Глава 2
Кроветворение: откуда берутся клетки крови?
Кровь обновляется быстрее любой другой ткани:
за одну минуту в кроветворных органах образуется более 400 миллионов клеток;
за один день в организме образуется и гибнет около 1,2 триллиона клеток;
масса образованных за всю жизнь клеток крови в десятки раз превышает массу тела.
Если с организмом все в порядке, то соотношение между разными клетками крови сохраняется на одном и том же уровне. Однако под воздействием внешних или внутренних факторов это соотношение может резко меняться.
Например, при инфекции или воспалении увеличивается выработка гранулоцитов – клеток, уничтожающих вирусы и бактерии. А при кровопотере активно вырабатываются эритроциты и тромбоциты: первые – чтобы восполнить потерянную массу крови, а вторые – чтобы скорее заделать «пробоину», остановить кровопотерю.
Образование и созревание клеток крови происходит в течение всей жизни человека в специальных тканях и органах: костном мозге, селезенке, тимусе (вилочковой железе) и лимфатических узлах. Причем органы кроветворения не только создают новые клетки крови, но и обучают их. Каждая клетка проходит несколько стадий созревания, пока не становится способна выполнять предписанные ей функции. Каким образом это происходит?
Процесс кроветворения, или гемопоэз (от др.-греч. αἷμα – кровь и ποιεῖν – выработка, образование), начинается еще до рождения человека – в утробе матери. И по мере роста, рождения, развития в кроветворении участвуют разные органы.
Уже на третьей неделе беременности у плода запускается процесс кроветворения в желточном мешке. На третьем месяце главным кроветворным органом становится печень. С четвертого месяца гемопоэз начинается в костном мозге, также в этом процессе у плода участвуют селезенка, лимфатические узлы и тимус. После рождения единственным местом образования клеток крови в норме является красный костный мозг. Он становится главной «фабрикой» по производству всех клеток крови у взрослого человека.
Обучением клеток заведуют тимус, селезенка и лимфатические узлы. Этот процесс дифференцирования клеток можно сравнить с выбором профессии. Например, эритроциты становятся курьерами и мусорщиками, доставляя тканям кислород и унося углекислый газ, тромбоциты – спасателями, моноциты – фельдшерами и парамедиками, а лимфоциты – нашими внутренними докторами.
Наивные лимфоциты, еще не приобретшие специализацию, похожи на выпускников медицинских вузов: вроде бы готовы к работе, но что конкретно делать? У них впереди приобретение специализации по терапии (В-лимфоциты) или хирургии (Т-лимфоциты). Если они хотят стать более узкими специалистами, то учатся дальше и становятся кардиологами, онкологами, травматологами или сосудистыми хирургами – их роли в теле выполняют клетки хелперы, супрессоры, киллеры и клетки памяти.
Костный мозг – главный орган кроветворения
На костный мозг приходится 5 % от общей массы тела у взрослого человека.
Когда человек вспоминает школьную анатомию, ему, как правило, сразу же приходят на ум легкие, желудок, кишечник, печень и другие очевидные органы. А вот про костный мозг помнят единицы. Потому что – где он? Его ни нащупать, ни на УЗИ рассмотреть. Он где-то там, в глубине кости (да еще и не каждой). Но именно он обеспечивает нас клетками крови, которые для нас жизненно необходимы. На рисунке 3 вы можете увидеть, в каких именно костях скрывается костный мозг.
И уж совсем мало кто вспомнит, что у нас в теле есть два типа костного мозга: желтый – он в основном состоит из жира и не участвует в кроветворном процессе и красный костный мозг – тот самый центральный орган создания крови.
Здесь, в красном костном мозге, находятся стволовые кроветворные клетки. Из этих «клеток-родоначальниц» получаются эритроциты, тромбоциты, гранулоциты и моноциты, которые после длительного развития выходят из костного мозга в кровеносное русло и сразу начинают выполнять предназначенные функции.
