. Мои исследования личного пространства и сложных движений изложены в двух книгах. M. S. A. Graziano, The Intelligent Movement Machine (Oxford, UK: Oxford University Press, 2008); M. S. A. Graziano, The Spaces between Us: A Story of Neuroscience, Evolution, and Human Nature (New York: Oxford University Press, 2018).
. Следующие ссылки дают комплексное представление об этой теории. Другие, более технические или сосредоточенные на экспериментальных данных работы здесь не приводятся. M. S. A. Graziano and S. Kastner, “Human Consciousness and Its Relationship to Social Neuroscience: A Novel Hypothesis,” Cognitive Neuroscience 2 (2011): 98–113; M. S. A. Graziano, Consciousness and the Social Brain (Oxford, UK: Oxford University Press, 2013); T. W. Webb and M. S. A. Graziano, “The Attention Schema Theory: A Mechanistic Account of Subjective Awareness,” Frontiers in Psychology 6 (2015): article 500.
. Невозможно воздать здесь должное всем новым работам, посвященным механистическому, недуалистическому подходу к сознанию. Я привожу лишь несколько примеров и прошу прощения у множества блестящих авторов, которых не упоминаю. S. J. Blackmore, “Consciousness In Meme Machines,” Journal of Consciousness Studies 10 (2003): 19–30; P. S. Churchland, Touching a Nerve: Our Brains, Our Selves (New York: W. W. Norton, 2013); F. Crick, The Astonishing Hypothesis: The Scientific Search for the Soul (New York: Scribner, 1995); S. Dehaene, Consciousness and the Brain (New York: Viking Press, 2014); D. Dennett, Consciousness Explained (Boston: Back Bay Books, 1991); K. Frankish, “Illusionism as a Theory of Consciousness,” Journal of Consciousness Studies 23 (2016): 11–39; R. J. Gennaro, Consciousness and Self Consciousness: A Defense of the Higher Order Thought Theory of Consciousness (Philadelphia: John Benjamin’s Publishing, 1996); O. Holland and R. Goodman, “Robots with Internal Models: A Route to Machine Consciousness?” Journal of Consciousness Studies 10 (2003): 77–109; T. Metzinger, The Ego Tunnel: The Science of the Mind and the Myth of the Self (New York: Basic Books, 2009).
. D. Chalmers, “Facing Up to the Problem of Consciousness,” Journal of Consciousness Studies 2 (1995): 200–219.
. Более ранний и весьма прозорливый подход к сознанию, делающий акцент на внутренних моделях, содержится в работе: O. Holland and R. Goodman, “Robots with Internal Models: A Route to Machine Consciousness?” Journal of Consciousness Studies 10 (2003): 77–109.
. G. Ryle, The Concept of Mind (Chicago: University of Chicago Press, 1949).
. J. Joyce, Ulysses (Paris: Sylvia Beach, 1922). Русский перевод: Джойс Д. Улисс / Пер. с англ. В. Хинкиса и С. Хоружего; коммент. С. Хоружего. — М.: Республика, 1993.
. D. Chalmers, The Character of Consciousness (New York: Oxford University Press, 2010); T. Nagel, “What Is It Like to Be a Bat?” The Philosophical Review 83 (1974): 435–50; J. R. Searle, “Consciousness,” Annual Review of Neuroscience 23 (2000): 557–78.
. R. A. Koene, “Scope and Resolution in Neural Prosthetics and Special Concerns for the Emulation of a Whole Brain,” Journal of Geoethical Nanotechnology 1 (2006): 21–29; R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology (New York: Penguin Books, 2006); H. Markram, E. Muller, S. Ramaswamy, M. W. Reimann, M. Abdellah, C. A. Sanchez, A. Ailamaki, et al., “Reconstruction and Simulation of Neocortical Microcircuitry,” Cell 163 (2015): 456–92; A. Sandberg and N. Bostrom, “Whole Brain Emulation: A Roadmap,” Technical Report #2008–3, Future of Humanity Institute, Oxford University, 2008.
. И другие авторы убедительно описывали возможный ход эволюции сознания, включая туда связи сознания с вниманием (хотя делали это иначе, чем я). К примеру: C. Montemayor and H. H. Haladjian, Consciousness, Attention, and Conscious Attention (Cambridge, MA: MIT Press, 2015); R. Ornstein, Evolution of Consciousness: The Origins of the Way We Think (New York: Simon & Schuster, 1991).
. O. Sakarya, K. A. Armstrong, M. Adamska, M. Adamski, I. F. Wang, B. Tidor, B. M. Degnan, T. H. Oakley, and K. S. Kosik, “A Post-Synaptic Scaffold at the Origin of the Animal Kingdom,” PLoS One 2 (2007): e506.
. Z. Yin, M. Zhu, E. H. Davidson, D. J. Bottjer, F. Zhao, and P. Tafforeau, “Sponge Grade Body Fossil with Cellular Resolution Dating 60 Myr before the Cambrian,” Proceedings of the National Academy of Sciences USA 112 (2015): E1453–60.
. D. H. Erwin, M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson, “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals,” Science 334 (2011): 1091–7; A. C. Marques and A. G. Collins, “Cladistic Analysis of Medusozoa and Cnidarian Evolution,” Invertebrate Biology 123 (2004): 23–42.
. H. R. Bode, S. Heimfeld, O. Koizumi, C. L. Littlefield, and M. S. Yaross, “Maintenance and Regeneration of the Nerve Net in Hydra,” American Zoology 28 (1988): 1053–63.
. R. B. Barlow Jr. and A. J. Fraioli, “Inhibition in the Limulus Lateral Eye in Situ,” Journal of General Physiology 71 (1978): 699–720.
. K. Hadeler, “On the Theory of Lateral Inhibition,” Kybernetik 14 (1974): 161–5.
. S. Koenemann and R. Jenner, Crustacea and Arthropod Relationships (Boca Raton: CRC Press, 2005).
. B. Schoenemann, H. Pärnaste, and E. N. K. Clarkson, “Structure and Function of a Compound Eye, More Than Half a Billion Years Old,” Proceedings of the National Academy of Sciences USA 114 (2017): 13489–94.
. R. Gillette and J. W. Brown, “The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior,” Integrative and Comparative Biology 55 (2015): 1058–69.
. C. R. Smarandache-Wellmann, “Arthropod Neurons and Nervous System,” Current Biology 26 (2016): R960–R965.
. S. Koenig, R. Wolf, and M. Heisenberg, “Visual Attention in Flies — Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing,” PLoS One 11 (2016): e0161412; B. van Swinderen, “Attention in Drosophila,” International Review of Neurobiology 99 (2011): 51–85.
. D. H. Erwin, M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson, “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals,” Science 334 (211): 1091–97; B. Runnegar and J. Pojeta Jr., “Molluscan Phylogeny: The Paleontological Viewpoint,” Science 186 (1974): 311–17.
. J. Kluessendorf and P. Doyle, “Pohlsepia mazonensis, an Early ‘Octopus’ from the Carboniferous of Illinois, USA,” Palaeontology 43 (2000): 919–26; A. R. Tanner, D. Fuchs, I. E. Winkelmann, M. T. Gilbert, M. S. Pankey, A. M. Ribeiro, K. M. Kocot, K. M. Halanych, T. H. Oakley, R. R. da Fonseca, D. Pisani, and J. Vinther, “Molecular Clocks Indicate Turnover and Diversification of Modern Coleoid Cephalopods during the Mesozoic Marine Revolution,” Proceedings of Royal Society, B, Biological Sciences 284 (2017): 20162818.
. P. Godfrey-Smith, Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness (New York: Farrar, Straus and Giroux, 2016); S. Montgomery, The Soul of an Octopus (New York: Atria Books, 2015).
. A.-S. Darmaillacq, L. Dickel, and J. A. Mather, Cephalopod Cognition (Cambridge, UK: Cambridge University Press, 2014); D. B. Edelman, B. J. Baars, and A. K. Seth, “Identifying Hallmarks of Consciousness in Non-Mammalian Species,” Consciousness and Cognition 14 (2015): 169–87; J. N. Richter, B. Hochner, and M. J. Kuba, “Pull or Push? Octopuses Solve a Puzzle Problem,” PLoS One 11 (2016): e0152048.
