Книга: Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении
Назад: Глава 5 Почему вся кровь не вытекает при ранении? Что такое гемостаз?
Дальше: Часть II Заглянуть внутрь Как исследуют кровь, берут на анализ костный мозг и изучают внутренние органы без вреда для их обладателя

Глава 6
Между строк песни «Группа крови»

Теплое место, но улицы ждут
Отпечатков наших ног.
Звездная пыль на сапогах.
Мягкое кресло, клетчатый плед,
Не нажатый вовремя курок.
Солнечный день в ослепительных снах.
Группа крови на рукаве,
Мой порядковый номер на рукаве.
Пожелай мне удачи в бою,
Пожелай мне:
Не остаться в этой траве,
Не остаться в этой траве.
Пожелай мне удачи,
Пожелай мне удачи!

Виктор Цой. Группа крови
Читателю, конечно же, хорошо знакомы эти строки. И лидер группы «Кино» отразил в своей песне реальную практику: действительно, в униформе многих армий мира предусмотрена специальная нашивка, на которой указывается группа крови и резус-фактор. Хотя занудные критиканы не упустили случай придраться к словам песни, ворча, что группу крови не указывают на форме в тех местах, которые в ходе боевых действий могут быть повреждены (в том числе и на рукаве, так как есть риск лишиться руки), поэтому чаще всего она нашивается на грудь. Некоторые даже делают татуировки на груди.
Сведения о группе крови раненого военнослужащего, которые врач или санитар может легко узнать по его нашивке, очень важны для спасения жизни: при большой кровопотере крайне важно как можно быстрее определить группу крови для переливания. Если влить по ошибке большое количество крови не той группы или резус-фактора, то реципиент может и умереть. Так что, да, группа крови на груди увеличивает шансы «не остаться в этой траве».
А вот многих первых участников опытов по переливанию крови удача явно обошла стороной. Это и понятно: тогдашние экспериментаторы не видели разницы даже между человеческой кровью и кровью животных. В 1666 году английский анатом Ричард Лоуэр (1631‒1691) успешно перелил кровь одной собаки другой. В 1667 году профессор философии и личный врач короля Людовика XIV Жан-Батист Дени (1643‒1704) вместе с хирургом Полем Эммерезом (?‒1690) успешно перелили кровь ягнят двоим больным. Надо сказать, что тем, кто выжил в ходе этих экспериментов, просто повезло, что им влили небольшие дозы овечьей крови. Следующие двое подопытных оказались не столь везучими, и после смерти одного из них, хотя и вызванной тем, что его травила мышьяком жена, подобные эксперименты во Франции запретили. Впрочем, идея продолжала жить в умах медиков. С 1818 по 1830 год британский врач Джеймс Бланделл (1790‒1878) после серии опытов на собаках выполнил десяток задокументированных переливаний крови от человека к человеку, пять из которых удались. Он опубликовал результаты своих исследований, где отмечал, что основными проблемами являются свертывание крови, воздушная эмболия и несовместимость крови в ряде случаев. И если часть проблем Бланделл смог разрешить благодаря изобретенной им аппаратуре для облегчения процедуры переливания, то причина несовместимости оставалась загадкой, а значит, переливание крови можно было применять лишь к безнадежным больным.
В России методику Бланделла успешно использовал петербургский акушер Андрей Мартынович Вольф, который спас жизнь роженице с кровотечением, перелив ей кровь ее мужа. Это случилось 20 апреля 1832 года, поэтому Национальный день донора в России приурочен к этой дате, тогда как Всемирный день донора крови отмечается 14 июня (дальше я расскажу почему). Но четыре последующие операции переливания закончились неудачей. В 1865 году в Медико-хирургической академии (так тогда называлась моя альма-матер) врач Василий Васильевич Сутугин (1839‒1900) защитил диссертацию о переливании крови, в которой предложил метод ее консервирования. Но предпринятая им попытка спасти умирающую роженицу путем переливания крови не удалась. Разгадку причины несовместимости пришлось ждать еще долго.