«Как клетки могут из кости попасть в кровь?!» – спросите вы. С легкостью! В составе красного костного мозга есть два главных компонента: гемопоэтическая ткань (очень похожая на желе) и сеть сосудов-синусов, имеющих диаметр 50‒75 мкм. С помощью этих сосудов костный мозг, как и любой другой орган, снабжается кислородом и другими питательными веществами. И через эти же сосуды вновь образованные клетки крови попадают в кровеносное русло организма.
У красного костного мозга есть еще одна удивительная особенность: он умеет исчезать! Печень, например, или легкие не могут бесследно исчезнуть, а вот костный мозг – вполне. Состояние, когда красный костный мозг полностью аплазировался (аплазия – тотальное отсутствие органа), называется апластической анемией. В таком случае красный костный мозг замещается желтым (жиром), образуются пустоты – большие жировые вакуоли, кости буквально пустеют. И, конечно же, клетки крови перестают вырабатываться. Как и следовало ожидать, такое состояние угрожает жизни. К счастью, во многих случаях оно успешно лечится.
Рис. 3. Где находится костный мозг?
Причины этого состояния могут быть как врожденными, так и приобретенными. Если вы смотрели сериал «Чернобыль», то видели, как выглядят люди с острой лучевой болезнью. Все они так или иначе столкнулись с гибелью клеток костного мозга. Кстати, именно радиационное облучение используется и при лечении болезней костного мозга, когда надо убить больные клетки и заместить их здоровыми.
При переломах же костей, вопреки ожиданиям, костный мозг никуда не девается: даже если произошел серьезный перелом таза, благодаря своей гелеобразной структуре костный мозг не «убегает», и потерять его даже при серьезной травме невозможно.
Тимус, селезенка, лимфатические узлы: где создаются лимфоциты?
Если с эритроцитами и тромбоцитами мы разобрались (они рождаются и обучаются в костном мозге), то с лимфоцитами все несколько сложнее. В процессе формирования они путешествуют по всему телу: как особо любознательные студенты, они едут учиться за границу – из селезенки в тимус с экскурсионным туром по лимфатическим узлам и даже к кишечнику.
Селезенка находится в левом подреберье и является главным местом созревания лимфоцитов. На самом деле доучивание лимфоцитов не единственная ее профессия: у селезенки очень много функций.
Она выступает в роли фильтра для бактерий – удаляет их из крови. Вырабатывает антитела для борьбы с инфекциями.
Кроме того, она является своего рода депо (да, прямо как трамвайное или автобусное) для здоровых клеток крови. И претворяет в жизнь максиму «старикам тут не место»: уничтожает «престарелые» эритроциты и тромбоциты, которые отслужили свое.
Рис. 4. Где вырабатываются и обучаются лимфоциты?
Если по какой-то причине нарушается работа костного мозга, то селезенка берет процесс кроветворения на себя.
Как ни странно, человек может жить без такого важного и многофункционального органа: возможно, вы слышали, что при серьезных авариях, например, случается разрыв селезенки, но если человеку вовремя оказана помощь и купировано кровотечение, то это не фатально.
Нельзя сказать, что жизнь без селезенки можно назвать здоровой: часть ее функций на себя берет печень и костный мозг, но проблемы с иммунитетом неизбежно будут возникать, и для их устранения потребуется та или иная терапия.
Тимус – орган, находящийся за грудиной, исполняет роль учебного центра для лимфоцитов. Он ничего не вырабатывает сам, зато дает образование лимфоцитам, трансформируя их в лимфоцитов-хирургов – Т-лимфоциты. Их еще называют Т-киллеры или цитотоксические Т-лимфоциты. Их главная функция – уничтожение поврежденных клеток собственного организма. Они с азартом убивают опасные опухолевые клетки, а также клетки, пораженные внутриклеточными паразитами (к этим паразитам относятся вирусы и некоторые виды бактерий). Плюс к этому Т-киллеры являются главным компонентом антивирусного иммунитета.
Однако с момента полового созревания тимус частично перестает работать: происходит атрофия клеток, а вместо них образуется жир. К 45 годам жировая ткань заполняет более 50 % тимуса. Отчасти из-за этого у пожилых людей снижается активность иммунной системы.