. B. Hochner, “An Embodied View of Octopus Neurobiology,” Current Biology 22 (2012): R887–92.
. P. M. Merikle, D. Smilek, and J. D. Eastwood, “Perception without Awareness: Perspectives from Cognitive Psychology,” Cognition 79 (2001): 115–34; R. Szczepanowski and L. Pessoa, “Fear Perception: Can Objective and Subjective Awareness Measures Be Dissociated?” Journal of Vision 10 (2007): 1–17.
. E. Knudsen and J. S. Schwartz, “The Optic Tectum, a Structure Evolved for Stimulus Selection,” in Evolution of Nervous Systems, ed. J. Kaas (San Diego: Academic Press, 2017), 387–408; C. Maximino, “Evolutionary Changes in the Complexity of the Tectum of Nontetrapods: A Cladistic Approach,” PLoS One 3 (2008): e3582.
. D. Ingle, “Visuomotor Functions of the Frog Optic Tectum,” Brain, Behavior, and Evolution 3 (1970): 57–71.
. R. W. Sperry, “Effect of 180 Degree Rotation of the Retinal Field on Visuomotor Coordination,” Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 92 (1943): 263–79; R. W. Sperry, “Optic nerve regeneration with return of vision in anurans,” Journal of neurophysiology 7.1 (1944): 57–69 (дополнение науч. ред.).
. C. Comer and P. Grobstein, “Organization of Sensory Inputs to the Midbrain of the Frog, Rana pipiens,” Journal of Comparative Physiology 142 (1981): 161–68.
. B. E. Stein and M. A. Meredith, The Merging of the Senses (Cambridge, MA: MIT Press, 1993).
. C. Comer and P. Grobstein, “Organization of Sensory Inputs to the Midbrain of the Frog, Rana pipiens,” Journal of Comparative Physiology 142 (1981): 161–68; D. Ingle, “Visuomotor Functions of the Frog Optic Tectum,” Brain, Behavior, and Evolution 3 (1970): 57–71.
. B. E. Stein and M. A. Meredith, The Merging of the Senses (Cambridge, MA: MIT Press, 1993).
. T. Finkenstadt and J.-P. Ewert, “Visual Pattern Discrimination through Interactions of Neural Networks: A Combined Electrical Brain Stimulation, Brain Lesion, and Extracellular Recording Study in Salamandra salamandra,” Journal of Comparative Physiology 153 (1983): 99–110.
. B. E. Stein and N. S. Gaither, “Sensory Representation in Reptilian Optic Tectum: Some Comparisons with Mammals,” Journal of Comparative Neurology 202 (1981): 69–87.
. H. Vanegas and H. Ito, “Morphological Aspects of the Teleostean Visual System: A Review,” Brain Research 287 (1983): 117–37.
. P. H. Hartline, L. Kass, and M. S. Loop, “Merging of Modalities in the Optic Tectum: Infrared and Visual Integration in Rattlesnakes,” Science 199 (1978): 1225–29.
. S. P. Mysore and E. I. Knudsen, “The Role of a Midbrain Network in Competitive Stimulus Selection,” Current Opinion in Neurobiology 21 (2011): 653–60.
. R. H. Wurtz and J. E. Albano, “Visual-Motor Function of the Primate Superior Colliculus,” Annual Review of Neuroscience 3 (1980): 189–226.
. M. I. Posner, “Orienting of Attention,” Quarterly Journal of Experimental Psychology 32 (1980): 3–25.
. E. F. Camacho and C. Bordons Alba, Model Predictive Control (New York: Springer, 2004); R. C. Conant and W. R. Ashby, “Every Good Regulator of a System Must Be a Model of That System,” International Journal of Systems Science 1 (1970): 89–97; B. A. Francis and W. M. Wonham, “The Internal Model Principle of Control Theory,” Automatica 12 (1976): 457–65.
. M. S. A. Graziano and M. M. Botvinick, “How the Brain Represents the Body: Insights from Neurophysiology and Psychology,” in Common Mechanisms in Perception and Action: Attention and Performance XIX, ed. W. Prinz and B. Hommel (Oxford, UK: Oxford University Press, 2002), 136–57; N. Holmes and C. Spence, “The Body Schema and the Multisensory Representation (s) of Personal Space,” Cognitive Processing 5 (2004): 94–105; F. de Vignemont, Mind the Body: An Exploration of Bodily Self-Awareness (Oxford, UK: Oxford University Press, 2018).
. H. Head and G. Holmes, “Sensory Disturbances from Cerebral Lesions,” Brain 34 (1911): 102–254; G. Vallar and R. Ronchi, “Somatoparaphrenia: A Body Delusion. A Review of the Neuropsychological Literature,” Experimental Brain Research 192 (2009): 533–51.
. A. M. Haith and J. W. Krakauer, “Model-Based and Model-Free Mechanisms of Human Motor Learning,” in Progress in Motor Control: Neural Computational and Dynamic Approaches, Volume 782, ed. M. Richardson, M. Riley, and K. Shockley (New York: Springer, 2013), 1–21; S. M. McDougle, K. M. Bond, and J. A. Taylor, “Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning,” Journal of Neuroscience 35 (2015): 9568–79; R. Shadmehr and F. A. Mussa-Ivaldi, “Adaptive Representation of Dynamics during Learning of a Motor Task,” Journal of Neuroscience 14 (1994): 3208–24.
. Существует огромное количество экспериментальных работ, в которых изучался верхний холмик у кошек и обезьян, — в том числе то, как он отслеживает и прогнозирует положение головы и глаз, а следовательно, предсказывает, как зрительные образы будут двигаться по сетчатке. Я приведу лишь несколько обзорных статей. M. A. Basso and P. J. May, “Circuits for Action and Cognition: A View from the Superior Colliculus,” Annual Review of Vision Science 3 (2017): 197–226; D. L. Sparks, “Conceptual Issues Related to the Role of the Superior Colliculus in the Control of Gaze,” Current Opinion in Neurobiology 9 (1999): 698–707; R. H. Wurtz and J. E. Albano, “Visual-Motor Function of the Primate Superior Colliculus,” Annual Review of Neuroscience 3 (1980): 189–226.
. L. Medina and A. Reiner, “Do Birds Possess Homologues of Mammalian Primary Visual, Somatosensory and Motor Cortices?” Trends in Neurosciences 23 (2000): 1–12; R. K. Naumann and G. Laurent, “Function and Evolution of the Reptilian Cerebral Cortex,” in Evolution of Nervous Systems, ed. J. Kaas (San Diego: Academic Press, 2017), 491–518.
. R. R. Lemon, Vanished Worlds: An Introduction to Historical Geology (Dubuque, IA: William C. Brown, 1993).
. J. F. Harrison, A. Kaiser, and J. M. VandenBrooks, “Atmospheric Oxygen Level and the Evolution of Insect Body Size,” Proceedings: Biological Science 277 (2010): 1937–46.
. R. L. Carroll, “The Origin and Early Radiation of Terrestrial Vertebrates,” Journal of Paleontology 75 (2001): 1202–13.
. S. Sahney, M. J. Benton, and H. J. Falcon-Lang, “Rainforest Collapse Triggered Pensylvanian Tetrapod Diversification in Euramerica,” Geology 38 (2010): 1079–82.
. R. K. Naumann and G. Laurent, “Function and Evolution of the Reptilian Cerebral Cortex,” in Evolution of Nervous Systems, ed. J. Kaas (San Diego: Academic Press, 2017), 491–518.
. M. Leal and B. J. Powell, “Behavioural Flexibility and Problem-Solving in a Tropical Lizard,” Biological Letters 8 (2012): 28–30; J. D. Manrod, R. Hartdegen, and G. M. Burghardt, “Rapid Solving of a Problem Apparatus by Juvenile Black-Throated Monitor Lizards (Varanus albigularis albigularis),” Animal Cognition 11 (2008): 267–73; R. T. Mason and M. R. Parker, “Social Behavior and Pheromonal Communication in Reptiles,” Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 196 (2010): 729–49.