Сначала удалось поставить точку в вопросе об использовании крови животных для переливания человеку. В 1869 году гейдельбергский студент-медик Адольф Крейт (1847‒1921) описал агглютинацию (склеивание в комочки и выпадение в осадок) эритроцитов в крови кролика или человека при добавлении туда чужеродной сыворотки (кошки, собаки и т. д.), наблюдая реакции под микроскопом. Более широкую известность, однако, приобрели аналогичные опыты немецкого физиолога Леонарда Ландуа (1837‒1902), результаты которых были опубликованы в 1875 году. Таким образом, биохимическая видовая специфичность, связанная, как доказал Крейт, с белками сыворотки, делала невозможным использование животной крови для переливания.
Следующий ключ к решению загадки несовместимости дала микробиология, а точнее, бактериология, начавшая бурно развиваться с конца 1850-х годов и быстро добившаяся успехов в борьбе с некоторыми инфекциями путем вакцинации. Этот принцип защиты от возбудителя инфекционной болезни в 1880 году обосновал французский микробиолог Луи Пастер (1822‒1895): организм после встречи с ослабленным возбудителем (иммунизации) становится невосприимчив к высокопатогенным микробам того же вида. Пастер объяснял это тем, что при иммунизации ослабленные микробы съедают нужные им для развития питательные вещества в организме, так что при повторном заражении «агрессивные» микробы остаются на голодном пайке. Сама по себе такая идея была не нова: впервые предположение, что инфекции истощают некое вещество в организме, исключая повторное заражение, выдвинул еще в 1721 году американский священник и ученый-любитель Коттон Мэзер (1663–1728). В противовес пастеровской теории «истощения» французский ветеринар Жан-Батист Шово (1827–1917) выдвинул «ретенционную» (от латинского retentio – удержание) теорию, согласно которой при иммунизации в организме накапливаются (удерживаются) продукты метаболизма бактерий, препятствующие их размножению. Но, как показали опыты французского ветеринара Жан-Жозефа Анри Туссена (1847–1890), для иммунизации можно использовать не ослабленные, а мертвые бактериальные культуры. В 1890 году немецкий бактериолог Эмиль фон Беринг (1854‒1917), вместе со своим японским коллегой Китасато Сибасабуро (1853‒1931) проводивший опыты по заражению морских свинок дифтерией, окончательно опроверг теорию «истощения». Оказалось, что у морских свинок вырабатывается иммунитет и при действии на них токсинов (химических веществ, вырабатываемых бактериями), а не живых бактерий. И если сыворотку крови перенесших дифтерию морских свинок ввести другим, то те приобретают пассивный иммунитет. Значит, в крови переболевших появляется какой-то антитоксин, который нейтрализует дифтерийный токсин.
Химическую природу этих антитоксинов выяснили в 1891 году итальянские исследователи Гвидо Тиццони (1853‒1932) и Джузеппина Каттани (1859‒1914): изучая столбнячный антитоксин, они смогли определить, что это глобулярный белок, так что и «ретенционная» теория была окончательно похоронена. В том же году немецкий бактериолог и химик Пауль Эрлих (1854‒1915) употребил в отношении антитоксинов термин «антитело» (Antikörper), так как бактерии по-немецки в то время именовались Körper («тельца»). В 1897 году Эрлих предположил, что в организме и до попадания инфекционного агента уже присутствуют антитела в форме так называемых боковых цепей (подробнее о его теории мы расскажем в главе 28). В 1899 году венгерский микробиолог Ласло Детре (1874‒1939) ввел в научный оборот термин «антиген» для обозначения чужеродных веществ, в ответ на которые организм вырабатывает антитела. Так терминологически оформилась концепция антител и антигенов, которая удивляет всех сталкивающихся с ней в первый раз нелогичностью обозначений: против какого тела и какого гена действуют антитела и антигены?
Взаимодействие антител и антигенов вне организма может выражаться в разных формах – от нейтрализации (блокировки активного центра антигена) до преципитации (помутнения раствора из-за образования комплекса антиген‒антитело) и агглютинации. В последнем случае антитела называются агглютининами, а антигены – агглютиногенами. Открытие бактериальных агглютининов вызвало всплеск интереса к агглютининам, воздействующим на эритроциты в человеческой крови: обнаружилось, что в ряде случаев человеческая сыворотка склеивает чужие человеческие эритроциты. Однако все эти исследования исходили из того, что сывороточные агглютинины были результатом инфекционных заболеваний и являлись специфичными для конкретного заболевания.
