Книга: Пламенный насос. Естественная история сердца
Назад: 15 Змеи и при чем здесь сердце?
Дальше: Благодарности

16
Вырастите свое собственное

Кто-то должен встать и сказать: «Решение – это не очередная таблетка. Решение – это шпинат»174.
Билл Мар
Чтобы изучить совершенно иной подход к регенерации сердца, я посетил Гаральда Отта, исследователя из Гарвардского института изучения стволовых клеток. Отт с коллегами участвуют в амбициозном проекте: выращивать человеческие сердца и, возможно, другие органы из стволовых клеток.
Большая часть из примерно 200 типов клеток, обнаруженных в человеческом теле, размножаясь, в результате создают идентичную клетку. Мышечные клетки производят больше мышечных клеток, жировые клетки (адипоциты) производят больше жировых клеток и так далее. Однако стволовые клетки иные: если создать им подходящие условия, они могут производить различные типы клеток. Все же у большинства стволовых клеток есть ограничения. Например, стволовые клетки крови могут производить только другие клетки крови. Но эмбриональные стволовые клетки особенные, потому что их можно стимулировать к производству клеток любого типа (поэтому их называют «плюрипотентные»). Их можно добывать из нескольких мест – например из пуповины или из эмбрионов, хотя последний вариант достаточно спорный. Однако благодаря плюрипотентности они невероятно ценны для исследователей, занимающихся терапией стволовыми клетками, которая направлена на лечение больных или плохо функционирующих органов не путем трансплантации, а путем выращивания их из стволовых клеток.
– Так почему же необходимо создавать человеческие сердца? – спросил я Отта, который находится на переднем крае уникальной области исследований стволовых клеток.
Он объяснил, что медицина стала действительно хороша в решении острых проблем, например травматических повреждений или таких заболеваний, как пневмония. В результате все больше людей выздоравливают после этих острых событий и многие из них доживают до глубокой старости – возраста, когда органы начинают разрушаться.
– Некоторые ткани, например печень или кости, имеют встроенные системы регенерации, – сказал мне Отт. – Но многие органы [скажем, сердце] не обладают способностью к самовосстановлению.
Поначалу это не составляет большой проблемы, так как некоторые из этих органов, к примеру легкие, имеют запас дополнительных клеток. Но этот резерв способен иссякнуть.
– Предельная недостаточность функции органов – это глобальная эпидемия, затрагивающая миллионы людей, – сказал Отт. – То есть, вместо того чтобы погибать в автомобильных авариях, от пневмонии или других проблем, миллионы людей становятся все старше и старше и накапливают обширные повреждения, которые приводят к ухудшению функций.
В результате в последнее время в медицинском исследовательском сообществе произошел серьезный сдвиг в направлениях. Если на протяжении большей части XX века целью было восстановление поврежденных тканей и органов, то сейчас значительные усилия сосредоточены на построении таких органов, как сердце, почки и поджелудочная железа, чтобы заменить оригинальное, но вышедшее из строя оборудование пациентов.
Впервые Отт оказался привлечен к исследованиям стволовых клеток благодаря работе кардиолога Дорис Тейлор в Университете Миннесоты в середине – конце 2000-х годов. Первоначально ее исследования были сосредоточены на восстановлении функции сердца путем пересадки стволовых клеток в сердца подопытных кроликов, перенесших острый инфаркт миокарда. Во время работы Отта в лаборатории Тейлор они выявили, что простое введение клеток в поврежденное сердце недостаточно эффективно и что им нужно будет регенерировать трехмерные структуры, а не просто чинить их. С тех пор Тейлор продолжала свою работу, в конечном итоге став руководителем направления регенеративной медицины в Техасском институте исследования сердца. Тем временем Отт получил место в отделении кардиоторакальной хирургии в Массачусетской больнице общего профиля и должность преподавателя хирургии в Гарвардской медицинской школе.
Отт объяснил, что его нынешние эксперименты основаны на исследованиях в области тканевой инженерии, проведенных в 1990-х годах. В этих исследованиях ученые показали, что можно создать функциональную трехмерную ткань, выстраивая клетки на «лесах» из внеклеточного матрикса, состоящего в основном из коллагена. Внеклеточный матрикс ткани секретируется ее клетками и придает тканям, например костной и хрящевой, их форму и отличительные физические характеристики. Характеристики матрицы, состоящей из коллагена, отличаются тем, что она может растягиваться без разрыва (то есть обладает прочностью на растяжение), не вызывает иммунного ответа (то есть обладает низкой антигенностью) и охотно позволяет другим клеткам (например, миоцитам) расти на себе.
«По образованию я не инженер, – сказал мне Отт. – Поэтому, когда я начал работать над этой темой, вместо того чтобы создавать каркас с нуля, я воспользовался трупными органами».
