Книга: Холодильник Эйнштейна. Как перепад температур объясняет Вселенную
Назад: Глава 4. Долина Клайда
Дальше: Глава 6. Тепловой поток и конец времени

Глава 5

Главная задача физики

Богам любопытно наблюдать, как мускулы работают подобно цилиндру паровой машины.

Физиолог Эмиль Дюбуа-Реймон, живший в Берлине


На юго-западе Берлина, где немецкая столица граничит с Потсдамом, река Хафель распадается на систему взаимосвязанных озер, каналов и протоков. На их берегах расположены парки, сады и дворцы, которые в первой половине XIX века служили местом отдыха и развлечений королевской династии Гогенцоллернов. В то время Гогенцоллерны правили Пруссией, занимавшей северо-восточную четверть современной Германии.

Один из увеселительных садов, Глиникский парк, напоминал английский ландшафтный сад с фонтанами, оранжереями и роскошными клумбами. Посетив парк, Хельмут фон Мольтке назвал его “одним из самых красивых в Германии”.

Если пройти по стопам фон Мольтке сегодня, вашему взору в основном предстанут те же достопримечательности. Но некоторые все же не сохранились: например, больше нет намеренно полуразрушенного пешеходного мостика, под которым стремился мощный поток воды. В нескольких метрах от него был слышен странный звук, теперь давно забытый: настойчивое бряцание и пыхтение, доносившееся с виллы, напоминающей постройки средневековой Флоренции. Внутри стояла одна из первых в Пруссии паровых машин, сконструированная инженером, прошедшим обучение в Англии.

Фон Мольтке написал, что эта машина “работает с утра до ночи, поднимая воду Хафеля на песчаные высоты, чтобы луга зеленели там, где без машины выживал бы только вереск. Могучий водопад с ревом срывается с утесов под аркой полуразрушенного моста, словно смытого неистовым потоком, и падает на пятьдесят футов вниз, в Хафель, на землю, где бережливая Мать Природа и не подумала бы пролить ни ведра воды”. Иными словами, это был искусственный ландшафт, который стал красивым под действием машин.

В Великобритании паровую энергию считали путем к коммерческой выгоде, во Франции – к общественному прогрессу, но в Пруссии – во всяком случае, в элитных кругах – ее считали способом совершенствовать природу. Здесь паровая энергия была связана с природой в буквальном смысле, и именно здесь ученые раньше всех поняли, что ее уроки применимы не только к машинам. В конце концов, раз паровая машина способна улучшить природу, может, она способна и объяснить ее? Молодой человек, наблюдавший за установкой паровой машины в Глиникском парке и двух других машин в соседних садах, стал одним из первых ученых, разглядевших их значимость.

Герман Гельмгольц родился в 1821 году в Потсдаме в семье среднего достатка – его отец работал учителем в гимназии, прусской средней школе, где акцент делался на академическом, а не практическом образовании. Гельмгольц вспоминал, что в детстве часто болел и много времени проводил в своей комнате, часто прикованный к постели. Однако, когда он подрос и окреп, отец стал знакомить его с поэзией и прозой и гулять с ним в потсдамских садах и парках. В это время Гельмгольц увлекся математикой и естествознанием и принялся осваивать науки, проглатывая учебники по физике и конструируя самодельные микроскопы из линз от старых очков. С возрастом уверенность Гельмгольца в своих интеллектуальных силах росла, и в 1838 году он получил стипендию для изучения медицины в берлинском Университете

Фридриха Вильгельма, который специализировался на подготовке военных врачей. Также в 1838 году в Пруссии была открыта первая железная дорога на паровой тяге, соединившая Потсдам и Берлин. Таким образом, юный Гельмгольц не только наблюдал, как паровая энергия применяется для совершенствования природы в местном парке, но и сам пользовался ею, когда ездил в университет.

* * *

В конце 1830-х и начале 1840-х годов немецкоязычная часть Европы представляла собой лоскутное одеяло из королевств, эрцгерцогств, епископств, княжеств и других суверенных территорий. В экономическом отношении регион отставал от Великобритании и Франции, и паровая технология в нем развивалась медленнее. В 1840 году мощность установленных на местных заводах паровых машин составляла всего 20 тысяч лошадиных сил, что было гораздо меньше, чем в Великобритании (350 тысяч) и Франции (34 тысячи).