. T. S. Kemp, The Origin and Evolution of Mammals (Oxford, UK: Oxford University Press, 2005); A. S. Romer and L. W. Price, “Review of the Pelycosauria,” Geological Society of America, Special Papers 28 (1940): 1–534.
. Z. Molnár, J. H. Kaas, J. A. de Carlos, R. F. Hevner, E. Lein, and P. Němec, “Evolution and Development of the Mammalian Cerebral Cortex,” Brain, Behavior, and Evolution 83 (2014): 126–39.
. A. B. Butler, “Evolution of the Thalamus: A Morphological and Functional Review,” Thalamus and Related Systems 4 (2008): 35–58; E. G. Jones, The Thalamus (New York: Springer, 1985).
. P. Senter, “Phylogenetic Taxonomy and the Names of the Major Archosaurian (Reptilia) Clades,” PaleoBios 25 (2005): 1–7.
. V. Dinets, “Apparent Coordination and Collaboration in Cooperatively Hunting Crocodilians,” Ethology, Ecology, and Evolution 27 (2012): 244–50; J. S. Doody, G. M. Burghardt, and V. Dinets, “Breaking the Social-Non-Social Dichotomy: A Role for Reptiles in Vertebrate Social Behavior Research?” Ethology 119 (2012): 1–9; L. D. Garrick and J. W. Lang, “Social Signals and Behaviors of Adult Alligators and Crocodiles,” American Zoologist 17 (1977): 225–39.
. M. C. Langer, M. D. Ezcurra, J. S. Bittencourt, and F. E. Novas, “The Origin and Early Evolution of Dinosaurs,” Biological Reviews 85 (2010): 55–110.
. M. Bronzati, O. W. M. Rauhut, J. S. Bittencourt, and M. C. Langer, “Endocast of the Late Triassic (Carnian) Dinosaur Saturnalia tupiniquim: Implications for the Evolution of Brain Tissue in Sauropodomorpha,” Scientific Reports 7 (2017): 11931; S. W. Rogers, “Allosaurus, Crocodiles, and Birds: Evolutionary Clues from Spiral Computed Tomography of an Endocast,” Anatomical Record 257 (1999): 162–73.
. L. M. Witmer and R. C. Ridgely, “New Insights into the Brain, Braincase, and Ear Region of Tyrannosaurs (Dinosauria, Theropoda), with Implications for Sensory Organization and Behavior,” Anatomical Record 292 (2009): 1266–96.
. S. L. Brusatte, J. K. O’Connor, and E. D. Jarvis, “The Origin and Diversification of Birds,” Current Biology 25 (2015): R888–R898; L. M. Chiappe, Glorified Dinosaurs: The Origin and Early Evolution of Birds (Hoboken, NJ: John Wiley & Sons, 2007); Z. Zhou, “The Origin and Early Evolution of Birds: Discoveries, Disputes, and Perspectives from Fossil Evidence,” Naturwissenschaften 91 (2004): 455–71.
. Q. Ji and S. Ji, “On the Discovery of the Earliest Bird Fossil in China (Sinosauropteryx) and the Origin of Birds,” Chinese Geology 10 (1996): 30–33; M. A. Norell and X. Xu, “Feathered Dinosaurs,” Annual Review of Earth and Planetary Science 33 (2005): 277–99.
. H. J. Karten, “Vertebrate Brains and Evolutionary Connectomics: On the Origins of the Mammalian ‘Neocortex,’” Philosophical Transactions of the Royal Society of London, B, Biological Sciences 370 (2015): 20150060; L. Medina and A. Reiner, “Do Birds Possess Homologues of Mammalian Primary Visual, Somatosensory and Motor Cortices?” Trends in Neurosciences 23 (2000): 1–12.
. G. R. Hunt and R. D. Gray, “Tool Manufacture by New Caledonian Crows: Chipping Away at Human Uniqueness,” Acta Zoologica Sinica (Supplement) 52 (2006): 622–25; C. Rutz and J. J. St Clair, “The Evolutionary Origins and Ecological Context of Tool Use in New Caledonian Crows,” Behavioral Processes 89 (2012): 153–65; C. Rutz, S. Sugasawa, J. E. van der Wal, B. C. Klump, and J. J. St Clair, “Tool Bending in New Caledonian Crows,” Royal Society of Open Science 3 (2016): 160439.
. S. A. Jelbert, A. H. Taylor, L. G. Cheke, N. S. Clayton, and R. D. Gray, “Using the Aesop’s Fable Paradigm to Investigate Causal Understanding of Water Displacement by New Caledonian Crows,” PLoS One 9 (2014): e92895.
. D. M. Beck and S. Kastner, “Top-Down and Bottom-Up Mechanisms in Biasing Competition in the Human Brain,” Vision Research 49 (2009): 1154–65; R. Desimone and J. Duncan, “Neural Mechanisms of Selective Visual Attention,” Annual Review of Neuroscience 18 (1995): 193–222.
. Существует огромное количество литературы, посвященной мозаике зрительных зон в коре головного мозга приматов. Над этим работали тысячи людей, в том числе и я. Приведу лишь несколько полезных источников, описывающих исследования как обезьян, так и людей. D. Felleman and D. Van Essen, “Distributed Hierarchical Processing in the Primate Visual Cortex,” Cerebral Cortex 1 (1991): 1–47; K. Grill-Spector and R. Malach, “The Human Visual Cortex,” Annual Review of Neuroscience 27 (2004): 649–77; P. Schiller and E. Tehovnik, Vision and the Visual System (Oxford, UK: Oxford University Press, 2015); L. G. Ungerleider and J. V. Haxby, “‘What’ and ‘Where’ in the Human Brain,” Current Opinion in Neurobiology 4 (1994): 157–65; D. C. Van Essen, J. W. Lewis, H. A. Drury, N. Hadjikhani, R. B. Tootell, M. Bakircioglu, and M. I. Miller, “Mapping Visual Cortex in Monkeys and Humans Using Surface-Based Atlases,” Vision Research 41 (2001): 1359–78; L. Wang, R. E. Mruczek, M. J. Arcaro, and S. Kastner, “Probabilistic Maps of Visual Topography in Human Cortex,” Cerebral Cortex 25 (2015): 3911–31.
. T. Moore and M. Zirnsak, “Neural Mechanisms of Selective Visual Attention,” Annual Review of Psychology 68 (2017): 47–72.
. R. Desimone and J. Duncan, “Neural Mechanisms of Selective Visual Attention,” Annual Review of Neuroscience 18 (1995): 193–222.
. G. Alarcon and A. Valentin, Introduction to Epilepsy (Cambridge, UK: Cambridge University Press, 2012).
. R. B. Barlow Jr. and A. J. Fraioli, “Inhibition in the Limulus Lateral Eye in Situ,” Journal of General Physiology 71 (1978): 699–720; K. Hadeler, “On the Theory of Lateral Inhibition,” Kybernetik 14 (1974): 161–65.
. M. Corbetta, G. Patel, and G. L. Shulman, “The Reorienting System of the Human Brain: From Environment to Theory of Mind,” Neuron 58 (2008): 306–24; K. Igelström and M. S. A. Graziano, “The Inferior Parietal Lobe and Temporoparietal Junction: A Network Perspective,” Neuropsychologia 105 (2017): 70–83; R. Saxe and L. J. Powell, “It’s the Thought That Counts: Specific Brain Regions for One Component of Theory of Mind,” Psychological Science 17 (2006): 692–9; M. Scolari, K. N. Seidl-Rathkopf, and S. Kastner, “Functions of the Human Frontoparietal Attention Network: Evidence from Neuroimaging,” Current Opinion in Behavioral Sciences 1 (2015): 32–39; J. L. Vincent, I. Kahn, A. Z. Snyder, M. E. Raichle, and R. L. Buckner, “Evidence for a Frontoparietal Control System Revealed by Intrinsic Functional Connectivity,” Journal of Neurophysiology 100 (2008): 3328–42; B. T. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, et al., “The Organization of the Human Cerebral Cortex Estimated by Intrinsic Functional Connectivity,” Journal of Neurophysiology 106 (2011): 1125–65.