Окончательно элементы головоломки сложились, когда в 1900 году Карл Ландштейнер (1868‒1943), ассистент директора Патолого-анатомического института при Венском университете, страстный (но тайный) поклонник детективных романов, занялся изучением реакции человеческой сыворотки крови с чужими человеческими эритроцитами. Хотя его основной обязанностью было проводить вскрытия, он не забросил свои исследования крови, которыми занимался ранее. Так что же убивало эритроциты? По всем канонам детективного жанра в итоге подозрение пало не на «гостей» (агглютинины крови, вырабатывавшиеся для борьбы с инфекцией), а на «дворецкого» (родные агглютинины крови, изначально присущие организму). То есть, возможно, специфичность присуща не только видам (кроликам нельзя перелить сыворотку кошки), но и группам особей одного вида. Такой подход изрядно облегчал задачу, не давая отвлекаться на гипотезы о бактериальных агглютининах у различных людей и диктуя простой план исследования.
Взяв образцы крови у себя и у четверых вроде бы здоровых коллег (потом круг испытуемых расширится до 29), Ландштейнер отделил сыворотку крови от эритроцитов и исследовал их поведение при смешении в 144 разных комбинациях. Оказалось, что одни смеси дают реакцию агглютинации (склеивания), а другие – нет.
Реакция при смешении плазмы крови и эритроцитов позволяла выявить разные типы антигенов, присущих эритроцитам, взятых от разных людей. Одни эритроциты обладали такими антигенами – белками на своей поверхности, что склеивались с антителами чужой плазмы и выпадали в осадок. Если бы такое происходило при реальном переливании крови, то все закончилось бы плачевно. Тогда как другие эритроциты отказывались склеиваться с антителами чужой плазмы – у них не было соответствующих антигенов. И тогда переливание могло пройти успешно.
Таким образом, группы крови определяются иммунным ответом организма на антигены (агглютиногены) чужих эритроцитов.
Исходя из результатов опытов, Ландштейнер выделил три группы крови, а через два года его сотрудники Адриано Стурли (1873‒1964) и Альфред фон Декастелло (1872‒1960) описали четвертую, правда сочтя ее каким-то странным исключением. За свое открытие в 1930 году Ландштейнер, уже работая в Рокфеллеровском институте медицинских исследований в Нью-Йорке, удостоился Нобелевской премии. Кстати, это его день рождения отмечается как Всемирный день донора крови, про который я уже упоминал.
Первые три группы в статье Ландштейнера «Об агглютинативных свойствах нормальной человеческой крови», вышедшей в 1901 году, были названы А, В и С, а четвертая сначала именовалась особой группой, но в 1910 году работавшие в Гейдельбергском институте экспериментальных исследований рака Людвик Гиршфельд (1884‒1954) и Эмиль фон Дунгерн (1867‒1961) назвали эту группу АВ, а группу, которую Ландштейнер назвал С, переименовали в нулевую. Такую кодировку группы крови получили по признаку отсутствия или наличия определенных антигенов на поверхности эритроцитов. В крови нулевой группы их нет, в случае группы А есть только А-антигены, группы В – лишь В-антигены, а в крови группы АВ присутствуют оба антигена.
Давайте разберем на примере группы 0(I): эритроциты этой группы не содержат агглютиногенов А и В и, следовательно, не дают реакции агглютинации ни с какими сыворотками крови человека, так как отсутствует один из компонентов этой реакции. Сыворотка же, имея оба соответствующих агглютинина α (анти-A) и β (анти-B), «отправляет в осадок» эритроциты всех прочих групп, потому что их эритроциты всегда содержат тот или иной агглютиноген. Поэтому человеку с группой крови 0(I) можно переливать только одногруппные компоненты, содержащие эритроциты, и наоборот, в экстремальных ситуациях эту группу крови можно переливать к другим, то есть обладатель такой группы крови – универсальный донор. Люди с группой АВ(IV), напротив, являются универсальными реципиентами, им можно переливать кровь любой группы, потому что у них в плазме нет агглютининов, склеивающих агглютиногены А и В, хотя сейчас все же стараются переливать только одногруппные компоненты, чтобы избежать осложнений в ряде случаев. Впрочем, и с одногруппной кровью не все так просто: у антигена А есть сильный вариант А1 (примерно в 75 % случаев), слабый вариант А2 (около 25 % случаев) и еще четыре крайне редко встречающихся слабых варианта. Слабые варианты антигена А иногда могут привести к ошибкам при определении группы крови. Варианты есть и у антигена В.