Однако в 1840-х годах начали приносить свои плоды реформы, проведенные в прошлые десятилетия. В 1807 году Пруссия отменила крепостное право и позволила крестьянам жить и работать где угодно, что привело к формированию многочисленного и мобильного рабочего класса. Кроме того, в 1834 году коалиция немецких государств создала таможенный союз. Ранее, чтобы доехать из Гамбурга на севере до Альп на юге, приходилось пересекать десяток стран и на каждой границе общаться с “неприязненными таможенниками и сборщиками налогов”. Теперь, когда эта система осталась в прошлом, развитие текстильной, горной и сталелитейной промышленности ускорилось. В 1840–1860 годах мощность установленных на заводах машин возросла в 10 раз, а протяженность железных дорог к 1869 году составила более 16 тысяч километров.

Параллельно шло становление серьезно перестроенной и лучше финансируемой немецкой системы образования. В первой половине XIX века прусское правительство пятикратно увеличило расходы на содержание университетов и переосмыслило их назначение. Они перестали быть учреждениями, где студентов с ложечки кормили имеющимися знаниями, и превратились в заведения, где знания должны были умножаться. Одной эрудиции отныне было недостаточно: преподавателям полагалось проводить исследования, демонстрируя творческий подход к делу.

В таком обществе рос Герман Гельмгольц. Пользуясь всеми его преимуществами, он завел долгую дружбу с другими амбициозными молодыми врачами, физиками и химиками. Сложившаяся группа единомышленников поставила перед собой задачу согласовать изучение живых организмов с текущими исследованиями неживого мира. Выражаясь современным языком, ученые хотели показать, что живые организмы подчиняются тем же математическим, физическим и химическим законам, которые управляют всем остальным. Однако такой подход привел к конфликту группы Гельмгольца с существенной частью европейского научного сообщества, полагавшей, что подобный синтез живого и неживого миров не представляется возможным. Многие ученые в то время верили в состоятельность витализма – идеи, что живые организмы не только получают питательные вещества из пищи, воды, воздуха и так далее, но и обладают “жизненной силой”. Пока организм жив, эта жизненная сила контролирует происходящие в нем физические и химические процессы. После смерти жизненная сила исчезает, и организм разлагается, словно неживой. Гельмгольц и его друзья выступали против “виталистического” представления о мире и считали, что очень важно опровергнуть его, чтобы поставить биологию на один фундамент с физикой и химией.

В 1843 году Гельмгольц окончил медицинский факультет и занял должность ассистента хирурга в гусарском полку в Потсдаме. Хотя в армии он приступал к своим служебным обязанностям в пять утра, когда трубач трубил побудку, Гельмгольц не прерывал свои научные занятия. Он за свой счет организовал в казармах небольшую лабораторию и начал серию экспериментов для проверки состоятельности теории витализма. Особенный интерес для Гельмгольца представляли новые исследования источников животного тепла, которые в то время вызывали ожесточенные споры.

Противники витализма полагали, что если им удастся доказать, что процесс выработки тепла у теплокровных животных напоминает медленное горение, не имеющее принципиальных отличий от горения угля, то витализму будет нанесен серьезный удар.

Эту гипотезу еще в 1780-х годах выдвинул великий французский химик Антуан Лавуазье, который представлял легкие как торпидную печь для сжигания пищи: “Дыхание, таким образом, есть горение, пусть и очень медленное, но все же совершенно аналогичное горению древесного угля”. Иными словами, пища была топливом, которое животные сжигали в кислороде, тем самым вырабатывая тепло при выделении углекислого газа как побочного продукта этого горения.

Однако в последующие годы ученые поняли, что на самом деле процесс гораздо сложнее. Пища не похожа на древесный уголь, который полностью состоит из углерода. Например, сахар и другие углеводы – это сложные молекулы, содержащие в дополнение к атомам углерода атомы водорода и кислорода. Следовательно, животное тепло может вырабатываться не только при сжигании углерода, но и при сжигании водорода. В ходе него также выделяется теплота, а конечным продуктом становится вода (Н2О). Наблюдения показывают, что животные выдыхают углекислый газ и выделяют воду, и это говорит в пользу изложенной теории.

