Книга: Быстрая математика: секреты устного счета
Назад: Приложение В Проверка делимости на число
Дальше: Приложение Д Выбрасывание девяток: секрет метода

Приложение Г
В чем секрет метода

Умножение при помощи кружков

 

В чем секрет данного метода?
Во-первых, позвольте мне объяснить это «по-простому».
Найдем произведение 99 х 85.
Стандартный способ заключается в следующем.
99 — это почти 100, поэтому умножим на 100 и вычтем 85.
85 х 100 = 8500
Теперь мы должны вычесть 85. Каким простым способом это можно сделать? Вычесть 100 и прибавить 15.
8500 100 =
8400  8400 + 15 = 8415
Не похоже ли это на наш метод с кружками?
Решая тот же пример (99 х 85) с кружками, мы вычитаем 1 из 85, получая 84, и умножаем на 100, что дает 8400. Затем, поскольку мы вычли одну сотню, мы один раз прибавляем к результату 15.
Вычисляя произведения 98 х 85, мы могли бы умножить на 100, а затем дважды вычесть 85.
85 х 100 = 8500
Вычтем дважды по 85 из полученного результата. Как легче всего это сделать?
Вместо того чтобы находить сумму 85 + 85 и вычитать ее из 8500, отнимем дважды по 100 и прибавим также дважды по 15. Вычитание 200 из 8500 дает нам 8300.
Чтобы не прибавлять сначала 15, а затем опять 15, просто вспомним, что 2 на 15 равно 30, и прибавим сразу 30. В ответе получаем 8330.
Можно распространить данное рассуждение на произведение чисел меньше 10.
9 х 8 =
Произведение 10 х 8 дает 80, после чего вычитаем 8 и получаем 72. С помощью кружков решение выглядит следующим образом:

 

 

Вычислим еще одно произведение:

 

 

Если умножить 10 на 7 и затем вычесть произведение 2 х 7 из полученного результата, то можно увидеть связь между обоими методами. Произведение 10 х 7 равно 70. Легкий способ вычесть дважды по 7 состоит в том, чтобы отнять дважды по 10, а затем прибавить дважды по 3.
Это то, что я назвал «простым» способом объяснить, почему метод перемножения с помощью кружков работает. Даже ученики начальной школы поймут приведенные рассуждения — особенно как следует потренировавшись в решении примеров, предложенных в настоящей книге.

 

Алгебраическое объяснение

 

Теперь приведу алгебраическое объяснение.
13 х 14 =
Рассмотрим пример:

 

 

Обозначим буквой а опорное число, в данном случае 10, а буквами b и с цифры единиц, или числа в кружках, в данном случае 3 и 4.
Произведение теперь может быть записано следующим образом:
(а + b) х (а + с)
Перемножая (a + b) х (a + с), получаем:
а2 + ab + ас + bc
Первые три члена делятся на а, поэтому можем вынести а за скобки.
а (а + b + с) + bc
Подставляя соответствующие числовые значения, получаем:
(10 + 3) х (10 + 4) =
10 (10 + 3 + 4) + (3 х 4) =
10 х 17 + 12 =
170 + 12 = 182
В вышеприведенной формуле b и с могут представлять собой либо положительные, либо отрицательные числа, в зависимости от того, где (вверху или внизу) нарисованы кружки. В произведении 7 х 8 b и с были бы отрицательными числами.
Формулу удобно применять для возведения в квадрат чисел, близких по значению к 50 и оканчивающихся на 5.