Отт и его коллеги подвергли трупные сердца процессу, называемому децеллюляризацией, в ходе которого используют специальные детергенты, чтобы растворить все клетки. То, что у них осталось, было гибкой структурой в форме сердца, состоящей исключительно из внеклеточного матрикса на основе коллагена.
Я изучил один из его ранних образцов децеллюляризированного сердца, полученный от свиньи. Он был непрозрачным и абсолютно белым, состоящим из цельных компонентов: коллагена, эластина и фибронектина (молекулы клеточной адгезии, которая связывает клетки с упомянутыми веществами – что-то вроде клея). В целом, однако, оно выглядело как свиное сердце. Меня поразило, что сложная структура передо мной была создана клетками, которых больше не существовало. То, что они оставили после себя, было сердцем с точно сохраненной архитектурой, идеальным каркасом, на котором Отт и его коллеги могли выстроить новое сердце.
Поскольку все клетки удалены и после них остались только структурные белки, каркас не спровоцирует такой же иммунный ответ, как пересаженное сердце. Когда организм распознает клетки как аллогенные – то есть не принадлежащие ему и, следовательно, иммунологически несовместимые, – иммунная система атакует их. Это основная причина отказа от аллотрансплантатов – тех, которые поступают от несовместимых доноров. Однако на основе того, что по сути было пустым шаблоном, исследовательская группа теоретически могла создать совместимый орган, не опасаясь отторжения.
Однако оставался ключевой вопрос: как повторно заселить этот каркас в форме сердца новыми клетками, которые не будут подвержены атаке? Отт объяснил, что его исследования получили огромный толчок благодаря открытию Джона Гёрдона и Синъи Яманаки, лауреатов Нобелевской премии 2012 года, – зрелые клетки можно генетически перепрограммировать в стволовые клетки. Ученые проделали это, введя в зрелые клетки четыре гена, ответственные за поддержание стволовых клеток в незрелом состоянии. Еще лучшей новостью стало то, что полученные клетки оказались не просто стволовыми клетками, а клетками плюрипотентной разновидности. Вы помните, что в зависимости от того, как простимулировать такие стволовые клетки, они способны дифференцироваться в любой из примерно 200 типов клеток, существующих в человеческом организме. Что до того, откуда брать эти зрелые клетки перед обработкой, то чем проще доступ, тем лучше, так что исследователи были в восторге, обнаружив, что фибробласты подходят по всем параметрам.
Фибробласты сосуществуют в миокарде совместно с клетками сердечной мышцы, а кроме того, это самый распространенный тип клеток человеческого тела, их можно обнаружить в соединительной ткани, в частности в дермальном слое кожи. Как уже упоминалось во время обсуждения дарио-рерио, среди прочего эти клетки отвечают за производство структурных белков, например коллагеновых и эластиновых волокон, а также внеклеточного матрикса, материала, не имеющего клеточной структуры, но окружающего клетки. Отт объяснил, что за счет легкости доступа к фибробластам в коже получить их гораздо менее проблематично, чем при биопсии сердца.
Как только фибробласты успешно превращаются в стволовые клетки, а затем в клетки сердечной мышцы, их можно снова высеять на каркасы. Но пока это остается камнем преткновения для Отта. Его команда смогла вырастить небольшие участки сердца и заставить эти клетки сокращаться при стимуляции. Но ученые еще не смогли создать полностью работающее человеческое сердце.
Другие лаборатории, занятые этой проблемой, не пытаются построить новые сердца, но изучают использование аналогичным образом перепрограммированных участков сократительных клеток. Исследователи из Великобритании и Германии под руководством Сиан Хардинг, профессора Имперского колледжа Лондона, смогли вырастить заплатки, состоящие из человеческих миоцитов, которые затем пришили к сердцам живых кроликов, где они стали полностью функциональной тканью сердечной мышцы175. В связи с тем, что вскоре начнутся испытания на людях, есть надежда, что этот метод позволит кардиологам заменить неспособную к сокращению рубцовую ткань, которая образуется после инфаркта миокарда.
Но заплатки из клеток миокарда не создают сердца, и одна из главных проблем, с которой сталкиваются Отт и его коллеги, заключается в том, чтобы заставить перепрограммированные клетки формировать трехмерные структуры, в том числе коронарные кровеносные сосуды, которые потребуются для питания вновь созданных сердец. Эти структуры должны создавать сами клетки, будучи не просто строительными блоками, но и участниками производственного процесса. Невыносимо сознавать, что программы подобного поведения уже есть внутри клетки, закодированные в генетическом портфеле, но по-прежнему недоступны ученым, которые все еще ищут способы запустить это поведение.