. D. Dennett, Sweet Dreams: Philosophical Obstacles to a Science of Consciousness (Jean Nicod Lectures) (Cambridge, MA: MIT Press, 2005). Русский перевод: Д. Деннет. Сладкие грёзы: Чем философия мешает науке о сознании / Под ред. М. О. Кедровой; пер. с англ. А. Н. Коваля. — М.: URSS, 2017.
. C. L. Colby and M. E. Goldberg, “Space and Attention in Parietal Cortex,” Annual Review of Neuroscience 22 (1999): 319–49; J. Gottlieb, “From Thought to Action: The Parietal Cortex as a Bridge between Perception, Action, and Cognition,” Neuron 53 (2007): 9–16; E. J. Tehovnik, M. A. Sommer, I. H. Chou, W. M. Slocum, and P. H. Schiller, “Eye Fields in the Frontal Lobes of Primates,” Brain Research Reviews 32 (2000): 413–48.
. C. Eriksen and J. St James, “Visual Attention within and around the Field of Focal Attention: A Zoom Lens Model,” Perception and Psychophysics 40 (1986): 225–40; M. I. Posner, C. R. Snyder, and B. J. Davidson, “Attention and the Detection of Signals,” Journal of Experimental Psychology 109 (1980): 160–74.
. M. Scolari, E. F. Ester, and J. T. Serences, “Feature- and Object-Based Attentional Modulation in the Human Visual System,” in The Oxford Handbook of Attention, ed. A. C. Norbre and S. Kastner (Oxford, UK: Oxford University Press, 2015), 573–600; S. Treue, “Objectand Feature-Based Attention: Monkey Physiology,” in The Oxford Handbook of Attention, ed. A. C. Norbre and S. Kastner (Oxford, UK: Oxford University Press, 2015), 601–19.
. Ученые так часто говорили о связи сложности и сознания, что эта мысль прижилась в научной фантастике. Джулио Тонони изложил эту гипотезу в самой системной, математической форме. G. Tononi, Phi: A Voyage from the Brain to the Soul (New York: Pantheon, 2012).
. R. Bshary, W. Wickler, and H. Fricke, “Fish Cognition: A Primate’s Eye View,” Animal Cognition 5 (2002): 1–13.
. C. Koch, “Consciousness Redux: What Is It Like to Be a Bee?” Scientific American Mind 19 (December 2008): 18–19.
. D. Skrbina, Panpsychism in the West (Boston: MIT Press, 2005).
. B. J. Baars, A Cognitive Theory of Consciousness (New York: Cambridge University Press, 1988); S. Dehaene, Consciousness and the Brain (New York: Viking Press, 2014).
. E. Todorov and M. I. Jordan, “Optimal Feedback Control as a Theory of Motor Coordination,” Nature Neuroscience 5 (2002): 1226–35.
. M. J. Doherty, How Children Understand Others’ Thoughts and Feelings (New York: Psychology Press, 2008); U. Frith and C. D. Frith, “Development and Neurophysiology of Mentalizing,” Philosophical Transactions of the Royal Society of London, B, Biological Sciences 358 (2003): 459–73; D. Premack and G. Woodruff, “Does the Chimpanzee Have a Theory of Mind?” Behavioral and Brain Sciences 1 (1978): 515–26.
. S. Baron-Cohen, Mindblindness: An Essay on Autism and Theory of Mind (Cambridge, MA: MIT Press, 1997); C. K. Friesen and A. Kingstone, “The Eyes Have it! Reflexive Orienting Is Triggered by Nonpredictive Gaze,” Psychonomic Bulletin and Review 5 (1998): 490–95; E. A. Hoffman and J. V. Haxby, “Distinct Representations of Eye Gaze and Identity in the Distributed Human Neural System for Face Perception,” Nature Neuroscience 3 (2000): 80–84; L. A. Symons, K. Lee, C. C. Cedrone, and M. Nishimura, “What Are You Looking At? Acuity for Triadic Eye Gaze,” Journal of General Psychology 131 (2004): 451–69.
. S. Baron-Cohen, A. M. Leslie, and U. Frith, “Does the Autistic Child Have a ‘Theory of Mind’?” Cognition 21 (1985): 37–46; H. Wimmer and J. Perner, “Beliefs about Beliefs: Representation and Constraining Function of Wrong Beliefs in Young Children’s Understanding of Deception,” Cognition 13 (1983): 103–28.
. H. M. Wellman, D. Cross, and J. Watson, “Meta-Analysis of Theory-of-Mind Development: The Truth about False Belief,” Child Development 72 (2001): 655–84.
. C. Krupenye, F. Kano, S. Hirata, J. Call, and M. Tomasello, “Great Apes Anticipate That Other Individuals Will Act According to False Beliefs,” Science 354 (2016): 110–14.
. N. S. Clayton, “Ways of Thinking: From Crows to Children and Back Again,” Quarterly Journal of Experimental Psychology 68 (2015): 209–41.
. J. J. Gibson, The Ecological Approach to Visual Perception (Boston: Houghton Mifflin Harcourt, 1979).
. D. C. Dennett, The Intentional Stance (Cambridge, MA: Bradford Books/MIT Press, 1987).
. C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action Understanding as Inverse Planning,” Cognition 113 (2009): 329–49; N. C. Rabinowitz, F. Perbet, F. Song, C. Zhang, S. M. Ali Eslami, and M. Botvinick, “Machine Theory of Mind,” Computer Science arXiv (2017): 1802.007740; R. Saxe and S. D. Houlihan, “Formalizing Emotion Concepts within a Bayesian Model of Theory of Mind,” Current Opinion in Psychology 17 (2017): 15–21.
. D. J. Acheson, Elementary Fluid Dynamics (Oxford, UK: Clarendon Press, 1990).
. A. Guterstam, H. H. Kean, T. W. Webb, F. S. Kean, and M. S. A. Graziano, “An Implicit Model of Other People’s Visual Attention as an Invisible, Force-Carrying Beam Projecting from the Eyes,” Proceedings of the National Academy of Sciences USA (in press).
. C. G. Gross, “The Fire That Comes from the Eye,” The Neuroscientist 5 (1999): 58–64.
. A. Dundes, The Evil Eye: A Folklore Casebook (New York: Garland Press, 1981).
. E. B. Titchener, “The Feeling of Being Stared At,” Science 8 (1898): 895–7.
. J. Piaget, The Child’s Conception of the World, trans. J. Tomlinson and A. Tomlinson (Totowa, NJ: Little, Adams, 1979).
. G. A. Winer, J. E. Cottrell, V. Gregg, J. S. Fournier, and L. S. Bica, “Fundamentally Misunderstanding Visual Perception: Adults’ Belief in Visual Emissions,” American Psychologist 57 (2002): 417–24; G. A. Winer, J. E. Cottrell, and K. D. Karefilaki, “Images, Words and Questions: Variables That Influence Beliefs about Vision in Children and Adults,” Journal of Experimental Child Psychology 63 (1996): 499–525.
. J. H. Kaas, “The Evolution of Brains from Early Mammals to Humans,” Wiley Interdisciplinary Review of Cognitive Science 4 (2013): 33–45.
. J. E. Bogen, “Some Neurophysiologic Aspects of Consciousness,” Seminars in Neurology 17 (1997): 95–103; G. M. Edelman, J. A. Gally, and B. J. Baars, “Biology of Consciousness,” Frontiers in Psychology 2 (2011): 4; L. M. Ward, “The Thalamic Dynamic Core Theory of Conscious Experience,” Consciousness and Cognition 20 (2011): 464–86.
. E. G. Jones, The Thalamus (New York: Springer, 1985).