 

Два опорных числа

 

Можно записать формулу следующим образом:
(а + b) х (ха + с)
Здесь a — опорное число, b и c — числа в кружках, а x — множитель.
Раскрывая скобки, получаем:
xa2 + xab + ac + bc
Первые три члена делятся на a, поэтому формулу можно упростить следующим образом:
а (xa + xb + с) + bc
Рассмотрим формулу на конкретном примере:
13 х 41 =
Нашим основным опорным числом является 10, а вторым — 40, то есть 4 х 10. Числа в кружках — 1 и 3. Пример можно записать следующим образом:

 

 

Имеем:
a = 10 (основное опорное число)
b = 3 (число в кружке над 13)
с = 1 (число в кружке над 41)
x = 4 (множитель)
Подставив числа в формулу, получаем:
a (xa + xb + с) + bc
10 (4 х 10 + 4 х 3 + 1) + (3 х 1) = 10 (40 + 12 + 1) + (3 х 1) =
= 10 х 53 + 3 = 530 + 3 = 533 ОТВЕТ
Полностью решение выглядит так:

 

 

Формулы для возведения в квадрат чисел, оканчивающихся на 1 и 9

 

1. Возведение в квадрат чисел, оканчивающихся на 1
Чтобы возвести в квадрат 31, сначала возводим в квадрат 30, получая 900.
Затем удваиваем 30, что дает нам 60, и прибавляем это число к предыдущему результату.
900 + 60 = 960
Теперь прибавляем 1.
960 + 1 = 961
Это простое вычисление сродни умножению в столбик или прямому умножению.
Для нахождения произведения 31 х 31 можно также использовать следующую алгебраическую формулу:
(а + 1)2 = (а + 1) х (а + 1)
(а + 1) х (а + 1) = а2 ++ 12
В нашем случае (312) a = 30.
Возводим 30 в квадрат, получая 900. Затем удваиваем а, как того требует формула, и получаем 60. Нам не нужно возводить в квадрат 1, поскольку единица, сколько ее ни умножай на саму себя, остается единицей.
Польза от данной формулы в том, что она превращает процесс умножения в простую последовательность и позволяет производить вычисления в уме.

 

2. Возведение в квадрат чисел, оканчивающихся на 9
При возведении в квадрат чисел, оканчивающихся на 9, мы используем ту же формулу, что и для чисел, оканчивающихся на 1, однако вместо 1 берем —1.
Пример:
292 =
Чтобы вычислить 292, округлим 29 до 30. Квадрат 30 равен 900. Теперь удваиваем 30, получая 60, и вычитаем это число из предыдущего результата.
900 60 = 840
Теперь прибавим 1.
840 + 1 = 841
Стандартная формула выглядит так: (а + 1) х (а + 1). В данном же случае единица берется со знаком «минус», поэтому записываем:
(a 1) х (a 1)
Раскрывая скобки, получаем:
a2 2a + 1
Это то же самое, что мы проделывали, вычисляя 292.
Вспомним, что а = 30. Возводим 30 в квадрат и получаем 900. На этот раз мы вычитаем 2а (60) из 900, получая 840. —1 в квадрате, то есть (—1), равно 1, которое мы также прибавляем и получаем в результате окончательный ответ: 841.
Данный подход проще, чем стандартное умножение в столбик.

 

Сумма и разность дробей

 

Концепция, о которой я поведу речь, основана на наблюдении, сделанном мною еще в начальной школе. Чтобы складывать дроби и вычислять их разность, не нужно находить наименьший общий знаменатель.
Если перемножить знаменатели дробей, мы получим общий знаменатель. Затем, если захотите, вы можете сократить дробь, чтобы получить меньший общий знаменатель или даже наименьший. Если не сокращать дробь, вычисления могут быть немного сложнее, однако ответ вы все равно получите правильный.
Возьмем простой пример:
1/2 + 1/4 =
Перемножим знаменатели и получим знаменатель искомой дроби (8). Теперь сложим знаменатели и получим числитель искомой дроби (6).
Ответ: 6/8.
Мы видим, что данная дробь может быть сокращена до 3/4, поскольку и числитель, и знаменатель делятся на 2.
В данном случае наименьший общий знаменатель равен 4. Оба метода годятся для получения ответа.
Я знакомлю детей с понятием наименьшего общего знаменателя только после того, как удостоверюсь, что они достаточно уверенно складывают и вычитают дроби по моему методу.
Назад: Приложение В Проверка делимости на число
Дальше: Приложение Д Выбрасывание девяток: секрет метода