1
Мера всех вещей
Две великие теории потрясли мир в первой четверти XX века. Они не оставили камня на камне от воздвигнутого за столетия здания физической науки и навсегда изменили наше понимание реальности. Одна из них, теория относительности, была, будто в научно-фантастической повести, создана в уединении одиноким гением, который, казалось, ушел из науки только для того, чтобы триумфально вернуться в нее, осветив мир сиянием новой истины. Это был, конечно, Альберт Эйнштейн.
История рождения второй – теории квантов – более сложная. Эта теория возникла в результате коллективных усилий десятков физиков, работавших над ней около тридцати лет. Эйнштейн входил в их число, но не он был лидером. Самым авторитетным в этой неорганизованной и строптивой банде революционеров оказался великий датчанин Нильс Бор. Его Институт теоретической физики в Копенгагене лет на пятьдесят стал Меккой квантовых теоретиков: почти каждый из тех, кто сделал себе имя работами в этой зарождающейся области, в какой-то момент оказывался здесь, чтобы продолжить исследования или чему-то научиться. Тут физики сделали выдающиеся открытия почти во всех областях своей науки: они не только разработали основы теории квантов, но и объяснили внутреннюю логику периодической таблицы химических элементов и воспользовались энергией радиоактивности, чтобы выявить механизмы работы живых клеток. Именно Бор и группа его самых талантливых учеников и сотрудников – Вернер Гейзенберг, Вольфганг Паули, Макс Борн, Паскаль Йордан и другие – разработали и отстаивали копенгагенскую интерпретацию – комплекс идей, который быстро стал стандартным подходом в толковании смысла математического аппарата квантовой физики. Что квантовая теория сообщает нам о мире? Если следовать копенгагенской интерпретации, ответ на этот вопрос звучит очень просто: квантовая физика не сообщает нам о мире ничего.
Копенгагенская интерпретация утверждает: квантовая физика – это не описание мира квантов, населенного атомами и субатомными частицами. Это всего лишь инструмент для вычисления вероятностей различных исходов экспериментов. Если следовать Бору, картины квантового мира не существует потому, что «не существует никакого квантового мира. Есть лишь абстрактное квантово-теоретическое описание». Это описание не позволяет нам делать ничего, кроме предсказаний вероятностей квантовых событий – ведь квантовые объекты не существуют в том смысле, в каком существует повседневный окружающий мир. Гейзенберг сказал: «Идея объективного реального мира, мельчайшие части которого объективно существуют в том же самом смысле, в котором существуют камни или деревья, независимо от того, наблюдаем мы их или нет, – эта идея невозможна». Но результаты наших экспериментов вполне реальны – мы создаем эти результаты в процессе их измерения. Занимаясь измерениями положения электрона, Йордан заметил, что «электрон вынужден принять решение. Мы принуждаем его занять определенное положение, в то время как раньше он был, вообще говоря, ни здесь, ни там. <…> Результаты наших измерений создаем мы сами».
Альберту Эйнштейну такие утверждения казались смехотворными. «Эта теория немного напоминает мне систему бредовых представлений какого-то высокообразованного параноика», – писал он другу. Несмотря на то что он сам сыграл важнейшую роль в развитии квантовой физики, копенгагенскую интерпретацию Эйнштейн принять не мог. Он называл ее «философией умиротворения, чем-то вроде религии», которая подкладывает «мягкую подушечку всякому истинно верующему в нее, [но которая] на меня ни черта не действует». Эйнштейн настаивал на такой интерпретации квантовой физики, которая давала бы связное описание мира, позволяла бы получать ответы на вопросы даже в том случае, когда никаких измерений не производится. Его раздражало, что копенгагенская интерпретация не отвечает на такие вопросы, за что он и назвал связанный с ней образ мышления «эпистемологической оргией».
Но призывы Эйнштейна к созданию более полной теории оставались без ответа, отчасти из-за построенного Джоном фон Нейманом доказательства невозможности такой теории. В те годы фон Нейман был, возможно, величайшим из живущих математических гениев. Восьми лет от роду он самостоятельно изучил высшую математику, в девятнадцать опубликовал свой первый математический труд, а в двадцать два получил докторскую степень. Он сыграл решающую роль в создании атомной бомбы и был одним из отцов компьютерной науки. Он бегло говорил на семи языках. Его коллеги по Принстонскому университету полушутя говорили, что фон Нейман может доказать все что угодно и все его доказательства окажутся верными.