Пока Отт с коллегами не смогут «щелкнуть тумблером», они будут импровизировать. Не имея возможности создать кровеносные сосуды с нуля, они решили начать с того же места, с которого они начинают, работая с сердечной тканью: с лесов – в данном случае с участка децеллюляризованного кровеносного сосуда. Как и все остальное сердце, коронарные кровеносные сосуды, которые его снабжают, после того как их клеточные компоненты растворяются, оставляют каркас из соединительной ткани.
– Мы говорим клетке: «Вы – незрелая клетка кровеносного сосуда, и, кстати, вот вам труба. Не могли бы вы просто проложить ее для меня». И клетки это делают, – рассказал мне Отт. – Вот что действительно уникально в наших строительных лесах – в этих децеллюляризованных органах у нас на самом деле есть неповрежденные трубопроводы.
Создание трехмерных структур для замены неисправных человеческих аналогов остается серьезной проблемой. Но использование ранее существовавшего каркаса, в данном случае каркаса соединительной ткани из ранее функционировавшего кровеносного сосуда, не единственное направление исследований, разрабатываемое для ее решения.

 

Гленн Годетт, биомедицинский инженер из Вустерского политехнического института, также работает над терапевтической регенерацией сердца, но решил использовать совершенно другой тип структуры после того, как один из его аспирантов вернулся с обеда с чем-то удивительным, что он обнаружил в кафетерии.
Я встретился с Годеттом в его лаборатории, чтобы обсудить, что произошло дальше.
Он начал с объяснения того, что любой, кто работает над восстановлением поврежденного сердца, да и любого поврежденного органа, если уж на то пошло, сознает значимость кровеносных сосудов – диаметр многих из которых варьируется в пределах микроскопических размеров.
– Когда сердечная мышца не получает достаточно кровотока, она погибает, – сказал мне Годетт.
Это, как ранее указывал и Отт, вызывало особую озабоченность при изучении регенерации сердца и оказалось камнем преткновения в собственных исследованиях Годетта. Хотя его команде удалось заставить сердечные клетки расти на каркасах кровеносных сосудов вокруг децеллюляризованного сердца, они не смогли полностью воспроизвести его структурную и функциональную сложность.
– И вот почему мы придумали это, – сказал Годетт, предлагая мне рассмотреть что-то маленькое и зеленое.
Я осторожно держал предмет, восхищаясь его прожилками и тем, как он удивительно похож на лист шпината, который ученый, возможно, купил в продуктовом магазине. Годетт заверил меня, что это именно он и что именно так оно и было.
– Эти прожилки переносят воду, – сказал он. – Наши вены переносят кровь. С инженерной точки зрения и те и другие переносят жидкости. Поэтому Джош Гершлак, тогда мой аспирант, сказал: «Если мы избавимся от всего шпината, останутся ли у нас эти сосуды?» И вот тут-то и начался весь эксперимент.
Как и Отт с донорскими сердцами, Годетт и Гершлак (ныне постдок) выдерживают листья шпината в химической ванне, которая лишает их клеток, но сохраняет внеклеточный каркас. Аналогичным образом это позволяет сосудам сохранять свою первоначальную структуру и предотвращает отторжение этой структуры иммунной системой конечного реципиента.
Годетт устроил мне экскурсию по своей лаборатории, во время которой я увидел, как готовятся образцы. Используемые листья шпината подвешены по отдельности в небольших бутылочках примерно на 1,2 метра ниже емкости со специальным детергентом, подающимся самотеком. Стекая вниз, капли детергента движутся в тонких резиновых трубках, каждая из которых оканчивается иглой для подкожных инъекций большого диаметра, вставленной в кончик черенка листа.
Такая гравитационнная капельная система обеспечивает постоянный ток детергента к листу. Когда детергент встречается с клетками растения, он открывает в них мельчайшие отверстия, позволяя вытекать содержимому, так что, когда жидкость выходит из кончика листа, она уносит с собой содержимое клеток. После пятидневного периода перфузии остается бесцветная, структурно совершенная модель листа, хотя и без растительных клеток. Модель состоит из прочного структурного полисахарида, который называется целлюлозой.
Если эта субстанция о чем-то вам напоминает, то, вероятно, потому, что клеточные стенки растений состоят из целлюлозы, также известной как пищевое волокно, которое проходит непереваренным через наш кишечник, прочищая его, словно сантехник трубу. На самом деле ни одно позвоночное животное не может самостоятельно переваривать целлюлозу, хотя некоторые прибегают к помощи эндосимбиотических бактерий. В органах пищеварительной системы, таких как слепая кишка лошади или рубец коровы, живет огромное количество этих микроорганизмов. Симбиотический аспект связан с тем, что бактерии получают хорошее, теплое место для жизни, в то время как их четвероногие косимбионты получают пользу от целлюлазы – фермента, расщепляющего целлюлозу.
