Книга: Быстрая математика: секреты устного счета
Назад: Послесловие
Дальше: Приложение Б Приближенное значение кубического корня

Приложение А
Вопросы, которые мне часто задают

Вопрос. Мой ребенок уже сейчас лучший в классе по математике. Не приведут ли ваши методы к тому, что он начнет скучать на уроках? Что делать детям, если они закончат решать примеры за четверть того времени, которое требуется для этого другим?
Вопрос. Если я начну использовать ваши методы, то буду решать быстрее и у меня будет оставаться время, которое чем-то надо занять. Я просто буду скучать на уроках.
Ответ. Ученики, которые применяют данные методы, обожают экспериментировать. Действительно, они решают задания намного быстрее своих одноклассников. Но затем они проверяют свои ответы, применяя метод выбрасывания девяток и одиннадцати. Кроме того, у них остается время на то, чтобы применить альтернативные способы решения и посмотреть, какой способ легче. Речь идет о том, что ученики, использующие данные методы, начинают любить математику и заниматься ею по-настоящему.

 

Вопрос. А как насчет понимания? Если использовать ваш метод для изучения таблицы умножения, он не объясняет ученику, почему 6 на 7 равно 42.
Ответ. Верно, не объясняет. Но этого не делает и никакой другой метод изучения таблицы умножения. Зубрежка также не предполагает, чтобы ученик понимал, почему произведение 6 х 7 равно 42. Мой же подход состоит в том, чтобы научить ученика эффективному и простому методу получения ответа к задаче или примеру на вычисление.
И хотя механизм, посредством которого работает метод, не является очевидным, сам метод может быть вполне доходчиво объяснен к четвертому классу. (Объяснение того, почему работает формула, на которой основан метод, см. в приложении Г.) Любой ученик четвертого класса, полностью проработавший примеры, предлагаемые в книге, должен понять это объяснение.
Что означает произведение 6 х 7, надо объяснять ученикам до того, как требовать от них ответа. Работать по одним правилам недостаточно. Математику надо понимать. Ученики, которые учатся по методам, предлагаемым здесь, как правило, демонстрируют прекрасные результаты в понимании математических законов, а также в меньшей степени, чем другие дети, оказываются скованными рамками общепринятых правил.

 

Вопрос. Если в школе учат другим методам, не приведет ли это к неразберихе в голове моего ребенка?
Ответ. Нет. Предлагаемые здесь методы дополняют то, что дети изучают в школе. Успешные ученики используют иные методы, чем те, кто успевает плохо. Иногда это может смутить учителя, но вряд ли способно причинить какой-либо вред ученику. Большинство данных методов работают на незримом уровне. Речь идет лишь о пользе, которую способно принести ученику их применение. Если ученик не расскажет о том, что он предпочитает использовать некие особые методы решения примеров, об этом никто никогда не догадается.

 

Вопрос. Учителя моих детей требуют, чтобы ученики полностью отображали ход решения в своих тетрадях. Если вычисления выполнять в уме или как-то иначе, как им тогда быть?
Ответ. Ученики обязаны делать то, что требует учитель. Если ученик сдает экзамен, то, естественно, он должен продемонстрировать учителю те знания и умения, которые тот от него ждет.
На обычном уроке, если учитель требует ребенка показать, как он вычислил произведение 13 х 14, ученику достаточно будет сказать: «Я знаю таблицу умножения до двадцати включительно. Мне не нужно вычислять такие произведения на бумаге». Если учитель попросит ученика подтвердить свои слова делом, то ученик покажет, что действительно способен вычислять в уме, и очень быстро, любое произведение чисел от 10 до 20. Ученик также может выполнить мгновенную проверку ответа путем выбрасывания девяток. Учителя это только впечатлит, но никак не раздосадует.

