Книга: Baidu. Как китайский поисковик с помощью искусственного интеллекта обыграл Google @bookiniero
Назад: На смену интеллекту
Дальше: Сплотились, чтобы конкурировать

Интернет-конференция

Технология «Шахматы втемную» представляла собой модель искусственного интеллекта, но, кажется, не имела ничего общего с интернетом. Но развитие облачных вычислений и возможности управления большими объемами информации наконец-то объединили ИИ и интернет в одну устойчивую технологию, которая существенно отличается от «Шахмат втемную». Распределенные вычисления в сочетании с большими объемами информации и новым алгоритмом принятия решений демонстрируют успешное сочетание человеческого и машинного интеллекта.

В 2016-2017 годах AlphaGo (программа для игры в го) всколыхнула человечество. Процесс ведения игры AlphaGo отличается и от человеческого мышления, и от «Шахмат втемную». Проще говоря, механизм питается десятками миллионов человеческих шахматных партий. Выражаясь более профессионально, успеху AlphaGo способствовали алгоритм поиска Монте-Карло и механизм распознавания образов, основанные на глубоком обучении. Однако ни его предшественники, ни «Шахматы втемную» к технологии глубоко обучения отношения не имели.

Согласно исследованиям, AlphaGo не изобретает собственный механизм игры, а изучает десятки миллионов игроков (массивы данных). Он запоминает каждый ход, каждую игру из миллионов ситуаций и использует данные для обучения с помощью нейронной сети. Все это делается для того, чтобы иметь возможность предсказать, как мастер-человек сумеет выйти из той или иной ситуации. На практике компьютер анализирует текущую ситуацию и находит ее аналоги в прошлом. Затем ищет возможные варианты развития и выбирает несколько наиболее оптимальных. Таким образом, вместо того, чтобы пробовать все возможные варианты, он останавливается на наиболее выгодных. Тем самым сокращает объем вычислений. Система не истощается и получает защиту от поражения. Этот подход похож на человеческий. Мы не пробуем все подряд, а выбираем несколько вариантов, опираясь на опыт и чувства. Но после того, как сделаем свой выбор, мы все еще должны производить подсчеты и сравнения в поисках оптимального хода. Машина же передаст эти расчеты алгоритму поиска Монте-Карло.

Ниже я использую метафору. Она не точная, но достаточно понятная.

Поиск решения по методу Монте-Карло – это оптимизация предыдущего алгоритма дерева решений. Предыдущий алгоритм, даже если он предоставлял качественный вариант решения задачи, должен был быть единственным в каждой точке для того, чтобы выбрать следующую ветвь с бесконечным множеством менее рациональных вариантов решения.

Метод Монте-Карло основывается на тонкостях теории вероятности. Представим шахматную ситуацию, где сеть глубокого обучения дает три возможных варианта на ход – А, В, С. Три точки в качестве корневого узла можно представить, как три дерева, каждое из которых имеет бесконечное число ветвей. Метод Монте-Карло не проверяет каждую из ветвей, но отправляет три миллиона муравьев по одному на каждую ветвь, чтобы те быстро поднялись на верхушку дерева (то есть, чтобы они шли до тех пор, пока не доберутся до варианта, который обеспечит победу). Некоторые из них доберутся до победной точки. Предполагается, что все муравьи ищут наиболее эффективное решение, а не вариант, в котором партия завершится поражением.

Предположим, что из 1 миллиона муравьев, которые отправились по ветке А, только 300 тысяч дошли до победного конца. По ветке В – 500 тысяч. По ветке С – 400 тысяч. Система понимает, что вероятность победы на ветке В гораздо выше, и выбирает именно этот вариант хода. Таким образом, вероятностный метод значительно сокращает количество вычислений по сравнению с методом исчерпывания.

Почему мы отправляем именно 1 миллион муравьев для исследований, а не 100 тысяч или не 10 миллионов? Это зависит от вычислительной мощности компьютера и приблизительной оценки конкурентов. Если в данной ситуации, чтобы получить более высокий коэффициент выигрыша нам требуется только 100 тысяч муравьев, мы отправим 100 тысяч. Но чем больше муравьев отправляются на дерево в одно и то же время, тем выше требования к вычислительной мощности компьютера.

Чип процессора и графический процессор (GPU), нейронные сети и метод Монте-Карло создают возможности, которые не могут сравниться с человеческими. В результате глубокого обучения искусственный интеллект моделирует способности человека, которые аналогичны сумме способностей 10 миллионов шахматистов.

Умные читатели, даже не понимая математическую теорию, способны уловить механизм работы AlphaGo. Хотя алгоритмы и стратегии гораздо сложнее, чем описано выше. AlphaGo на своем примере демонстрирует уровень развития глубокого обучения и искусственного интеллекта. Но на самом деле, на сегодняшний день существует множество научно-исследовательских институтов и талантливых ученых, которые делают сверхъестественные вещи в данном направлении.

После того, как поведение человека начало фиксироваться в виде данных посредством интернета, у искусственного интеллекта появилось полноценная пища, чтобы идти в ногу с человечеством и помогать ему во всех сферах жизни. Машинный перевод, распознавание речи, изображений опираются на клики пользователей Интернета. Почему точность поисковой системы Baidu трудно сравнить с другими поисковыми системами? Потому что Baidu обладает самым большим объемом данных, самым продвинутым алгоритмом принятия решений и самой сильной командой. Каждый клик пользователя тренирует мозг Baidu и рассказывает о том, что человек хочет больше всего.

Когда искусственный интеллект переживал этап застоя, люди думали, что машина никогда не сможет думать так же, как человек. Но после 1990-х мы поняли, что машина и не должна думать так же, пока мы в состоянии сами решить свои проблемы. У лингвиста Хомского спросили: «Может ли машина думать?» Это был позаимствованный датским компьютерным ученым Дикстра риторический вопрос: «Будет ли подводная лодка плавать?» Ответ был такой: «Подводная лодка не плавает, как рыба или человек, но ее способности очень высоки».

Если мы оглянемся назад (не только на историю развития интернета), то поймем, что вся история развития промышленности – это шаги по направлению к развитию искусственного интеллекта. Кевин Келли отмечал, что самоприводящийся поршень парового двигателя уже представляет собой конструкцию, которая содержит элементы «эволюции». Стремление к автоматизации – эволюционная сила ИИ.

Когда началась промышленная революция, паровой двигатель появился в угольных шахтах и ямах. Эффективность двигателя пара была низкая, энергия, особенно при добыче угля, требовалась значительная, и спрос на дешевую рабочую силу сохранялся существенный. Дело в том, что при добыче угля использовалось много воды. А вода, в свою очередь, была топливом для парового двигателя. После того, как в шахтах впервые была применена новая технология, она постоянно продолжала совершенствоваться для содействия промышленной революции. С искусственным интеллектом то же самое: данные – это топливо для двигателя искусственного интеллекта, а когда ИИ получает достаточное количество данных, он может работать дальше.

Без накопления данных о деятельности человека компьютер не может стать объектом обучения. Это стало возможным благодаря развитию интернета и развитию методов сбора информации. А также благодаря исследователям ИИ, не все из которых являются учеными в сфере компьютерных технологий. Некоторые из них проводят биологические исследования, некоторые – инженерные. Некоторые изучают математику, архитектуру компьютерных чипов или автоматизированную итеративную оптимизацию компьютерных программ. Но однажды результаты изысканий сходятся в одной точке. И на этом месте рождается искусственный интеллект.

Назад: На смену интеллекту
Дальше: Сплотились, чтобы конкурировать