Доказательство единственности копенгагенской интерпретации фон Нейман опубликовал в написанном им в 1932 году учебнике квантовой физики. Знал ли Эйнштейн о существовании этого доказательства, неизвестно, но многие другие физики, конечно, знали. Для них самого факта существования доказательства, построенного знаменитым фон Нейманом, было достаточно, чтобы считать вопрос исчерпанным. Философ Пауль Фейерабенд воочию убедился в таких настроениях ученых, когда посетил прочитанную Бором публичную лекцию: «После лекции Бор сразу же ушел, и дискуссия продолжалась без него. Некоторые выступавшие критиковали его аргументацию, в которой, по-видимому, было много нестыковок. Но сторонники Бора не отвечали на критику по существу: стоило им упомянуть предложенное фон Нейманом доказательство, как споры, будто по мановению волшебной палочки, прекращались. Имя фон Неймана и слово “доказательство” сразу же заставляли замолчать тех, кто пробовал возражать».
Нашелся все же по крайней мере один человек, заметивший недостаток в доказательстве фон Неймана вскоре после его публикации. Грета Герман, немецкий математик и философ, напечатала в 1935 году статью с критикой доказательства. Герман указывала, что фон Нейману не удалось обосновать одно из своих главных положений, а значит, и все доказательство рушится. Но ее никто не слушал – отчасти потому, что в сообществе физиков она была чужаком, отчасти потому, что она женщина.
Несмотря на найденную в доказательстве фон Неймана ошибку, копенгагенская интерпретация сохраняла свое господствующее положение в физике. Эйнштейна считали неадекватным стариком «не от мира сего». Усомниться в справедливости копенгагенской интерпретации стало равносильно тому, чтобы поставить под вопрос грандиозные успехи всей квантовой физики. На протяжении последовавших двадцати лет квантовая физика продолжала одерживать одну победу за другой, и никто не вспоминал о червоточине, таящейся в самой ее сердцевине.
* * *
Но почему квантовая физика вообще нуждается в интерпретации? Почему она просто не рассказывает нам, что представляет собой окружающий мир? Почему между Эйнштейном и Бором возник спор? Конечно же, ни Эйнштейн, ни Бор не сомневались, что квантовая физика работает. Но если они оба разделяли ее теорию, откуда могли у них взяться разногласия по поводу содержания этой теории?
Интерпретация нужна квантовой физике потому, что остается не вполне ясным, что именно эта теория говорит нам об устройстве мира. Используемый квантовой физикой математический аппарат непривычен и замысловат. Связь между этой математикой и миром, в котором мы живем, трудно увидеть. Все это резко отличается от физической теории, которую квантовая физика заменила собой, – от физики Исаака Ньютона. Ньютоновская физика описывает знакомый и простой трехмерный мир, наполненный твердыми объектами, которые движутся по прямым линиям, пока что-то не собьет их с пути. Математический аппарат ньютоновской физики описывает положение объекта тремя числами, по одному для каждого измерения, – эта тройка чисел называется вектором. Если я стою на лестнице на высоте двух метров от земли и от вас до этой лестницы три метра, я могу описать свое положение так: ноль, три, два. Ноль означает, что я стою прямо перед вами, не отклоняясь ни влево, ни вправо, три – что от вас до меня три метра, два – что я на два метра выше вас. Все просто и ясно, и никому не приходит в голову беспокоиться о том, как интерпретировать ньютоновскую физику.
Квантовая физика и связанная с ней математика устроены гораздо более странно. Если вы хотите знать, где находится электрон, вам требуется гораздо больше трех чисел – вам нужно бесконечное их количество. Для описания мира квантовая физика пользуется бесконечными наборами чисел – волновыми функциями. Эти числа приписываются различным положениям в пространстве: по числу на каждую его точку. Если бы в вашем телефоне было приложение, измеряющее волновую функцию одиночного электрона, на экране высвечивалось бы одно число, приписанное месту, в котором находится ваш телефон. Там, где вы сейчас сидите, ваш «измеритель волновой функции» мог бы показывать, скажем, 5. Пройдите по улице до перекрестка, и он покажет, например, 0,02. В самом простом виде это и есть волновая функция: множество чисел, приписанных различным местам.