 

Вопрос. Ваш метод не всегда предлагает самое простое решение. Зачем мне его использовать, если существует более простой альтернативный способ?
Ответ. Разумеется, в таком случае вам следует использовать тот способ, который вы считаете более простым. Я предлагаю здесь некоторые весьма простые методы, но за вами остается полное право использовать те, которые, на ваш взгляд, еще проще.
Например, если бы вам надо было перемножить 8 и 16, вы могли бы нарисовать кружки и взять 10 в качестве опорного числа. Я бы так не делал, а, скорее всего, умножил бы 8 на 10, а затем прибавил бы произведение 8 х 6 (80 + 48 = 128). Или сначала перемножил 8 и 8, что дало бы 64, а затем удвоил бы этот результат.
Я нахожу важной частью своих преподавательских подходов предоставление ученикам нескольких методов на выбор. Однажды ученица подошла ко мне и сказала: «Извините, мистер Хэндли, но я больше не пользуюсь вашими методами».
«Почему?» — спросил я.
«Я теперь знаю наизусть произведения чисел и просто вспоминаю нужный ответ».
Как, по-вашему, счел ли я это чем-то предосудительным? Вовсе нет. Ученица лишь сказала мне, что помнит теперь произведения чисел от 15 и выше.
Ученики, овладевшие данными методами, реже решают задачи строго в соответствии с правилами и склонны проявлять оригинальность.

 

Вопрос. Зачем вы учите учеников вычислению всех этих примеров? Для чего нам калькуляторы?
Ответ. Калькулятор не станет думать за вас. Ученики будут гораздо лучше разбираться в принципах вычислений, если возьмут на вооружение представленные здесь методы. Именно принципы, а не голые правила будут их основным средством в поиске решений математических задач.
Когда подобный вопрос мне задают в классе, я прошу учеников достать свои калькуляторы и вычислить с их помощью один пример.
Я предлагаю им вводить цифры и арифметические знаки в том порядке, в каком их называю:
2 + 3 х 4 =
У некоторых детей калькуляторы дают в ответе 20. У других — 14. Правильным ответом является 14.
Почему два разных ответа? Не все калькуляторы «знают», в каком порядке следует выполнять арифметические операции. Например, сначала надо перемножать, а потом складывать или вычитать. Рассматриваемый пример на самом деле следует читать так: «Два плюс трижды четыре».
3 на 4 равно 12, плюс 2 — получаем 14.
Калькулятор не будет за вас думать; он вам не поможет, если вы не знаете основ математики. Наилучшим образом понимать природу чисел и принципы, на которых основаны математические вычисления, помогают подходы и методы наподобие тех, что предлагаются в данной книге.

 

Вопрос. Вы за или против калькуляторов?
Ответ. Калькуляторы — полезные устройства. Они позволяют вам сэкономить много времени и сил. Я очень часто ими пользуюсь.
Ученики, бывает, спрашивают у меня: «Как бы вы перемножили шестнадцать миллионов триста сорок девять тысяч шестьсот восемьдесят девять на четыре миллиона восемьсот шестьдесят две тысячи сто девяносто четыре?» Я отвечаю им, что первым делом полез бы в карман за калькулятором. Ученики, кажется, порой ждут от меня другого ответа. Я часто пользуюсь калькулятором. Когда мне надо сложить колонку чисел, я прибегаю к помощи калькулятора. Часто я перепроверяю на калькуляторе полученный в уме ответ, поскольку знаю, что ошибки всегда возможны.
Я также делаю мысленную прикидку ответа, чтобы проверить, отвечает ли логике полученный на калькуляторе ответ. Последний должен быть того же порядка, что и моя мысленная оценка.
Когда инженерные калькуляторы только начали продавать, я купил самый недорогой. Я обнаружил, что не знаю всех имеющихся в нем функций, и поэтому потратил некоторое время на их детальное освоение. В результате калькулятор помог мне повысить мои знания в некоторых областях статистики, о которых я ранее и не слышал.
Я часто задумывался над тем, чего бы добились гениальные математики прошлого, если бы им в руки попался современный инженерный калькулятор. Уверен, что они нашли бы ему прекрасное применение и, наверное, добились бы гораздо большего.

 

Вопрос. Вы сами придумали эти методы?
Ответ. Да, многие из представленных в книге методов придуманы мною, например метод с кружками и опорным числом. Но умножению и делению с помощью множителей меня научили еще мои учителя начальных классов — мисс Кларк и миссис О’Коннор. Мисс Кларк научила меня методу вычитания и умножению по множителям, а миссис О’Коннор — методу деления в столбик по множителям. Затем на протяжении учебы в школе я освоил много новых методов и приемов вычисления.
В начальной школе я самостоятельно дошел до того, как можно легко и быстро находить сумму и разность дробей, но, поверите ли, я был слишком робким, чтобы озвучить свои идеи перед всем классом.