Важное значение имеет так называемый резус-фактор, открытый в 1937 году Ландштейнером и Александром Винером (1907‒1976) в ходе экспериментов на обезьянах макак-резус. Кровь обезьян, введенная кроликам, приводила к выработке у последних антител, так что иммунная кроличья сыворотка склеивала эритроциты обезьян (что неудивительно) и 85 % людей (вот это было неожиданностью). Получалось, что эритроциты 85 % людей содержат антиген (его назвали антиген D), который отсутствует в эритроцитах остальных людей с отрицательным резусом. Филип Левин (1900‒1987) и Руфус Стетсон (1886‒1967) выявили клиническую значимость этой системы двумя годами позже при изучении гемолитической желтухи новорожденных: оказалось, она возникает из-за того, что у матери и ребенка разные резус-факторы.
Системы крови не исчерпываются резус-фактором и группами крови: сам Ландштейнер (вместе с Винером и Левином) открыл еще системы MNS (1927 год) и P (1928 год), а всего на сегодняшний день их известно 43, причем многие носят несколько причудливые названия вроде «Ок», «Кидд», «Джуниор». Известно около 300 эритроцитарных антигенов, так что к этим системам крови могут добавиться новые. Да и система AB0 (по группам крови) оказалась способна преподносить сюрпризы. Дело в том, что антигены A и B на поверхности эритроцитов формируются из исходного антигена H благодаря соответствующим ферментам, выработка которых кодируется определенными генами ДНК. В случае группы крови 0(I) никакой из этих ферментов не вырабатывается из-за сбоя кодирующих генов, и имеющийся антиген H остается на поверхности эритроцитов неприкаянным, так и не превратившись в антигены A и B. Но может статься, что засбоит ген, кодирующий синтез антигена H, и тогда мы получим так называемый бомбейский феномен (люди с такой мутацией были обнаружены впервые в Бомбее в 1952 году) – группу крови, у которой нет антигенов A, B, H, но есть антитела к ним. Кровь этой группы можно переливать всем (учитывая, конечно, резус-фактор и прочие факторы), в том числе и обладателям группы 0(I), но донорами для реципиентов с «бомбейской» группой крови могут быть только обладатели такой же. К счастью, в среднем на 300 тысяч человек приходится лишь один такой случай.
Открытие групп крови сделало переливание практически безопасным, и оно быстро вошло в клиническую практику. Правда, какое-то время царил кавардак с обозначением групп крови. В 1907 году чешский врач-психиатр Ян Янский (1873‒1921) предложил нумерацию групп римскими цифрами, где группа без антигенов обозначалась единицей, с одним антигеном – соответственно двойкой (A) и тройкой (B), а с двумя антигенами – четверкой. А в США в 1910 году Уильям Мосс (1876‒1957) предложил обратную нумерацию, которую переняли и англичане, и французы.
Первая мировая война с ее внедрением в практику полевой хирургии переливания крови, требовавшей в больших количествах донорской крови, все же не привела к выработке унифицированной системы обозначений. В каждой армии были свои правила. Надо сказать, что самыми продвинутыми в плане переливания крови оказались американские экспедиционные силы: там, хоть и не додумались до нашивок, врачей снабжали ампулами с сыворотками для определения групп крови у раненых и доноров и стали первыми использовать консервированную донорскую кровь. Разнобой в обозначениях продолжался до тех пор, пока в 1937 году в Париже на съезде Международного общества переливания крови не была официально рекомендована буквенная система, которая четко указывает на наличие или отсутствие специфических антигенов. Но повсеместно систему АВ0 стали использовать с середины 1950-х годов.