Высвобождаясь в пищеварительный тракт, фермент вступает в контакт с богатой клетчаткой пищей травоядного, расщепляя полисахарид на легкоусвояемые соединения, простые сахара. Эта адаптация позволяет пищеварительной системе травоядного извлекать питательные вещества и энергию из таких прежде неусвояемых веществ, как трава. Среди беспозвоночных, даже тех, кто печально известен своим мастерством измельчения растений и древесины, многие также не могут переваривать целлюлозу без посторонней помощи. Некоторые группы термитов, например, нуждаются в эндосимбиотических бактериях, чтобы переваривать древесину, и детеныши термитов умрут от голода, если не получат свою собственную колонию кишечных микробов, размахивающих жгутиками.
Термиты получают их, потребляя немного фекалий родителя или партнера по гнезду. Другие виды термитов освободились от жгутиков, развив способность производить свою собственную целлюлазу без необходимости принимать в кишечнике около 50 миллиардов микробных гостей176.
Однако для целей Гленна Годетта важно то, что целлюлоза не только структурно добротна, но и близка к биологической инертности, поскольку человеческий организм практически не проявляет иммунной реакции на это вещество. Таким образом, это почти идеальный биосовместимый материал, и он уже одобрен для использования в некоторых медицинских устройствах. К ним относятся листы, состоящие из целлюлозных фибрилл, созданных бактериями, которые наносят на раны, а также имплантируемые капсулы для доставки лекарств.
Целлюлоза стала компонентом не в одной попытке создать с нуля структуры, подобные сердцу. Исследователи из Тель-Авива вместо шпината используют 3D-биопечать. Однако ранее их усилия были направлены на то, чтобы применять в качестве «чернил» для 3D-принтера биопсийный материал. В апреле 2019 года Тал Двир и его команда с большой помпой и освещением в средствах массовой информации объявили, что они действительно напечатали маленькое сердце (размером с сердце кролика). Эти ученые сталкиваются с многочисленными препятствиями. Среди них тот факт, что, хотя клетки напечатанной структуры могут сокращаться, само сердце еще не способно перекачивать кровь. Кроме того, команде Двира нужно будет решить вопрос о том, как напечатать крошечные кровеносные сосуды сердца177.
Еще предстоит провести много исследований и преодолеть множество препятствий. Но перспективы целлюлозы захватывают. Лаборатория Годетта смогла заставить клетки человеческого сердца расти на каркасах из шпината, и сейчас проводятся эксперименты по растворению целлюлозы после того, как она выполнила свою задачу. Есть надежда, что однажды сформированные на основе целлюлозы сосуды получится простимулировать, чтобы они стали заменяющими кровеносными сосудами, состоящими исключительно из человеческих клеток.
И хотя невозможно предсказать, какая часть этих исследований когда-либо найдет практическое применение, захватывающе интересно, что ученые вроде Годетта ищут в растительном царстве новый и чрезвычайно инновационный способ принести пользу людям.
Учитывая сложность регенерации сердца или других органов, таких как почки и легкие, я задавался вопросом, зачем понадобилось что-то столь радикальное. Почему бы вместо этого не поискать лучшие методы восстановления или не сосредоточиться на профилактике заболеваний?
Ответы связаны с тем, что в США ежегодно проводится около 40 тысяч трансплантаций органов (примерно 10 % из них – пересадка сердца), и по состоянию на сентябрь 2020 года в национальном списке ожидания США было около 109 тысяч кандидатов178. Этим пациентам уже поздно проводить профилактику заболеваний, и во многих случаях их органы настолько повреждены, что восстановление не может быть сколь-либо долгосрочным решением. Подсчитано, что каждый день около 20 человек умирают во время ожидания.
Гаральд Отт объясняет это так: «Если радиатор в вашей машине сломан, его не чинят, а просто меняют на другой».
Поэтому конечная цель регенеративной медицины состоит в том, чтобы придумать замену для сердец (а также почек, печени, легких и кишечника) и в будущем не зависеть от часто смертельно длинного списка ожидания или перспективы того, что реципиенты трансплантата проведут остаток своей жизни на иммунодепрессантах. Другие исследователи продолжают искать эти замены в животном мире – например генетически модифицируя свиней, чтобы обеспечить пациентов органами, сходными с человеческими, без угрозы отторжения тканей.
Я попросил Отта поразмышлять о том, куда, по его мнению, движется терапия регенерации органов:
– Скажем, миновало двадцать лет, и все эти исследования действительно прошли очень хорошо. У кого-то повреждено сердце. Что дальше?
– Человек приходит в клинику, вы берете образец кожи и выращиваете ему сердце, – сказал Отт. – Как только пациент достигает точки, когда его сердце перестает работать достаточно хорошо, вы просто меняете его.
– И другие органы тоже?
– И другие органы тоже, – повторил он. – Именно на это я и надеюсь.
Назад: 15 Змеи и при чем здесь сердце?
Дальше: Благодарности