. F. C. Crick and C. Koch, “What Is the Function of the Claustrum?” Philosophical Transactions of the Royal Society of London, B, Biological Sciences 360 (2005): 1271–79; Y. Goll, G. Atlan, and A. Citri, “Attention: The Claustrum,” Trends in Neurosciences 38 (2015): 486–95; Z. K. Mohamad, B. Fabrice, B. Abdelrahman, and P. Fabienne, “Electrical Stimulation of a Small Brain Area Reversibly Disrupts Consciousness,” Epilepsy and Behavior 37 (2014): 32–35.
. R. Blake, J. Brascamp, and D. J. Heeger, “Can Binocular Rivalry Reveal Neural Correlates of Consciousness?” Philosophical Transactions of the Royal Society of London, B, Biological Sciences 369 (2014): 20130211; R. Blake and N. K. Logothetis, “Visual Competition,” Nature Reviews Neuroscience 3 (2002): 13–21; D. A. Leopold and N. K. Logothetis, “Activity Changes in Early Visual Cortex Reflect Monkeys’ Percepts during Binocular Rivalry,” Nature 379 (1996): 549–53; B. A. Metzger, K. E. Mathewson, E. Tapia, M. Fabiani, G. Gratton, and D. M. Beck, “Regulating the Access to Awareness: Brain Activity Related to Probe-Related and Spontaneous Reversals in Binocular Rivalry,” Journal of Cognitive Neuroscience 29 (2017): 1089–102; K. Sandberg, B. Bahrami, R. Kanai, G. R. Barnes, M. Overgaard, and G. Rees, “Early Visual Responses Predict Conscious Face Perception within and between Subjects during Binocular Rivalry,” Journal of Cognitive Neuroscience 25 (2013): 969–85; F. Tong, M. Meng, and R. Blake, “Neural Bases of Binocular Rivalry,” Trends in Cognitive Sciences 10 (2006): 502–11.
. R. Blake and N. K. Logothetis, “Visual Competition,” Nature Reviews Neuroscience 3 (2002): 13–21; D. A. Leopold and N. K. Logothetis, “Activity Changes in Early Visual Cortex Reflect Monkeys’ Percepts during Binocular Rivalry,” Nature 379 (1996): 549–53.
. R. Blake, J. Brascamp, and D. J. Heeger, “Can Binocular Rivalry Reveal Neural Correlates of Consciousness?” Philosophical Transactions of the Royal Society of London, B, Biological Sciences 369 (2014): 20130211; B. A. Metzger, K. E. Mathewson, E. Tapia, M. Fabiani, G. Gratton, and D. M. Beck, “Regulating the Access to Awareness: Brain Activity Related to Probe-Related and Spontaneous Reversals in Binocular Rivalry,” Journal of Cognitive Neuroscience 29 (2017): 1089–102; K. Sandberg, B. Bahrami, R. Kanai, G. R. Barnes, M. Overgaard, and G. Rees, “Early Visual Responses Predict Conscious Face Perception within and between Subjects during Binocular Rivalry,” Journal of Cognitive Neuroscience 25 (2013): 969–85; F. Tong, M. Meng, and R. Blake, “Neural Bases of Binocular Rivalry,” Trends in Cognitive Sciences 10 (2006): 502–11.
. R. Blake and N. K. Logothetis, “Visual Competition,” Nature Reviews Neuroscience 3 (2002): 13–21; F. Tong, M. Meng, and R. Blake, “Neural Bases of Binocular Rivalry,” Trends in Cognitive Sciences 10 (2006): 502–11.
. K. Wunderlich, K. A. Schneider, and S. Kastner, “Neural Correlates of Binocular Rivalry in the Human Lateral Geniculate Nucleus,” Nature Neuroscience 8 (2005): 1595–602.
. M. S. Beauchamp, J. V. Haxby, J. E. Jennings, and E. A. DeYoe “An fMRI Version of the Farnsworth-Munsell 100-Hue Test Reveals Multiple Color-Selective Areas in Human Ventral Occipitotemporal Cortex,” Cerebral Cortex 9 (1999): 257–63; B. R. Conway, “Color Signals through Dorsal and Ventral Visual Pathways,” Visual Neuroscience 31 (2014): 197–209.
. R. Blake and N. K. Logothetis, “Visual Competition,” Nature Reviews Neuroscience 3 (2002): 13–21; H. H. Li, J. Rankin, J. Rinzel, M. Carrasco, and D. J. Heeger, “Attention Model of Binocular Rivalry,” Proceedings of the National Academy of Sciences USA 114 (2017): E6192 — E6201; F. Tong, M. Meng, and R. Blake, “Neural Bases of Binocular Rivalry,” Trends in Cognitive Sciences 10 (2006): 502–11.
. R. Blake and N. K. Logothetis, “Visual Competition,” Nature Reviews Neuroscience 3 (2002): 13–21; H. H. Li, J. Rankin, J. Rinzel, M. Carrasco, and D. J. Heeger, “Attention Model of Binocular Rivalry,” Proceedings of the National Academy of Sciences USA 114 (2017): E6192 — E6201; F. Tong, M. Meng, and R. Blake, “Neural Bases of Binocular Rivalry,” Trends in Cognitive Sciences 10 (2006): 502–11.
. M. S. Beauchamp, J. V. Haxby, J. E. Jennings, and E. A. DeYoe, “An fMRI Version of the Farnsworth-Munsell 100-Hue Test Reveals Multiple Color-Selective Areas in Human Ventral Occipitotemporal Cortex,” Cerebral Cortex 9 (1999): 257–63.
. S. E. Bouvier and S. A. Engel, “Behavioral Deficits and Cortical Damage Loci in Cerebral Achromatopsia,” Cerebral Cortex 16 (2006): 183–91.
. M. Binder, K. Gociewicz, B. Windey, M. Koculak, K. Finc, J. Nikadon, M. Derda, and A. Cleeremans, “The Levels of Perceptual Processing and the Neural Correlates of Increasing Subjective Visibility,” Consciousness and Cognition 55 (2017): 106–25; D. Carmel, N. Lavie, and G. Rees, “Conscious Awareness of Flicker in Humans Involves Frontal and Parietal Cortex,” Current Biology 16 (2006): 907–11; M. S. Christensen, T. Z. Ramsøy, T. E. Lund, K. H. Madsen, and J. B. Rowe, “An fMRI Study of the Neural Correlates of Graded Visual Perception,” Neuroimage 31 (2006): 1711–25; S. Dehaene and J. P. Changeux, “Experimental and Theoretical Approaches to Conscious Processing,” Neuron 70 (2011): 200–227; S. Dehaene, L. Naccache, L. Cohen, D. L. Bihan, J. F. Mangin, J. B. Poline, and D. Rivière, “Cerebral Mechanisms of Word Masking and Unconscious Repetition Priming,” Nature Neuroscience 4 (2001): 752–58.
. A. Schurger, I. Sarigiannidis, L. Naccache, J. D. Sitt, and S. Dehaene, “Cortical Activity Is More Stable When Sensory Stimuli Are Consciously Perceived,” Proceedings of the National Academy of Sciences USA 112 (2015): E2083–92.
. M. Binder, K. Gociewicz, B. Windey, M. Koculak, K. Finc, J. Nikadon, M. Derda, and A. Cleeremans, “The Levels of Perceptual Processing and the Neural Correlates of Increasing Subjective Visibility,” Consciousness and Cognition 55 (2017): 106–25; D. Carmel, N. Lavie, and G. Rees, “Conscious Awareness of Flicker in Humans Involves Frontal and Parietal Cortex,” Current Biology 16 (2006): 907–11; M. S. Christensen, T. Z. Ramsøy, T. E. Lund, K. H. Madsen, and J. B. Rowe, “An fMRI Study of the Neural Correlates of Graded Visual Perception,” Neuroimage 31 (2006): 1711–25; S. Dehaene and J. P. Changeux, “Experimental and Theoretical Approaches to Conscious Processing,” Neuron 70 (2011): 200–227; S. Dehaene, L. Naccache, L. Cohen, D. L. Bihan, J. F. Mangin, J. B. Poline, and D. Rivière, “Cerebral Mechanisms of Word Masking and Unconscious Repetition Priming,” Nature Neuroscience 4 (2001): 752–58.