Держа это в уме, двое ученых, бельгиец Сезар-Мансюэт Депре и француз Пьер Луи Дюлонг, исследовали предположение Лавуазье о том, что дыхание представляет собой особую форму замедленного горения. Работая по отдельности в 1820-х годах, они помещали кроликов, морских свинок, голубей, петухов, сов, сорок, кошек и собак в медные ящики, которые погружали в резервуар с водой. Это позволяло ученым измерять, сколько кислорода животное вдыхает за определенный период времени. Затем они оценивали, какая доля вдыхаемого кислорода связывается с углеродом и образует углекислый газ, а какая связывается с водородом и образует воду. После этого – измеряли, насколько повысилась температура воды в резервуаре. Далее – сжигали углерод и водород в кислороде, чтобы получить тот же объем углекислого газа и воды, который выдохнуло и выделило животное. Наконец, ученые измеряли количество теплоты, выделившейся в ходе этого процесса.

Оба ученых увидели, что при простом сжигании углерода и водорода в кислороде выделялось примерно на 10 % меньше теплоты, чем когда такое же количество углекислого газа и воды производили животные.

Это наблюдение соответствовало виталистическим представлениям о том, что у животных должен быть еще один источник тепла, который не подчиняется физическим и химическим законам, управляющим неживой природой. Следивший за дебатами из воинской части в Потсдаме Гельмгольц скептически отнесся к такому выводу. Он решил, что изучит животное тепло сам.

Гельмгольц выдвинул три аргумента против Дюлонга и Депре. Во-первых, он заявил, что их эксперименты основаны на неверных предположениях. Ученые измеряли количество теплоты, выделяемой при сжигании углерода и водорода в кислороде. Гельмгольц отметил, что содержащиеся в пище молекулы углеводов при сжигании выделяют большее количество теплоты, чем углерод и водород. Это объясняется тем, что в молекулах углеводов, помимо углерода и водорода, содержится некоторое количество атомов кислорода. В связи с этим при дыхании животные не просто связывают углерод и водород с кислородом из атмосферы, но и получают дополнительный приток кислорода из пищи. С учетом этого разница в количестве теплоты, выделяемой животными и выделяемой при горении, исчезает.

Во-вторых, Гельмгольц применил свои медицинские знания. Он провел несколько искусных экспериментов на лягушачьих лапках, чтобы попытаться доказать, что мышечное движение объясняется обычными химическими процессами, а не присутствием жизненной силы. Если говорить простым языком, Гельмгольц погружал лягушачьи лапки сначала в воду, а затем в спирт и измерял количество вещества, которое выделялось из них и растворялось в жидкостях. Затем он пропускал электрический ток по лапкам других лягушек, еще не погружавшихся в жидкости, и от этого их мышцы сокращались. После этого Гельмгольц помещал лапки, по которым прошел электроток, в воду и спирт и измерял количество выделяемого вещества. Он заметил, что сокращение мышц приводило к уменьшению количества вещества, растворяемого в воде, и это уменьшение точно уравновешивалось увеличением количества вещества, растворяемого в спирте. Иными словами, движение мышц сопровождалось преобразованием растворимого в воде вещества в вещество, растворимое в спирте. Было ясно: мышечное движение обеспечивалось химической энергией, выделяемой при преобразовании одного вещества в другое, что опять же принципиально не отличалось от процесса горения.

В-третьих, Гельмгольц обратился к своим знаниям о паровых машинах, а точнее, к той же гипотезе о невозможности создания вечного двигателя, которую Сади Карно выдвинул в своей революционной статье об эффективности паровых машин. Если виталисты были правы, утверждая, что животные могут создавать больше тепла, чем выделяется при сжигании углерода в кислороде, значит, внутри них существует другой источник тепла, который не подчиняется законам физики. Это, однако, подразумевало, что животные способны производить тепло, не потребляя ни пищи, ни топлива. Если же животные действительно могли создавать некоторое количество теплоты из ничего, то такая теплота теоретически могла использоваться для получения работы: с помощью нее можно было поднимать грузы, обеспечивать работу фонтана, тянуть состав по рельсам и выполнять другие задачи, не расходуя при этом топлива. Таким образом, если часть животного тепла происходила из нематериального источника “жизненной силы”, то она могла обеспечивать работу вечного двигателя. Однако, продолжал Гельмгольц, вечных двигателей не существует. Следовательно, животные не могут производить тепло без топлива. Тепло их тел должно обеспечиваться потребляемыми пищей и кислородом. Если Карно использовал невозможность создания вечного двигателя, чтобы показать, что теплота служит единственным источником работы в паровой машине, то Гельмгольц утверждал, что все тепло, выделяемое животным, должно производиться в ходе химических реакций, которые подчиняются тем же законам, что и неживая природа.

