Уровень 1: дескриптивные (описательные) аналитические методы
Первый уровень анализа – это уровень дескриптивных (или описательных) методов.
Согласно одному из определений, «описание» означает «словесное изображение чего-либо или кого-либо, включающее все важные характеристики, качества или свойства».
Ну и что все это значит? В данном случае описательный метод – это метод, описывающий то, что имело или имеет место. Иными словами, дескриптивный анализ позволяет нам оглянуться на то, что уже произошло в бизнесе, и изучить это при помощи данных.
Однако это не всегда дает нам наиболее четкую картину. Чтобы ее уточнить, существуют другие методы – например, отчеты, работа со сводками или информационными панелями, наблюдения. Наверное, все это знакомо каждому из вас. Как часто на совещаниях или в рабочей электронной переписке упоминается слово «отчет»? Как часто мы видим сводки, KPI (ключевые показатели эффективности) и т. д.? Все эти понятия стали для нас такими обыденными, что сами слетают с языка, но они действительно необходимы для полного понимания описательного анализа. Описательный анализ строится на отчетах, сводках и наблюдениях, которые помогают выяснить, что происходило с организацией до этого момента или происходит прямо сейчас.
Научившись правильному применению методов описательного анализа, мы сможем понять и изучить роль, которую он играет в этой мозаике – в стратегии работы с данными. Но поможет ли это собрать всю мозаику? Здесь нужно учесть один ключевой момент: описательный анализ часто представляет для организаций серьезную проблему. Казалось бы, почему? Принципиальное отличие этого уровня аналитики от остальных в том, что только на нем организация может застрять – то есть не пойти дальше, чтобы освоить остальные преимущества работы с данными.
Применяя аналитические методы, нужно следить за тем, чтобы не застрять на этапе описания прошлого. Учитывая нехватку знаний и навыков в области данных и дата-аналитики, люди, от которых требуют соответствующих действий в рамках демократизации данных, часто склонны ограничиваться самой простой формой аналитики из доступных им. В большинстве случаев это как раз дескриптивные методы: изучив графики или таблицы, достаточно легко правильно понять, что произошло, и проанализировать полученную информацию. Очень многие организации по всему миру тратят большую часть времени на описательные методы.
Это объясняется тем, что дескриптивная аналитика – удобная вещь, если задуматься. Все мы способны оглянуться назад и описать, что произошло. Что мы делали на прошлых выходных? Нам понравился фильм, на который мы ходили? Перейдем к бизнесу: что мы можем почерпнуть из этой сводки? Как закончилась маркетинговая кампания? Сколько новых сотрудников мы наняли в прошлом квартале? И т. д. Кроме того, описательная аналитика приучает сотрудников интересоваться делами и прошлым собственной организации.
Из-за удобства описательной аналитики и отсутствия необходимых навыков работы с данными большинство сотрудников и застревают на первом уровне, не зная, как использовать данные для принятия более сложных и обоснованных решений. Впрочем, многие вообще не в курсе, что есть какие-то четыре уровня аналитики. В итоге организации тратят большие средства на ПО и красивую визуализацию данных, но это никак не сказывается на продуманности решений. Таким образом, застревая на первом уровне, организации лишь усугубляют нехватку навыков у сотрудников.
И еще одно небольшое примечание: не нужно стремиться равномерно распределять время- и трудозатраты между четырьмя уровнями аналитики. Смысл в том, что не нужно, чтобы ваши сотрудники тратили по 25 % времени и сил на каждый уровень; их доля в общей работе не должна быть непременно равной. Разрабатывая и применяя правильные аналитические решения, вы поймете, как поделить время и силы сотрудников между четырьмя уровнями. Далее мы увидим, что при всей важности описательного анализа больше всего времени приходится тратить на работу с методами второго уровня – но подробнее об этом позже.
Одна из причин такой распространенности дескриптивной аналитики – это нехватка навыков дата-грамотности. Если вы не до конца понимаете, как использовать данные, получится ли у вас успешно применять методы четырех уровней?
Наконец, в мире широко распространена тенденция к чрезмерной визуализации данных. Да, она необходима для успешной работы с данными и дата-аналитики. Она упрощает использование данных, но одной визуализацией работа с данными никак не ограничивается. Она прекрасно подходит для подведения итогов или описания уже случившегося, но, если сотрудники не знают, как двигаться дальше, а только оглядываются назад, им не удастся правильно оценить произошедшее и понять, почему так случилось.
Когда организации вкладывают деньги в инструменты бизнес-аналитики, нередко оказывается, что большая их часть тратится на отчеты ради отчетов и на средства, позволяющие делать как можно более красивые визуализации. Это может очень навредить организации, которая стремится извлечь настоящую выгоду из данных и дата-аналитики. Я согласен с тем, что визуализация должна быть привлекательной, чтобы людям хотелось эффективно ее использовать, но порой на это уходит слишком много времени, которое можно было бы потратить на более полезные методы работы с данными. Кроме того, если визуализация данных никак не влияет на достижение целей и задач бизнеса, можно ли вообще считать ее эффективной?
Для того чтобы лучше оценить методы первого уровня, стоит разобраться в ПО и технологиях, используемых на этом уровне. Эти технологии не представляют собой ничего из ряда вон выходящего, и большинство из вас о них хотя бы слышали. Наверняка почти все вы знакомы с термином «бизнес-аналитика» и с предназначенными для нее программами. Сегодня доступен целый ряд аналитических программ – Microsoft Power BI, Tableau, Qlik, ThoughtSpot и т. д. Все они могут быть отличными инструментами для описательного анализа. Хотя некоторые их возможности рассчитаны и на другие уровни аналитических методов, их главное предназначение – именно описательный анализ. Организации обязательно должны вкладывать средства в приобретение этих программ и технологий.
Методы первого уровня жизненно необходимы. Чтобы ставить диагнозы, делать прогнозы и производить прочие действия с данными, нам для начала необходимо знать, что происходило в прошлом. Но это лишь первый этап процесса, а не сам процесс целиком. Правильная интерпретация знаний, полученных на первом аналитическом уровне, поможет вам перейти ко второму.