А в СССР упорно продолжали придерживаться системы Янского, и эту традицию унаследовали многие постсоветские государства, в том числе и Россия, где до сих пор используется цифровая нумерация групп крови, впрочем дублируемая международной. В боевых условиях такое дублирование информации на нашивке может оказаться и полезным.
Если ограничиться основными антигенами, то можно выделить четыре группы: 0, A, B и AB – соответственно I, II, III, IV и положительный или отрицательный резус (Rh+ и Rh–), что дает восемь вариантов.
В разных регионах планеты «популярны», соответственно, разные группы крови, так как этот признак определяется наследственностью. Например, в России самая распространенная II группа крови, вслед за ней с небольшим отставанием следует I, тогда как в Великобритании в тренде I группа, а, скажем, в Калмыкии – III группа.
Наука на данный момент так и не изобрела никаких заменителей крови, которые бы могли полностью взять на себя функцию газотранспортных переносчиков, хотя такие попытки, конечно же, предпринимаются. Пока без донорской крови и ее компонентов обойтись нельзя, во всех развитых странах они используются очень широко – об этом свидетельствует наличие огромного количества банков крови и отделений переливания крови при больницах.
Метод заместительной гемокомпонентной терапии, то есть переливание донорских компонентов крови: эритроцитов, плазмы и тромбоцитов, остается востребованным и актуальным во всех областях медицины, и особенно в гематологии и онкологии. Нет ничего проще, чем восполнить дефицит какого-либо компонента донорским, но, несмотря на привлекательность этого метода, он сопряжен с определенными рисками, например с опасностью заразиться инфекцией (гепатитом или ВИЧ) или с аллергической реакцией (да-да, у одного человека может быть аллергия на кровь другого!).
Хотя всех доноров крови тестируют на инфекции, полностью этого риска избежать невозможно. По своей сути любое переливание донорских компонентов, будь то эритроциты или плазма, – мини-трансплантация органа, ведь мы помним, что кровь – это ткань и подобная процедура сродни пересадке печени или почки. Как «пересадить» всю кровь целиком, я расскажу чуть позже.
Единственная область, где синтетические препараты уже сейчас могут составить конкуренцию донорской крови, – производство некоторых конкретных компонентов плазмы крови. Так, для больных гемофилией производятся факторы свертывания (вещества, которые помогают крови сворачиваться), полученные генно-инженерными методами. Они безопаснее, чем полученные из донорской крови препараты, и очень эффективны.
Сейчас, когда вы получили общее представление о строении и работе крови и кроветворных органов, пора переходить к более подробному рассказу о том, каким образом и почему развиваются гематологические заболевания. В следующей части мы тщательно разберем каждое из них, а еще я расскажу о различных методах диагностики, лечения и о медицинских технологиях. Кроме того, мы совершим несколько экскурсов в прошлое, ознакомимся с современным состоянием гематологии, а также поразмышляем о том, что готовит нам будущее.
Но перед этим не мешало бы поговорить о некоторых предрассудках и мифах, связанных с кровью.

О бедном вампире замолвите слово

Есть заболевания, которые на данный момент лечатся переливанием крови. Одно из них – порфирия, или порфириновая болезнь (греч. πορφύριος – багряный, пурпурный), некоторые симптомы которого напоминают обывательские представления о вампирах. Изначально вампиры были персонажами восточноевропейского фольклора – это живые мертвецы, способные оборачиваться летучими мышами и питающиеся человеческой кровью. Образ вампира прочно укоренился в современной массовой культуре с легкой руки ирландского писателя Брэма Стокера, опубликовавшего в 1897 году готический роман «Дракула», хотя настоящий вампирский бум начался только с экранизации его произведения в 1931 году. С тех пор образ наводящего ужас существа с бледной кожей и клыками, ведущего ночной образ жизни, бесчисленное количество раз тиражировался в кино.