Лимфатические узлы. Наша сосудистая система состоит из двух подсистем: кровеносной и лимфатической. По артериям богатая кислородом кровь притекает к органам, а оттекает по венам и лимфатическим сосудам. Несмотря на то что лимфатические сосуды существуют отдельно, а кровеносные – отдельно (у кровеносных есть «насос» – сердце, а у лимфатических такого «агрегата» нет), эти две системы неразрывно связаны: например, потоки лимфы и крови соединяются недалеко от сердца.
На долю лимфатической системы приходится около 1 % массы тела, и основной ее вес – лимфатические узлы. Они распределены по всему организму и функционируют как единое целое. Как правило, узлы сгруппированы по 4‒10 штук вдоль по ходу лимфатических сосудов. Через сосуды внутрь узлов попадают лимфоциты и там проходят несколько ступеней обучения. Например, их здесь «представляют» различным инородным агентам, которые организм считает болезнетворными. Лимфоцит знакомится с вирусом или бактерией, запоминает – и при следующей встрече готовится дать достойный отпор.
Кроме того, здесь вырабатываются специализированные Т-лимфоциты, защищающие организм от сбоев, и антитела для борьбы с инфекциями.
После того как лимфоциты обучены, они отправляются обратно в кровеносное русло. Помимо роли обучающей площадки, лимфатические узлы, как и селезенка, выполняют функцию биологического фильтра: задерживают бактерии. Именно лимфоузлы являются первым местом, куда метастазируют опухоли, поэтому они играют важную роль в диагностике онкологических заболеваний.
Из чего создается кровь?
Итак, мы узнали, какие органы создают и обучают клетки крови. Но как именно происходит гемопоэз – процесс кроветворения?
Это многостадийный и сложный процесс деления и созревания стволовых кроветворных клеток, в результате которого в кровь выходят зрелые лейкоциты, тромбоциты и эритроциты. Кроветворные стволовые клетки находятся в костном мозге и немного в крови, еще в плацентарной и пуповинной крови.
Основоположником современной теории кроветворения стал российский гистолог Александр Александрович Максимов, который в 1907 году аргументированно обосновал гипотезу, что каждая клетка крови развивается из единой «родоначальной» клетки. Он дал ей в своем докладе перед обществом гематологов в Берлине название Stammzelle (сейчас это известно как «мультипотентная стволовая кроветворная клетка») – так благодаря этому великому российскому ученому появилось понятие «стволовая клетка» и целое новое направление в науке. Я горжусь тем, что учился в академии, где он в свое время преподавал и проводил исследования: это был не только высокоэрудированный ученый, владевший четырьмя языками, но и человек с сильным и независимым характером. Не став терпеть порядки, насаждаемые большевистским начальством в академии, он в феврале 1922 года с женой и сестрой совершил дерзкий побег (как утверждают, на буере по льду Финского залива) в Финляндию, откуда затем отправился в США, где снова занялся своим любимым делом – исследованием клеток человеческих тканей.
Вернемся, однако, к рассказу о стволовых кроветворных клетках. Они обладают двумя уникальными свойствами:
у них неограниченная способность к самоподдержанию, то есть, по сути, они бессмертны;
они могут развиться в любую клетку крови.
Мне очень нравится наглядное сравнение стволовой кроветворной клетки с маткой в пчелином улье: есть главная пчелиная матка, и остальные в семье являются ее потомками. С кроветворением почти так же: существуют главные клетки-матки, а уже из них развиваются все остальные. И как в улье, где один пчелиный рой всегда представлен потомками нескольких семей от разных маток, кроветворение у человека «поликлонально», то есть представлено потомками не одной, а нескольких стволовых клеток.
Как бы нам ни хотелось, но стволовых клеток ограниченное количество, и они не могут делиться бесконечно. Поэтому, как правило, каждая из клеток создает свой клон – своеобразного «исполнителя» ее воли. Он выглядит и действует точно так же, как стволовая клетка, но, в отличие от нее, смертен: в среднем он истощается (то есть устает делиться и погибает) уже через месяц. Таким образом стволовые клетки берегут себя, обеспечивая себе то, что можно в некотором смысле назвать бессмертием.
Рис. 5. Процесс кроветворения