Ориентировочный рефлекс запускается с уровня, который не очень подчиняется большим полушариям. С помощью осознанного контроля его порой непросто блокировать, сохраняя невозмутимость в ситуациях, когда вокруг происходит что-то интересное, важное, необычное. Прямо как те крутые герои боевиков, которые не оборачиваются на взрыв. Помните: это – фантастика.

Четверохолмие – вот так неожиданность – состоит из четырех холмиков: пары верхних и пары нижних. Верхние – самый древний зрительный центр нашего мозга, сюда приходит информация от сетчатки, а нижние, соответственно, – самый древний слуховой центр. Эти центры не анализируют детально зрительные и слуховые сигналы, а просто сравнивают то, что было совсем недавно, с тем, что происходит вокруг нас сейчас. Если зафиксировано изменение, тогда и запускается ориентировочный рефлекс. Кроме зрительных и слуховых сигналов, сюда, в четверохолмие, приходят и другие оповещения от органов чувств. Например, кожная чувствительность: если кто-то вас трогает за плечо, вы повернете глаза и голову, пытаясь понять, это так поздоровался ваш старый приятель или над вами просто пролетала птичка. Или, допустим, когда появляется новый запах, мы начинаем озираться, чтобы собрать больше данных о его источнике.

Сбор новой информации – первейшая цель ориентировочного рефлекса.

Когда мы поворачиваем глаза и голову в сторону непривычного звука, то приводим нашу зрительную и слуховую систему в оптимальное положение. Например, если в углу комнаты кот зашуршал пакетом, нам надо на него посмотреть – тогда сетчатка (а точнее ее центральная зона) детально просканирует изображение. Прямо как у робота. Уши при этом окажутся на равном расстоянии от шуршащего объекта – так, чтобы оптимально считать звуковую информацию, ее частотные характеристики. У многих млекопитающих по несколько мышц связано с каждым ухом, и они очень хорошо ими двигают, определяя источник звука, даже не поворачивая головы. Когда мы окликаем лошадь или собаку, хорошо видно, что их уши, как локаторы, поворачиваются в сторону звука. К тому же каждое ухо способно жить «своей жизнью». Собака может левым слушать хозяина, а правым не упускать того, что творится за забором. У человека же способность двигать ушами сохранилась лишь в рудиментарной форме: пользы уже никакой, но выглядит забавно.

На нейронном уровне четверохолмие неплохо изучено. Еще в прошлом веке здесь были обнаружены нейроны, названные детекторами новизны. Они отвечают за сравнение текущего сигнала с тем, который был «только что» – доли секунды назад (на схеме в нижней части рис. 3.1 обозначены ДН – детекторы новизны). Сенсорный сигнал передается на ДН по двум каналам – напрямую и через тормозной интернейрон (ТИ). Запуск ориентировочного рефлекса происходит при несовпадении этих информационных потоков. «Только что пирожками не пахло, а теперь пахнет, хм… Надо разобраться».

Если обстановка вокруг не меняется и ничто не воздействует на органы чувств (или воздействует равномерно: например, мы привыкли к тому, что соседи наверху уже полчаса стучат молотком), то прямой вход на детекторы новизны и вход через тормозной интернейрон «обнуляют» друг друга: торможение компенсирует возбуждение. Однако если сенсорный сигнал внезапно усилится (разочаровавшись в молотке, соседи достали перфоратор), то в возбуждающем синапсе тут же начнет выделяться больше нейромедиаторов – как мы помним, это «курьеры», доставляющие информацию между нейронами. И при усилении сигнала из внешней среды этих «курьеров» становится больше. Тормозной синапс отреагирует позже, поскольку сигнал на ТИ, как видно на схеме, попадает через цепочку возбуждающих нервных клеток. Каждый синапс – это задержка во времени на 5, 10 и более миллисекунд, поэтому тормозная «копия» немного запаздывает (на то она и «тормозная»). В итоге при резком усилении сенсорного сигнала возбуждение на детекторе новизны превышает торможение. Совсем на короткое время – но его вполне достаточно, чтобы вызвать электрические импульсы на мембране ДН и запустить, собственно, ориентировочный рефлекс.

