Книга: Как ломаются спагетти и другие задачи по физике
Назад: 2. Хоккейная задача
Дальше: 4. Как ломаются спагетти?

3. Бесконечно длинный маятник

Один из самых простых школьных примеров колебаний — колебания математического маятника (см. рис. 1). Математический маятник — это просто точечная масса, подвешенная в поле тяжести на нерастяжимой нити длины L. Если его отклонить от вертикали на небольшой угол и отпустить, то он начнет колебаться туда-сюда с периодом

Как заметил еще Галилей, период колебаний не зависит от их амплитуды, по крайней мере до тех пор, пока эта амплитуда мала.

Из выписанной формулы следует, что чем длиннее маятник, тем больше период, то есть тем медленнее происходит колебание. Но может ли оно стать сколь угодно медленным?

Задача

Давайте рассмотрим совершенно гипотетическую, даже фантастическую постановку задачи: имеется математический маятник, длина его подвеса безумно велика и во много раз превышает радиус Земли. Сам точечный грузик при этом находится в лаборатории на уровне земли, но только точка подвеса унесена далеко — даже так: сколько угодно далеко — в космос! Для простоты будем считать, что Земля и точка подвеса — неподвижны. Это, конечно, слегка безумная и совершенно нереализуемая на практике ситуация, но мы имеем право рассмотреть такой мысленный эксперимент.

Рис. 1. Математический маятник в поле тяжести Земли. Пунктиром показано положение равновесия, сплошной линией — отклонение от него. Сила натяжения нити FН и сила тяжести mg, складываясь, порождают возвращающую силу, которая и заставляет маятник колебаться

Вычислите период малых колебаний такого математического маятника бесконечной длины. Какой еще известный вам процесс имеет тот же период? Объясните, почему эти два совершенно разных типа движения имеют одинаковый период.

Назад: 2. Хоккейная задача
Дальше: 4. Как ломаются спагетти?