Как полагает ряд исследователей, начало легендам про вампиров положила распространенность порфирии в восточных регионах Европы. Это группа наследственных (в подавляющем числе случаев) заболеваний, связанных с нарушением работы ферментов, участвующих в синтезе гема, который, как мы знаем, входит в состав гемоглобина и состоит из иона железа и производных порфирина. По месту возникновения проблем порфирии подразделяются на печеночные (чаще всего) и эритропоэтические (тут сбоит костный мозг). Нарушение синтеза гема приводит к накоплению в организме порфирина или его предшественников. Порфирины представляют собой светочувствительные оранжево-красные пигменты, которые придают моче характерный красный цвет. Больным порфирией противопоказан солнечный свет, так как под его воздействием на коже, где накапливается пигмент, появляются язвы. Кстати, благодаря чувствительности порфиринов к свету они могут быть использованы как фотосенсибилизаторы при фотодинамической терапии опухолей.
Порфирин откладывается и на зубах, придавая им розово-желтый или красно-коричневый оттенок, а рубцовая деформация губ оголяет корни зубов, в том числе и клыков, визуально удлиняя их. Кроме того, при некоторых видах порфириновой болезни поражается нервная система, что приводит к сильным болям (обычно в животе) или даже к психическим расстройствам (к вопросу о странностях поведения).
Сегодня порфирию лечат с помощью переливания крови (точнее, эритроцитарной массы) и таких препаратов, как нормосанг и пангематин, которые подавляют активность ферментов, синтезирующих порфирины. В более тяжелых случаях применяется пересадка печени или костного мозга, которая позволяет перезапустить процесс кроветворения.

Размышление о группах крови при выборе блюд

Мифы, касающиеся групп крови, до сих пор распространены в ряде стран; например, в Японии считают, что группа крови связана с темпераментом, способностями и привычками. В этой стране деление по группам крови имеет такое же значение, как у нас и на Западе по 12 знакам зодиака, популярны соответствующие ежедневные гороскопы, а дискриминация при приеме на работу по признаку группы крови стала национальной проблемой. Хорошо еще, что журналист Масахико Номи, чья книга, вышедшая в 1971 году, положила начало подобной моде, не стал заморачиваться сильными и слабыми вариантами антигенов A и B (или же просто о них не знал, будучи по образованию инженером и юристом) – это еще сильнее усложнило бы жизнь японцев, да и южнокорейцев, перенявших подобные воззрения. В Южной Корее популярны вебтун «Простое размышление о группах крови» с персонажами 0, A, B и AB, характер которых определяется их группой крови, и аниме-адаптация по его мотивам.
Простота подобных размышлений, видимо, вдохновила доктора натуропатии (не буду даже разъяснять, что это такое) Джеймса Д’Адамо, который, обнаружив, что прописываемая им вегетарианская диета с низким содержанием жиров срабатывает не для всех, отнес это на счет различий в группах крови (все же знаки зодиака выглядели бы не так научно) и написал в 1980 году книгу «Еда для одного» (One Man’s Food… is Someone Else’s Poison), пропагандирующую диету по группе крови. Его сын Питер продолжил семейное дело и в 1996 году выпустил книгу «Питайтесь правильно для своей группы крови» (Eat Right 4 Your Type) с обоснованием этой системы, положившую начало моде на подобные диеты.
В основе гипотезы Д’Адамо лежит сомнительное утверждение, что возникновение тех или иных групп крови связано с переломными событиями в жизни человеческих сообществ в плане перехода к тем или иным видам хозяйствования: I группа крови самая древняя, и ею обладали сообщества охотников, II появилась при переключении на земледелие, III связана с кочевым образом жизни, IV образовалась в результате смешения II и III групп. Поскольку пищеварительная система человека якобы сохраняет предрасположенность к тому типу питания, что был у его предков, то обладателям I группы нужна мясная диета, II – овощи, фрукты и крупы, III – мясо и молочные продукты, IV – овощи, фрукты, мясо.
В 2014 году на медицинском факультете Университета Торонто было проведено масштабное исследование с участием 1455 добровольцев, где испытуемые соблюдали различные диеты, рекомендованные Д’Адамо. Измерение биомаркеров кардиометаболического здоровья показало, что результаты зависят от диеты, но не от группы крови.