. T. W. Webb, K. Igelström, A. Schurger, and M. S. A. Graziano, “Cortical Networks Involved in Visual Awareness Independently of Visual Attention,” Proceedings of the National Academy of Sciences USA 113 (2016): 13923–28.
. T. J. Buschman and E. K. Miller, “Goal-Direction and Top-Down Control,” Philosophical Transactions of the Royal Society of London, B, Biological Sciences 369 (2014): 20130471; E. K. Miller and J. D. Cohen, “An Integrative Theory of Prefrontal Cortex Function,” Annual Review of Neurosciences 24 (2001): 167–202.
. A. Nieder and E. K. Miller, “Coding of Cognitive Magnitude: Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex,” Neuron 37 (2003): 149–57.
. S. C. Rao, G. Rainer, and E. K. Miller, “Integration of What and Where in the Primate Prefrontal Cortex,” Science 276 (1997): 821–24.
. D. J. Freedman, M. Riesenhuber, T. Poggio, and E. K. Miller, “Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex,” Science 291 (2001): 312–16.
. R. Levy and P. S. Goldman-Rakic, “Segregation of Working Memory Functions within the Dorsolateral Prefrontal Cortex,” Experimental Brain Research 133 (2000): 23–32; E. K. Miller, “The ‘Working’ of Working Memory,” Dialogues in Clinical Neuroscience 15 (2013): 411–18.
. B. Odegaard, R. T. Knight, and H. Lau, “Should a Few Null Findings Falsify Prefrontal Theories of Conscious Perception?” Journal of Neuroscience 40 (2017): 9593–602.
. В нескольких солидных обзорных работах подчеркивается, что утрата или снижение сознания обычно не считается симптомом повреждения префронтальной коры. J. Fuster, The Prefrontal Cortex (New York: Academic Press, 2015); A. Henri-Bhargava, D. T. Stuss, and M. Freedman, “Clinical Assessment of Prefrontal Lobe Functions,” Continuum, Behavioral Neurology and Psychiatry 24 (2018): 704–26; T. Shallice and L. Cipolotti, “The Prefrontal Cortex and Neurological Impairments of Active Thought,” Annual Review of Psychology 69 (2018): 157–80; S. M. Szczepanski and R. T. Knight, “Insights into Human Behavior from Lesions to the Prefrontal Cortex,” Neuron 83 (2014): 1002–18.
. Работы по теменно-лобным сетям сыплются, как из рога изобилия. Вот необходимый минимум источников, где речь идет об основных сетях, упомянутых в книге. D. Bzdok, R. Langner, L. Schilbach, O. Jakobs, C. Roski, S. Caspers, A. R. Laird, et al. “Characterization of the Temporo-Parietal Junction by Combining Data-Driven Parcellation, Complementary Connectivity Analyses, and Functional Decoding,” Neuroimage 81 (2013): 381–92; M. Corbetta, G. Patel, and G. L. Shulman, “The Reorienting System of the Human Brain: From Environment to Theory of Mind,” Neuron 58 (2008): 306–24; N. U. Dosenbach, D. A. Fair, F. M. Miezin, A. L. Cohen, K. K. Wenger, R. A. Dosenbach, M. D. Fox, A. Z. Snyder, et al., “Distinct Brain Networks for Adaptive and Stable Task Control in Humans,” Proceedings of the National Academy of Sciences USA 104 (2007): 11073–78; M. D. Fox, M. Corbetta, A. Z. Snyder, J. L. Vincent, and M. E. Raichle, “Spontaneous Neuronal Activity Distinguishes Human Dorsal and Ventral Attention Systems,” Proceedings of the National Academy of Sciences USA 103 (2006): 10046–51; K. Igelström and M. S. A. Graziano, “The Inferior Parietal Lobe and Temporoparietal Junction: A Network Perspective,” Neuropsychologia 105 (2017): 70–83; K. M. Igelström, T. W. Webb, and M. S. A. Graziano, “Neural Processes in the Human Temporoparietal Cortex Separated by Localized Independent Component Analysis,” Journal of Neuroscience 35 (2015): 9432–45; K. M. Igelström, T. W. Webb, and M. S. A. Graziano, “Topographical Organization of Attentional, Social and Memory Processes in the Human Temporoparietal Cortex,” eNeuro 3 (2016): e0060; R. B. Mars, J. Sallet, U. Schüffelgen, S. Jbabdi, I. Toni, and M. F. Rushworth, “Connectivity-Based Subdivisions of the Human Right Temporoparietal Junction Area: Evidence for Different Areas Participating in Different Cortical Networks,” Cerebral Cortex 22 (2012): 1894–903; R. Ptak, “The Frontoparietal Attention Network of the Human Brain: Action, Saliency, and a Priority Map of the Environment,” Neuroscientist 18 (2012): 502–15; R. Saxe and L. J. Powell, “It’s the Thought That Counts: Specific Brain Regions for One Component of Theory of Mind,” Psychological Science 17 (2006): 692–99; M. Scolari, K. N. Seidl-Rathkopf, and S. Kastner, “Functions of the Human Frontoparietal Attention Network: Evidence from Neuroimaging,” Current Opinion in Behavioral Sciences 1 (2015): 32–39; J. L. Vincent, I. Kahn, A. Z. Snyder, M. E. Raichle, and R. L. Buckner, “Evidence for a Frontoparietal Control System Revealed by Intrinsic Functional Connectivity,” Journal of Neurophysiology 100 (2008): 3328–42; B. T. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, et al., “The Organization of the Human Cerebral Cortex Estimated by Intrinsic Functional Connectivity,” Journal of Neurophysiology 106 (2011): 1125–65.
. C. Amiez and M. Petrides, “Anatomical Organization of the Eye Fields in the Human and Non-Human Primate Frontal Cortex,” Progress in Neurobiology 89 (2009): 220–30; L. L. Chen and E. J. Tehovnik, “Cortical Control of Eye and Head Movements: Integration of Movements and Percepts,” European Journal of Neuroscience 25 (2007): 1253–64; M. H. Grosbras and A. Berthoz, “Parieto-Frontal Networks and Gaze Shifts in Humans: Review of Functional Magnetic Resonance Imaging Data,” Advances in Neurology 93 (2003): 269–80; E. Lobel, P. Kahane, U. Leonards, M. Grosbras, S. Lehericy, D. Le Bihan, and A. Berthoz, “Localization of Human Frontal Eye Fields: Anatomical and Functional Findings of Functional Magnetic Resonance Imaging and Intracerebral Electrical Stimulation,” Journal of Neurosurgery 95 (2001): 804–15.
. R. Caminiti, S. Ferraina, and P. B. Johnson, “The Sources of Visual Information to the Primate Frontal Lobe: A Novel Role for the Superior Parietal Lobule,” Cerebral Cortex 6 (1996): 319–28; C. S. Konen, R. E. Mruczek, J. L. Montoya, and S. Kastner, “Functional Organization of Human Posterior Parietal Cortex: Grasping- and Reaching-Related Activations Relative to Topographically Organized Cortex,” Journal of Neurophysiology 109 (2013): 2897–908; L. H. Snyder, A. P. Batista, and R. A. Andersen, “Coding of Intention in the Posterior Parietal Cortex,” Nature 386 (1997): 167–70.
. M. G. Di Bono, C. Begliomini, U. Castiello, and M. Zorzi, “Probing the Reaching-Grasping Network in Humans through Multivoxel Pattern Decoding,” Brain and Behavior 5 (2015): e00412; C. S. Konen, R. E. Mruczek, J. L. Montoya, and S. Kastner, “Functional Organization of Human Posterior Parietal Cortex: Gras-ping- and Reaching-Related Activations Relative to Topographically Organized Cor-tex,” Journal of Neurophysiology 109 (2013): 2897–908; A. Murata, V. Gallese, G. Luppino, M. Kaseda, and H. Sakata, “Selectivity for the Shape, Size, and Orientation of Objects for Grasping in Neurons of Monkey Parietal Area AIP,” Journal of Neurophysiology 83 (2000): 2580–601; G. Rizzolatti, R. Camarda, L. Fogassi, M. Gentilucci, G. Luppino, and M. Matelli, “Functional Organization of Inferior Area 6 in the Macaque Monkey. II. Area F5 and the Control of Distal Movements,” Experimental Brain Research 71 (1988): 491–507.
