Продолжение эстафеты
Многие исследователи приступили к поискам различных способов управления катенаноподобными структурами. Наиболее эффектные результаты получил шотландский ученый-химик Дж. Ф. Стоддарт. Однако это случилось не сразу – какое-то время ушло на совершенствование мастерства. Точно такое же происходит при обучении музыкантов-композиторов: есть этап, когда они осваивают исполнительский навык. Включившись в поток катенановых исследований и используя методику Саважа, Стоддарт получил катенан с двумя кольцами, дополнительно соединенными перемычкой, и назвал его кренделем (pretzelane) – естественно, упомянув название в заголовке статьи. Затем всего в две стадии (!) он синтезировал удивительную молекулу «кольца Борромео», воспроизводящую старинный символ, изображенный на гербе аристократического семейства Борромео из г. Милана. Особенность такого способа сплетения колец состоит в том, что при удалении любого из колец два других полностью разъединяются. Здесь отсутствует вариант, когда одно кольцо продето в другое. Молекулы «крендель» (рис. 3.17а) и «кольца Борромео» (рис. 3.17б) показаны в упрощенном виде, без структурных формул.
В определенный момент Стоддарт изменил методику и состав исходных соединений. Он использовал два типа колец: один цикл собран из трех бензольных ядер, соединенных звеньями – (СН2)2-О-, другой содержит четыре катионных атома N+ (рис. 3.18). Напомним, что в химической среде катион всегда присутствует вместе с анионом. В данном случае у каждого атома азота имеется противоанион PF6-, однако эти анионы не участвуют в построении катенана, а располагаются в стороне от «строительной площадки». В структуре исходного и полученного соединений они не показаны.
На основе этих циклов Стоддарт синтезирован катенан, содержащий пять последовательно сплетенных циклов (рис. 3.19). Он получил название "олимпиадан" (olympiadane), поскольку топологически воспроизводил пять олимпийских колец и был синтезирован в 1994 г.
Постепенно все эти увлекательные эксперименты с переплетением циклов обрели новый смысл. Стоддарт стал искать способы управления перемещением колец. На этом этапе пригодился цикл с четырьмя атомами N+, показанный на рис. 3.18 и рис. 3.19, который стал одним из компонентов ротаксана. Ось, продетая через цикл, была собрана из звеньев – (СН2) 2-О-, между которыми были помещены фрагменты -NH – С6Н4-С6Н4-NH– и -O – С6Н4-С6Н4-O– на некотором расстоянии друг от друга. Так как у цикла положительный заряд, то он перемещается по оси к фрагменту -NH – С6Н4-С6Н4-NH-, то есть к тому месту, где у атомов азота находятся неподеленные электронные пары. Если затем подкислить всю систему, то есть ввести в реакционную среду протоны Н+, то они присоединятся к атомам азота, и образуется – NH2+–С6Н4-С6Н4-NH2+-. Этот участок оси перестанет быть «привлекательным» для имеющего свои четыре положительных заряда цикла, и он начнет искать другое место с неподеленными электронными парами. Они есть у атомов О во фрагменте -O – С6Н4-С6Н4-O-, и цикл переместится к нему. Способность присоединять положительно заряженные частицы у атомов N выше, чем у О, и поэтому цикл вначале «не замечал» второе «заманчивое» место, а нашел его только после подкисления системы. Движения цикла обратимы, они могут управляться не только подкислением-подщелачиванием среды, но и электрохимическим способом – изменением внешнего электрического потенциала с "+" на " – " (рис. 3.20).
Стоддарт назвал эту систему «молекулярным челноком», который меняет свое положение в зависимости от внешнего воздействия. Два фиксированных положения соответствуют логической схеме 0 или 1, на которой основаны все современные вычислительные устройства. На основе молекул «челнока» Стоддарту совместно с американским ученым Дж. Хитом удалось создать блок памяти емкостью 20 кБ на площади всего в 0,01 мм2, что в 10 раз меньше, чем срез человеческого волоса.
Полученный результат обнадеживает, поскольку современные компьютеры, поражающие нас быстродействием и компактностью, достигли границ своих возможностей. В устройствах следующего поколения носителями информации будут отдельные молекулы, что позволит увеличить плотность записи информации в десятки раз. Пока такие молекулярные системы нестабильны – в сравнении с кристаллическим кремнием. Однако вспомним, какие сомнения вызывала возможность использования полупроводников в эпоху ламповых компьютеров – и тем не менее полупроводники победили. А потому, торжественно обобщая все рассмотренное, скажем, что молекулы "челнока" знаменуют приближение века молекулярной электроники.