В квантовой физике все имеет волновую функцию: эта книга, стул, на котором вы сидите, даже вы сами. А также атомы воздуха вокруг вас, электроны и другие частицы внутри атомов. Волновая функция объекта определяет его поведение. В свою очередь, поведение волновой функции объекта определяется уравнением Шрёдингера, главным уравнением квантовой физики, сформулированным в 1925 году австрийским физиком Эрвином Шрёдингером. Уравнение Шрёдингера гарантирует, что волновые функции всегда будут изменяться гладко – число, которое волновая функция приписывает определенному положению, никогда не может вдруг прыгнуть с 5 до 500. Нет, числа станут изменяться от точки к точке плавно и предсказуемо: 5,1; 5,2; 5,3 и так далее. Числа, задаваемые волновой функцией, могут расти и снова уменьшаться, наподобие волны – отсюда и ее название, – и, как волна, они всегда будут колебаться плавно, никогда не отпрыгивая слишком далеко друг от друга.
Идея волновой функции не особенно сложная, но кажется странным, что квантовая физика в ней нуждается. Ньютон мог задать положение любого объекта, используя всего три числа. А квантовой физике, чтобы описать положение лишь одного электрона, требуется бесконечное количество чисел, разбросанных по всей Вселенной. Но кто знает – может, электроны вообще странные? Может, они ведут себя не так, как камни, стулья или люди? Может, они размазаны по всему пространству и волновая функция говорит нам, сколько от данного электрона находится в некоторой конкретной точке?
Оказывается, это не так. Никто никогда не видел в одном точно определенном месте половину электрона или вообще что-то меньшее, чем целый электрон. Волновая функция определяет не долю данного электрона в данном месте, а вероятность того, что данный электрон находится в этом месте. Предсказания квантовой физики даются в терминах вероятностей. И это тоже странно: ведь уравнение Шрёдингера полностью и однозначно детерминистическое, никаких вероятностей в нем нет. При помощи уравнения Шрёдингера вы можете с великолепной точностью предсказать поведение любой волновой функции отныне и навсегда.
Рис. 1.1. Проблема измерения. Слева. Волновая функция мяча в коробке плавно колеблется, подобно ряби на поверхности пруда, подчиняясь уравнению Шрёдингера. Мяч может находиться в любой точке внутри коробки. Справа. Положение мяча измерено: он находится в определенной точке коробки. Волновая функция немедленно и резко коллапсирует, полностью противореча уравнению Шрёдингера. Почему же уравнение Шрёдингера – закон природы – действует, только когда измерение не выполняется? И что вообще считается «измерением»?
Да вот только и это не совсем правда. Как только вы действительно находите этот электрон, с его волновой функцией происходит странная вещь. Вместо того чтобы, как подобает приличной волновой функции, следовать уравнению Шрёдингера, она коллапсирует – мгновенно обращается в нуль повсюду, кроме того места, где вы нашли ваш электрон. Каким-то образом выходит, что законы физики начинают вести себя иначе, когда вы проводите измерение: уравнение Шрёдингера выполняется постоянно, за исключением того момента, когда вы выполняете измерение. В этой точке действие уравнения Шрёдингера приостанавливается, и волновая функция обращается в нуль повсюду, кроме некоторой случайной точки. Эта странная ситуация получила название проблемы измерения (рис. 1.1).
Почему уравнение Шрёдингера применимо, только когда измерения не производятся? Это никак не вяжется с нашим представлением о том, как работают законы природы, – они должны действовать все время, независимо от того, что мы делаем. Если уж листок оторвался от ветки дерева, он упадет на землю – и при этом не имеет значения, смотрит на него кто-нибудь или нет. Тяготение действует всегда.