Аргументы Гельмгольца против витализма были тепло восприняты многими его коллегами-врачами. Ободренный, в начале 1847 года он взялся за новую статью, в которой надеялся распространить аргументы против витализма на всю науку. И снова главную роль играла невозможность создания вечного двигателя, но теперь Гельмгольц размышлял о ней совсем иначе. До сих пор невозможность получать работу из ничего – например, качать воду из колодца, не затрачивая усилий или топлива, – воспринималась в негативном ключе. За полезную работу всегда приходилось платить. Гельмгольцу пришло в голову, что в невозможности создания вечного двигателя нет ничего плохого, потому что она дает ценнейшие сведения о работе Вселенной на фундаментальном уровне. Она может пролить свет на взаимосвязь столь разных феноменов, как гравитация, движение, теплота, электричество и магнетизм. Впоследствии он написал: “Если принять, что perpetuum mobile невозможен, то какие отношения должны существовать между различными силами природы? Все открылось благодаря именно такой постановке вопроса”.

В июле 1847 года Гельмгольц прочитал свою статью на эту тему на встрече Берлинского физического общества – организации, основанной группой физиков, химиков, врачей и инженеров, представлявших новую прусскую технократию. Работа “О сохранении силы” стала не столько научной статьей, сколько манифестом теоретической физики, написанным амбициозным 26-летним ученым, преисполненным уверенности в своей правоте.

В статье Гельмгольца не обсуждались никакие научные идеи, которые не были озвучены ранее. Ее значимость объясняется тем, что в ней Гельмгольц предложил руководящий принцип – невозможность вечного двигателя – для изучения и объяснения всех природных явлений. Но в чем его польза? Иносказательно ответить можно так: бесплатных завтраков не бывает. Согласно Гельмгольцу, общее количество того, что он называл “силой” (Kraft), во Вселенной неизменно. Будь то хоть теплота, хоть электричество, хоть движение – все формы силы можно преобразовывать друг в друга, ничего при этом не уничтожая и не создавая. К подобному выводу пришел Джеймс Джоуль, а также немецкий физик Юлиус Роберт фон Майер из Вюртемберга. Но размах работы и стремление Гельмгольца объединить всю науку под знаменем сохранения силы сделали его статью уникальной.

Самым сложным аспектом его идеи стало слово Kraft, которое в прямом переводе означает “сила”. В том контексте, в котором его использует Гельмгольц, его, вероятно, лучше заменить термином “энергия”, но дать определение энергии не так просто. Даже сегодня большинству из нас известно, что энергия содержится в бензине и пище и приходит к нам домой с электричеством и газом, но у нас нет интуитивного понимания, почему столь разные феномены называются одинаково – “энергией”. Эта проблема озадачивала и многих ученых XIX века. Гельмгольц определил энергию, связав ее с невозможностью создания вечного двигателя. Чтобы лучше понять почему, рассмотрим мысленный эксперимент, вдохновленный статьей Гельмгольца.

Представьте идеально гладкий склон длиной 1 метр под углом в 45° к горизонтальной плоскости. Наверху, готовый соскользнуть вниз, стоит металлический куб массой 1 кг. Верхняя часть груза веревкой соединяется с электрической динамо-машиной. Груз скользит вниз по склону, пока не достигает самого низа, в процессе поворачивая динамо-машину, которая вырабатывает электричество. Это электричество запускает двигатель, затягивающий груз обратно вверх по склону. В такой машине Голдберга мы берем энергию земного тяготения и преобразуем ее в движение груза вниз. После этого мы преобразуем энергию этого движения в электрическую энергию, а затем обратно в энергию движения, которая позволяет грузу подняться наверх вопреки земному тяготению.