. D. F. Cooke and M. S. A. Graziano, “Super-Flinchers and Nerves of Steel: Defensive Movements Altered by Chemical Manipulation of a Cortical Motor Area,” Neuron 43 (2004): 585–93; D. F. Cooke, C. S. R. Taylor, T. Moore, and M. S. A. Graziano, “Complex Movements Evoked by Microstimulation of Area VIP,” Proceedings of the National Academy of Sciences USA 100 (2003): 6163–68.
. E. Eger, P. Pinel, S. Dehaene, and A. Kleinschmidt, “Spatially Invariant Coding of Numerical Information in Functionally Defined Subregions of Human Parietal Cortex,” Cerebral Cortex 25 (2015): 1319–29; A. Nieder and E. K. Miller, “Coding of Cognitive Magnitude: Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex,” Neuron 37 (2003): 149–57; R. Stanescu-Cosson, P. Pinel, P. F. van De Moortele, D. Le Bihan, L. Cohen, and S. Dehaene, “Understanding Dissociations in Dyscalculia: A Brain Imaging Study of the Impact of Number Size on the Cerebral Networks for Exact and Approximate Calculation,” Brain 123 (2000): 2240–55.
. K. M. Igelström, T. W. Webb, and M. S. A. Graziano, “Topographical Organization of Attentional, Social and Memory Processes in the Human Temporoparietal Cortex,” eNeuro 3 (2016): e0060; Y. T. Kelly, T. W. Webb, J. D. Meier, M. J. Arcaro, and M. S. A. Graziano, “Attributing Awareness to Oneself and to Others,” Proceedings of the National Academy of Sciences USA 111 (2014): 5012–17; T. W. Webb, K. Igelström, A. Schurger, and M. S. A. Graziano, “Cortical Networks Involved in Visual Awareness Independently of Visual Attention,” Proceedings of the National Academy of Sciences USA 113 (2016): 13923–28.
. K. Igelström and M. S. A. Graziano, “The Inferior Parietal Lobe and Temporoparietal Junction: A Network Perspective,” Neuropsychologia 105 (2017): 70–83; K. M. Igelström, T. W. Webb, and M. S. A. Graziano, “Topographical Organization of Attentional, Social and Memory Processes in the Human Temporoparietal Cortex,” eNeuro 3 (2016): e0060; R. B. Mars, J. Sallet, U. Schüffelgen, S. Jbabdi, I. Toni, and M. F. S. Rushworth, “Connectivity-Based Subdivisions of the Human Right Temporoparietal Junction Area: Evidence for Different Areas Participating in Different Cortical Networks,” Cerebral Cortex 22 (2012): 1894–903.
. R. Saxe and L. J. Powell, “It’s the Thought That Counts: Specific Brain Regions for One Component of Theory of Mind,” Psychological Science 17 (2006): 692–99.
. Y. T. Kelly, T. W. Webb, J. D. Meier, M. J. Arcaro, and M. S. A. Graziano, “Attributing Awareness to Oneself and to Others,” Proceedings of the National Academy of Sciences USA 111 (2014): 5012–17; T. W. Webb, K. Igelström, A. Schurger, and M. S. A. Graziano, “Cortical Networks Involved in Visual Awareness Independently of Visual Attention,” Proceedings of the National Academy of Sciences USA 113 (2016): 13923–28.
. M. Corbetta, G. Patel, and G. L. Shulman, “The Reorienting System of the Human Brain: From Environment to Theory of Mind,” Neuron 58 (2008): 306–24; T. Moore and M. Zirnsak, “Neural Mechanisms of Selective Visual Attention,” Annual Review of Psychology 68 (2017): 47–72; R. Ptak, “The Frontoparietal Attention Network of the Human Brain: Action, Saliency, and a Priority Map of the Environment,” Neuroscientist 18 (2012): 502–15.
. K. M. Igelström, T. W. Webb, and M. S. A. Graziano, “Topographical Organization of Attentional, Social and Memory Processes in the Human Temporoparietal Cortex,” eNeuro 3 (2016): e0060.
. M. A. Goodale and A. D. Milner, “Separate Visual Pathways for Perception and Action,” Trends in Neurosciences 15 (1992): 20–25.
. M. Hurme, M. Koivisto, A. Revonsuo, and H. Railo, “Early Processing in Primary Visual Cortex Is Necessary for Conscious and Unconscious Vision While Late Processing Is Necessary Only for Conscious Vision in Neurologically Healthy Humans,” Neuroimage 150 (2017): 230–38; F. Tong, “Primary Visual Cortex and Visual Awareness,” Nature Reviews Neuroscience 4 (2003): 219–29.
. A. Cowey, “The Blindsight Saga,” Experimental Brain Research 200 (2010): 3–24; L. Weiskrantz, E. K. Warrington, M. D. Sanders, and J. Marshall, “Visual Capacity in the Hemianopic Field following a Restricted Cortical Ablation,” Brain 97 (1974): 709–28.
. T. N. Aflalo and M. S. A. Graziano, “Organization of the Macaque Extrastriate Visual Cortex Re-examined Using the Principle of Spatial Continuity of Function,” Journal of Neurophysiology 105 (2011): 305–20; D. Felleman and D. Van Essen, “Distributed Hierarchical Processing in the Primate Visual Cortex,” Cerebral Cortex 1 (1991): 1–47; M. A. Goodale and A. D. Milner, “Separate Visual Pathways for Perception and Action,” Trends in Neurosciences 15 (1992): 20–25; L. G. Ungerleider and J. V. Haxby, “‘What’ and ‘Where’ in the Human Brain,” Current Opinion in Neurobiology 4 (1994): 157–65.
. S. Brown and E. Schafer, “An Investigation into the Functions of the Occipital and Temporal Lobes of the Monkey’s Brain,” Philosophical Transactions of the Royal Society of London, B, Biological Sciences 179 (1888): 303–27.
. P. Broca, “Remarks on the Seat of the Faculty of Articulate Language, Followed by an Observation of Aphemia,” Bulletin de la Societe Anatomique de Paris 6 (1861): 330–57, trans. G. von Bonin and republished in Some Papers on the Cerebral Cortex, ed. G. Von Bonin (Springfield, IL: Charles Thomas Publisher, 1960), 49–72; A. R. Damasio and N. Geschwind, “The Neural Basis of Language,” Annual Review of Neuroscience 7 (1984): 127–47.
. J. Zihl, D. von Cramon, and N. Mai, “Selective Disturbance of Movement Vision after Bilateral Brain Damage,” Brain 106 (1983): 313–40.
. S. E. Bouvier and S. A. Engel, “Behavioral Deficits and Cortical Damage Loci in Cerebral Achromatopsia,” Cerebral Cortex 16 (2006): 183–91.
. C. Gottesmann, “The Neurophysiology of Sleep and Waking: Intracerebral Connections, Functioning and Ascending Influences of the Medulla Oblongata,” Progress in Neurobiology 59 (1999): 1–54.
. D. Chalmers, The Conscious Mind (Oxford, UK: Oxford University Press); P. Skokowski, “I, Zombie,” Consciousness and Cognition 11 (2002): 1–9; C. Tandy, “Are You (Almost) a Zombie? Conscious Thoughts about ‘Consciousness in the Universe’ by Hameroff and Penrose,” Physics of Life Reviews 11 (2014): 89–90.