Но, может быть, в квантовой физике и правда все иначе? Что, если измерения действительно меняют законы, управляющие квантовым миром? Это, конечно, очень странно, однако не невозможно. Но даже если так, это все равно не решает проблему измерения. Теперь мы сталкиваемся с новой трудностью: а что вообще следует считать «измерением»? Должен ли присутствовать тот, кто измеряет? Необходимы ли квантовым явлениям зрители? Можно ли заставить коллапсировать волновую функцию? Следует ли быть при этом в полном сознании или можно сделать это, скажем, во сне? А как насчет новорожденных? Нужны только люди или подойдут и шимпанзе? Эйнштейн как-то спросил: «Если наблюдения ведет мышка, изменит ли это квантовое состояние Вселенной?» А Белл ехидно вопрошал: «Неужели волновая функция мира сотни миллионов лет дожидалась, когда на Земле появится одноклеточное живое существо? Или ей все же пришлось подождать еще немного, чтобы появился чуть более квалифицированный измеритель с докторской степенью?» А если измерение не имеет никакого отношения к живому наблюдателю, в чем же тогда оно заключается? Не значит ли оно просто-напросто, что малый объект, подчиняющийся законам квантовой физики, провзаимодействовал с большим, на который эти законы каким-то образом не распространяются? Но если так, не означает ли это, что измерения происходят, в сущности, все время и уравнение Шрёдингера применить не удается никогда? Но как же тогда оно, это уравнение, вообще работает? И где проходит разделение между квантовым миром малых объектов и ньютоновским миром больших?
Сказать, что неприятно обнаружить в самом сердце фундаментальной физической теории ящик Пандоры, из которого сыплются такие вопросы, значит не сказать ничего. Но, несмотря на все эти странности, квантовая физика достигла в описании мира огромных успехов, гораздо больших, чем добрая старая физика Ньютона (которая тоже была неплохой). Без квантовой физики мы не понимали бы, почему алмазы так тверды, из чего состоят атомы или как создавать электронные приборы. Выходит, что волновые функции с их значениями, рассеянными по всей Вселенной, должны-таки как-то связываться с тем миром, который мы видим вокруг себя каждый день. Если бы это было не так, квантовая физика не могла бы ничего предсказывать, а она делает это прекрасно. Но тогда «проблема измерения» становится еще серьезнее – она показывает, что в природе реальности есть что-то, чего мы не понимаем.
Так как же нам интерпретировать эту странную и чудесную теорию? Что за историю рассказывает нам о мире квантовая физика?
Вместо того чтобы отвечать на этот трудный вопрос, мы можем поступить иначе. Например, не признавать его законным. Заявить, что в квантовой физике имеет значение только одно: предсказание результатов измерений. Теперь нам незачем беспокоиться о том, что происходит, когда мы не занимаемся измерениями! Все трудные вопросы тут же испаряются. Что такое волновая функция? Как она связана с объектами окружающего мира? Под рукой простой и удобный ответ на этот вопрос: волновая функция – это всего лишь математический аппарат, бухгалтерский инструмент, который помогает нам предсказывать результаты измерений. С миром вокруг нас он никак не связан – это только полезный математический прием. Волновые функции ведут себя иначе, когда мы на них не смотрим? Это неважно – за пределами измерений ничто не имеет значения. В промежутке между измерениями даже говорить о существовании вещей ненаучно. Таков, как это ни странно, ортодоксальный подход в квантовой физике – «мягкая подушка» копенгагенской интерпретации.
Но эти подозрительно простые ответы заставляют задать еще один вопрос, на который очевидного ответа нет. Физика – наука о материальном мире. А квантовая теория претендует на роль раздела физики, описывающего самые фундаментальные составляющие этого мира. Но согласно копенгагенской интерпретации бессмысленно задавать вопросы о чем-либо, что описывает квантовая физика. Что же тогда есть реальность? Копенгагенский ответ на этот вопрос – это молчание. И строгий неодобрительный взгляд на того, кто имел дерзость такой вопрос задать.
Такой ответ можно в лучшем случае назвать глубоко неудовлетворительным. Но это стандартный ответ. Физики, которые тем не менее настаивали на своем вопросе, такие как Эйнштейн, а позже Белл и Бом, вступили в открытую конфронтацию с «копенгагенцами». И история поисков ими реальности – это в то же время история их мятежа, столь же давняя, как и история самой квантовой физики.