 

Вопрос. Я додумался до некоторых из этих методов и подходов самостоятельно, успевая всегда лучше других своих одноклассников по математике. Это несправедливо, что вы учите детей тем же вещам, до которых я додумался сам. Поэтому я заслуживаю некоторого преимущества и признания.
Ответ. Это мне высказал один американский школьник. На мой взгляд, обучая детей математике, мы должны учить их наилучшим существующим методам и подходам и как можно лучше объяснять им все связанные с этим нюансы. Не следует оставлять их в качестве задач повышенной сложности для «самых способных» учеников ради самостоятельного осмысления. Почему не дать возможность каждому ребенку преуспевать в математике?

 

Вопрос. Преподавание данных методов превратит неуспевающих учеников в хорошо успевающих. Многие из них потеряют друзей из-за того, что станут лучше учиться. Не приведут ли ваши методы к проблемам во взаимоотношениях детей?
Ответ. Я до сих пор не уверен, был ли вопрос задан серьезно, хотя реакция окружающих как будто бы подтверждала это.
Хочу сказать, что я скорее готов решать проблемы, вызванные тем, что ребенок стал лучше успевать по математике и иным предметам, чем проблемы, связанные с недостатком интеллекта и плохими показателями в учебе.

 

Вопрос. Я — молодой учитель, недавно закончивший институт. Не будет ли у меня проблем, если я начну преподавать данные методы? Что будет, если мои четвероклассники к концу учебного года начнут решать примеры как шестиклассники?
Ответ. Если есть два метода чему-либо научить — легкий и сложный, — кто же станет следовать сложному методу? Если, изучая таблицу умножения для чисел 3 и 4, дети параллельно выучат таблицу умножения для 5, 6, 7, 8 и 9, разве это плохо? Вы учите детей тому, чему вам положено учить, но просто не тем способом, которому вас научили.
Методы, о которых идет речь, попадают в рамки требований системы образования, поскольку позволяют научить детей тому, что от них требуется по программе, и плюс еще немного сверх того. Мой учитель в девятом классе Гарри Форкаст учил нас математике уровня девятого класса с элементами курса математики одиннадцатого. Я обожал изучать математику под его руководством. Я не мог дождаться того момента, когда приду домой и сяду за самостоятельное решение задач. Он учил нас приемам более быстрого вычисления, что являлось частью его методики обучения. Я чувствовал себя как Шерлок Холмс, разгадывающий очередную тайну, когда применял его методы для решения алгебраических задач.
Учителя пятых и шестых классов должны быть рады, что их ученики опережают усвоение материала, и использовать эту возможность, чтобы продвинуть их знания еще дальше. Уверен, что эти методы будут преподавать в школах повсеместно. И я очень надеюсь, что настоящая книга в этом поможет.

 

Вопрос. Я тоже молодой учитель и всегда ужасно боялась математики. Что будет, если я стану учить детей вашим методам и вдруг в какой-то момент запутаюсь и не буду знать, как двигаться дальше? Что, если ученики зададут мне вопрос, а я не смогу на него ответить? Может быть, безопаснее использовать те же методы, что и другие учителя? Не возьму ли я на себя излишний риск, если буду учить детей согласно вашим методам?
Ответ. Конечно, некоторый риск есть, но его можно свести к минимуму. Методы совсем несложные. Начинайте постепенно. Научите детей сначала тому, как вычислять произведения пар чисел до 10 х 10. Пусть как следует поупражняются несколько дней. Затем научите их решать примеры с числами от 90 до 100. По сути, речь идет о тех же произведениях, но в гораздо более интересных примерах. Решая их, они не только еще лучше запомнят таблицу умножения для однозначных чисел (когда будут перемножать числа в кружках), но и для чисел побольше, комбинации цифр, которые дают в сумме 10. Следующим шагом будет изучение простого способа вычисления примеров, когда одно число вычитают из числа больше 10, но меньше 20. 14 — 8 = 4 + 2 = 6 (см. главу 9).
Затем, когда будете обучать их методу перемножения чисел больше 10 и меньше 20, вам придется ввести понятие положительных и отрицательных чисел. Вам не нужно давать подробных разъяснений, просто скажите, что данное понятие более подробно будет объяснено позднее.
Обучая детей данным методам, вы обнаружите, как шлифуется ваша способность работать с числами. У вас укрепится уверенность в своих силах. Скажите своим ученикам, что вы изучаете эти методы вместе с ними, что сделает методику более интересной для учеников.
Назад: Послесловие
Дальше: Приложение Б Приближенное значение кубического корня