Мы рассмотрели самый простой вариант нейросети, реагирующий на новизну. Она работает, только если сигнал появляется впервые или резко усиливается, когда мы уже вроде бы привыкли к его присутствию. В четверохолмии есть и более сложные нейронные системы, реагирующие на уменьшение интенсивности сигнала (перфоратор сменился на шуруповерт), на движение его источника в пространстве (соседи перешли в другую комнату) и прочее. Четверохолмие – блок нервной системы, который позволяет изучать любопытство на самом простом уровне: мозг рыб, амфибий. Хотя этот уровень, конечно, свойственен и человеческому мозгу.

Не будем также забывать о том, что фактор новизны важен и для получения положительных эмоций. Вы не всегда успокоите плачущего ребенка конфеткой, а вот новой, даже не очень крутой игрушкой – почти наверняка. Тут уж ему будет не до слез – он моментально переключится на внезапный подарок. Наш мозг очень любопытен, в том числе и на уровне среднего мозга.

Теперь немного подробнее поговорим о глазах. Наши глаза выполняют два основных типа движений – слежения (плавное перемещение взгляда) и саккады (быстрые скачки). В их основе – врожденные программы, на которые «накладывается» обучение в первые месяцы жизни. Этот учебный процесс реализует древняя часть мозжечка – червь, который уже упоминался в первой главе в контексте автоматизации вестибулярных рефлексов.

Анализ движений глаз в ходе научного эксперимента позволяет детально отследить ориентировочный рефлекс «в действии» и понять, как перемещается взор при рассматривании того или иного объекта. Эта информация помогает определить, какие части картинки наиболее важны для человека, а какие – не очень значимы, в какой последовательности считывается визуальная информация, с какой скоростью и так далее. В XX веке для исследования этой темы движения глаз записывали на кино- и видеопленку, а потом анализировали весьма сложным образом. Попробуй-ка, отсмотри и зафиксируй каждое микродвижение на записи! Сейчас же существуют ай-трекеры (eye-tracker) – видеокамеры с адаптированными программами, которые сразу строят схему как слежений, так и саккад, и анализируют их параметры.

Так, можно увидеть, что когда мы разглядываем кого-то в профиль, основное внимание уделяем носу, глазам, губам – то есть субъективно существенным элементам картинки. Довольно интересным образом мы читаем текст: взор прыгает в начало строки (крупная саккада) и дальше не движется непрерывно от буквы к букве, а делает примерно шесть-семь небольших скачков (мини-саккад), за которые строка прочитывается целиком. В эпоху новостных лент в соцсетях мы и вовсе не читаем, а сканируем большинство статей – у копирайтера есть всего один абзац, чтобы завладеть вниманием пользователя, потому что дальше он зигзагообразно «пробегает» глазами по тексту и, если ему скучно, проходит мимо.

Все это любопытно и важно для современных задач, связанных, например, с маркетингом, компьютерной техникой. Так, исследователь может объективно оценить, как пользователь рассматривает страницу рекламного сайта, например, строительной компании. Насколько интересны и привлекают взор ключевые элементы: перечень услуг, цены, контактная информация, отзывы? Верно ли расставлены визуальные якоря? Как долго на них задерживается взгляд? От этих факторов зависит, с какой вероятностью посетитель сайта примет решение, стать ли ему клиентом этой компании.

Оценка процесса рассматривания картинок – окно в бессознательное.

Таким же образом можно исследовать возрастные, половые и социальные различия. Авторы одной из работ обнаружили, что женщины и мужчины по-разному рассматривают рекламу кроссовок, надетых на полуобнаженную девушку. Мужчинам кроссовки оказываются, прямо скажем, «до лампочки», они и не вспомнят название бренда (в маркетинге такое отвлечение от основного рекламируемого объекта называют эффектом вампира). А женщины все-таки смотрят на обувь. Они уделяют ей внимание, почти такое же, что и особенностям фигуры фотомодели, – значит, отдел маркетинга компании решил, что их основная целевая аудитория – женщины.

При выборе одного товара из нескольких покупатель обычно берет тот, на котором изначально остановился его взор. Причем это происходит в течение первой же секунды рассматривания полок. Далее «сканирование» зрительного пространства может продолжаться, но анализ показывает, что в это время высшие центры коры всего лишь обосновывают тот выбор, который уже сделан на бессознательном уровне.

Подобные исследования являются частью весьма интересной современной науки, которая называется нейромаркетинг и существует на стыке экономики, физиологии и психологии.

Назад: Глава 3. Мозг и любопытство
Дальше: Поисковое поведение