Да и с точки зрения генетики картина эволюции групп крови, предложенная Д’Адамо, сомнительна. Например, среди всех народов наибольшая доля обладателей II группы крови у саамов – самого древнего населения Северной Европы, занимающегося охотой и оленеводством. Генетики считают, что предковой формой является II группа крови, а I появилась в результате мутации в ДНК людей с другими группами крови – ранее, при описании бомбейского феномена, уже пояснялось, что у обладателей I группы сбоит ген, кодирующий достройку антигенов A и B на основе антигена H.

Интеллектуальное наследие гиппопотамов

Кровопускание является одним из самых древних видов лечения. Познакомили человечество с этой процедурой, как уверял Плиний Старший, гиппопотамы, жившие в Ниле: они спасались от мук обжорства, протыкая вену на ноге стеблем тростника. Эта побасенка, впрочем, римлян не удивляла – сами они во время пиров щекотали горло павлиньим пером, чтобы срыгнуть и освободить место в желудке для следующих блюд. К сожалению, античные светила медицины прописывали кровопускание не обжорам, а больным.
Живший во II веке нашей эры древнеримский врач греческого происхождения Гален, связав различные органы с определенными кровеносными сосудами, давал рекомендации по кровопусканию: при проблемах с печенью следовало отворить кровь из вены на правой руке, при болезни селезенки – из вены на левой. И чем тяжелее болезнь, тем больше крови следовало выпустить. Согласно Галену, центром кровеносной системы является печень, откуда кровь разносится по телу и поглощается им, питая его. Поскольку кровь не возвращается обратно, она постоянно вырабатывается печенью, а кровопускание предотвращает застой крови.
Средневековая медицина развивалась в русле этой традиции, и лишь работы Гарвея положили начало пересмотру взглядов. Профессор Падуанского университета Бернардино Рамаццини (1633‒1717) иронизировал над приверженцами старой школы: «Со стороны кажется, что кровопускатель взял в руки Дельфийский меч, чтобы истребить невинных жертв, а не уничтожить болезнь». Окончательно кровопускание было вытеснено из повседневной врачебной практики только во второй половине XIX века, хотя сохранилось в китайской, тибетской и мусульманской нетрадиционной медицине (гирудотерапию, то бишь лечение пиявками, я все же вынесу за скобки, раз там пациента не режут). В российских реалиях на слуху, конечно же, хиджама – древняя арабская методика кровопускания. Реклама клиник, проводящих эту процедуру, как-то подозрительно схожа по содержанию с трактатами Галена: «Далеко не всем известно, что кровь может застаиваться, поскольку лишь часть ее движется по сосудам. Находящаяся в неподвижности кровь постепенно теряет качество и поглощает негативные последствия функционирования человека (от неправильного питания, стрессов, загрязненного воздуха и пр.). Кровопускание – простой способ убрать застоявшуюся кровь».
К счастью, в обычной медицине сегодня кровопускания не применяются для лечения всего подряд, однако в гематологии этот метод (правда, именуют его сейчас флеботомией) до сих пор широко используется для удаления избытка эритроцитов при эритроцитозах и при заболевании, называемом истинная полицитемия, или повышенном количестве лейкоцитов при жизнеугрожающих состояниях, которые могут наблюдаться на начальных этапах лечения острых лейкозов. Да и при порфирии в ряде случаев практикуют кровопускание.
Назад: Глава 5 Почему вся кровь не вытекает при ранении? Что такое гемостаз?
Дальше: Часть II Заглянуть внутрь Как исследуют кровь, берут на анализ костный мозг и изучают внутренние органы без вреда для их обладателя

ThomasNug
гидра не работает hydra onion ссылка на гидру hydra onion hydrarusoeitpwagsnukxyxkd4copuuvio52k7hd6qbabt4lxcwnbsad.onion hydraclubbioknikokex7njhwuahc2l67lfiz7z36md2jvopda7nchid гидра сайт настоящая ссылка на гидру hydraruzxpnew4af hydraclubbioknikokex7njhwuahc2l67lfiz7z36md2jvopda7nchid hydra onion hydrarusawyg5ykmsgvnyhdumzeawp465jp7zhynyihexdv5p74etnid.onion