Гельмгольц заявил, что если каждое из преобразований сделано идеально, то ничего не теряется, а следовательно, груз оказывается ровно там, где был изначально. И это лучший из возможных вариантов. Ни при каких обстоятельствах невозможно провести преобразования таким образом, чтобы груз поднимался выше исходной точки.

По мнению Гельмгольца, такой анализ позволял установить количественную связь между, казалось бы, очень разными феноменами – гравитацией, движением и электричеством. Каждый тип энергии имеет “лучший возможный” обменный курс для преобразования в другой тип энергии, и этот курс заложен в законах природы.

В своей статье Гельмгольц также предложил другую важную идею – идею потенциальной энергии, которую он назвал “напряженной силой”. Если говорить простым языком, в соответствии с ней энергию можно хранить и высвобождать позже. Таким образом, в описанной выше системе, где груз стоит наверху, этот груз фактически представляет собой хранилище потенциальной энергии гравитационного взаимодействия, которая высвобождается, когда он соскальзывает вниз. Также, когда он поворачивает динамо-машину, вырабатываемое электричество используется для зарядки батареи, а значит, эта энергия сохраняется как потенциальная электрическая энергия, которую можно использовать позже – скажем, чтобы запустить двигатель. Гельмгольц отметил, что в пище хранится потенциальная химическая энергия, а когда животные потребляют эту пищу, они “поглощают определенное количество химических скрытых сил и <…> производят теплоту и механическую работу”. Такой подход позволил ему сделать вывод, что изначальным источником потенциальной химической энергии в пище должен служить солнечный свет.

В работе Гельмгольц признает, что пока не знает обменные курсы для разных форм энергии, но утверждает, что они должны существовать, и потому ставит перед физикой задачу с помощью опытов и наблюдений установить их значение. Он завершает свою статью призывом к действию, подчеркивая, что его цель заключалась в том, чтобы “представить физикам в возможной полноте теоретическое, практическое и эвристическое значение этого закона, полное подтверждение которого должно быть рассматриваемо как одна из главных задач ближайшего будущего физики”.

Статья Гельмгольца стала важной вехой в истории физики. Однако сначала ее приняли скептически, и самый престижный прусский научный журнал Annalen der Physik отказал Гельмгольцу в публикации, назвав работу чересчур спекулятивной, слишком теоретической и лишенной новых экспериментальных данных. Как и в случае с трудами Карно и Джоуля, научное сообщество не оценило труд Гельмгольца. Только при поддержке друзей из Берлинского физического общества он решился издать 60-страничную рукопись отдельной брошюрой.

Несмотря на то что статья была выдающейся, проблем избежать не удалось. В частности, Гельмгольц не сумел вписать поведение теплоты в закон сохранения энергии. Как и Уильям Томсон, Гельмгольц понимал ценность экспериментов Джеймса Джоуля, показавших, что механическую работу и электрическую энергию можно преобразовывать в теплоту. Это позволяло предположить, что теплота – тоже форма энергии. Но, как и Томсон, Гельмгольц считал убедительным анализ функционирования паровой машины, проведенный Карно, а Карно утверждал, что работу производит неизменное количество теплоты, которая перемещается из горячей зоны в холодную. Таким образом, теплота казалась асимметричной: хотя другие формы энергии могли преобразовываться в теплоту, сама теплота, судя по всему, не могла преобразовываться ни во что. Гельмгольц отметил: “Исчезает ли тепло при возникновении механической работы, что является необходимым постулатом сохранения энергии, этот вопрос еще никогда не ставился”.

Хотя это утверждение верно, Гельмгольц несправедлив к своим современникам. Джеймс Джоуль измерил количество работы, необходимое для создания определенного количества теплоты, но провести эксперимент в обратном порядке и оценить, “исчезает” ли теплота при производстве работы, было невозможно. Доступные в 1850-х годах технологии не позволяли с нужной точностью измерить количество теплоты, которое выходило из нагревателя паровой машины и приходило к охладителю.

Правда о том, что именно представляет собой теплота и каким образом она производит работу, оставалась скрытой.

Назад: Глава 4. Долина Клайда
Дальше: Глава 6. Тепловой поток и конец времени