. W. R. Brain, “A Form of Visual Disorientation Resulting from Lesions of the Right Cerebral Hemisphere,” Proceedings of the Royal Society of Medicine 34 (1941): 771–76; M. Critchley, The Parietal Lobes (London: Hafner Press, 1953); G. Vallar, “Extrapersonal Visual Unilateral Spatial Neglect and Its Neuroanatomy,” Neuroimage 14 (2001): S52–S58.
. K. M. Heilman and E. Valenstein “Mechanism Underlying Hemispatial Neglect,” Annual Neurology 5 (1972): 166–70; M. Kinsbourne, “A Model for the Mechanism of Unilateral Neglect of Space,” Transactions of the American Neurological Association 95 (1970): 143–46; M. M. Mesulam, “A Cortical Network for Directed Attention and Unilateral Neglect,” Annual Neurology 10 (1981): 309–25; S. M. Szczepanski, C. S. Konen, and S. Kastner, “Mechanisms of Spatial Attention Control in Frontal and Parietal Cortex,” Journal of Neuroscience 30 (2010): 148–60.
. P. Chen and K. M. Goedert, “Clock Drawing in Spatial Neglect: A Comprehensive Analysis of Clock Perimeter, Placement, and Accuracy,” Journal of Neuropsychology 6 (2012): 270–89.
. E. Bisiach and C. Luzzatti, “Unilateral Neglect of Representational Space,” Cortex 14 (1978): 129–33.
. J. C. Marshall and P. W. Halligan, “Blindsight and Insight in Visuo-Spatial Neglect,” Nature 336 (1988): 766–67.
. G. Vallar and D. Perani, “The Anatomy of Unilateral Neglect after Right-Hemisphere Stroke Lesions: A Clinical/CT-Scan Correlation Study in Man,” Neuropsychologia 24 (1986): 609–22.
. M. A. Bruno, S. Majerus, M. Boly, A. Vanhaudenhuyse, C. Schnakers, O. Gosseries, P. Boveroux, et al., “Functional Neuroanatomy Underlying the Clinical Subcategorization of Minimally Conscious State Patients,” Journal of Neurology 259 (2012): 1087–98; S. Laureys, “The Neural Correlate of (Un) Awareness: Lessons from the Vegetative State,” Trends in Cognitive Sciences 9 (2005): 556–59; S. Laureys, S. Antoine, M. Boly, S. Elincx, M. E. Faymonville, J. Berré, B. Sadzot, et al., “Brain Function in the Vegetative State,” Acta Neurologica Belgica 102 (2002): 177–85; J. Leon-Carrion, U. Leon-Dominguez, L. Pollonini, M. H. Wu, R. E. Frye, M. R. Dominguez-Morales, and G. Zouridakis, “Synchronization between the Anterior and Posterior Cortex Determines Consciousness Level in Patients with Traumatic Brain Injury,” Brain Research 1476 (2012): 22–30; D. Roquet, J. R. Foucher, P. Froehlig, F. Renard, J. Pottecher, H. Besancenot, F. Schneider, et al., “Resting-State Networks Distinguish Locked-In from Vegetative State Patients,” Neuroimage: Clinical 12 (2016): 16–22.
. D. Chalmers, “Facing Up to the Problem of Consciousness,” Journal of Consciousness Studies 2 (1995): 200–219.
. D. Chalmers, “The Meta-Problem of Consciousness,” The Journal of Consciousness Studies 25, nos. 9–10 (2018): 6–61.
. I. A. Newton, “Letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; Containing His New Theory about Light and Colors: Sent by the Author to the Publisher from Cambridge, Febr. 6. 1671/72; In Order to Be Communicated to the Royal Society,” Philosophical Transactions Royal Society 6 (1671): 3075–87.
. F. Kammerer, “The Hardest Aspect of the Illusion Problem — And How to Solve It,” Journal of Consciousness Studies 23 (2016): 124–39; F. Kammerer, “Can You Believe It? Illusionism and the Illusion Meta-Problem,” Philosophical Psychology 31 (2018): 44–67.
. S. Blackmore, “Delusions of Consciousness,” Journal of Consciousness Studies 23 (2016): 52–64; F. Crick, The Astonishing Hypothesis: The Scientific Search for the Soul (New York: Scribner, 1995); D. C. Dennett, Consciousness Explained (Boston: Back Bay Books, 1991); K. Frankish, “Illusionism as a Theory of Consciousness,” Journal of Consciousness Studies 23 (2016): 1–39; B. Hood, The Self Illusion: How the Social Brain Creates Identity (Oxford, UK: Oxford University Press, 2012); F. Kammerer, “The Hardest Aspect of the Illusion Problem — And How to Solve It,” Journal of Consciousness Studies 23 (2016): 124–39.
. Утверждение, что сознание — иллюзия, нужная, чтобы сделать жизнь приятнее и продуктивнее, содержится в работе: N. Humphrey, Soul Dust (Princeton, NJ: Princeton University Press, 2011).
. S. Glucksberg, Understanding Figurative Language (Oxford, UK: Oxford University Press, 2001).
. V. S. Ramachandran and W. Hirstein, “The Perception of Phantom Limbs,” Brain 121 (1998): 1603–30; A. Woodhouse, “Phantom Limb Sensation,” Clinical and Experimental Pharmacology and Physiology 32 (2005): 132–34.
. V. S. Ramachandran and W. Hirstein, “The Perception of Phantom Limbs,” Brain 121 (1998): 1603–30.
. Y. Luo and T. A. Anderson, “Phantom Limb Pain: A Review,” International Anesthesiology Clinics 54 (2016): 121–39.
. V. S. Ramachandran and W. Hirstein, “The Perception of Phantom Limbs,” Brain 121 (1998): 1603–30.
. G. Vallar and R. Ronchi, “Somatoparaphrenia: A Body Delusion. A Review of the Neuropsychological Literature,” Experimental Brain Research 192 (2009): 533–51.
. O. Sacks, The Man Who Mistook His Wife for a Hat (New York: Touchstone, 1998), 56. Русский перевод: Сакс О. Человек, который принял жену за шляпу, и другие истории из врачебной практики. — АСТ, 2015.
. M. Botvinick and J. D. Cohen, “Rubber Hand ‘Feels’ What Eye Sees,” Nature 391 (1998): 756.
. M. S. A. Graziano, The Spaces between Us: A Story of Neuroscience, Evolution, and Human Nature (Oxford, UK: Oxford University Press, 2018).
. O. Blanke and T. Metzinger, “Full-Body Illusions and Minimal Phenomenal Selfhood,” Trends in Cognitive Sciences 13 (2009): 7–13.
. B. J. Baars, A Cognitive Theory of Consciousness (Cambridge, UK: Cambridge University Press, 1988).
. S. Dehaene, Consciousness and the Brain (New York: Viking Press, 2014).
. D. Dennett, Sweet Dreams (Cambridge, MA: MIT Press, 2005). Русский перевод: см. выше.
. C. G. Gross, Brain, Vision, Memory: Tales in the History of Neuroscience (New York: Bradford Books, 1999).
. H. Palsson and P. Edwards, Seven Viking Romances (Toronto, Canada: Penguin Books, 1985).
. D. Rosenthal, Consciousness and Mind (Oxford, UK: Oxford University Press, 2006); см. также: R. L. Gennaro, Consciousness and Self Consciousness: A Defense of the Higher Order Thought Theory of Consciousness (Philadelphia: John Benjamin’s Publishing, 1996); H. Lau and D. Rosenthal, “Empirical Support for Higher-Order Theories of Consciousness,” Trends in Cognitive Sciences 15 (2011): 365–73.
. P. Carruthers, “How We Know Our Own Minds: The Relationship between Mindreading and Metacognition,” Behavioral and Brain Sciences 32 (2009): 121–82; A. Pasquali, B. Timmermans, and A. Cleeremans, “Know Thyself: Metacognitive Networks and Measures of Consciousness,” Cognition 117 (2010): 182–90; D. M. Rosenthal, “Consciousness, Content, and Metacognitive Judgments,” Consciousness and Cognition 9 (2000): 203–14.
. D. D. Hoffman, “The Interface Theory of Perception,” in Object Categorization: Computer and Human Vision Perspectives, ed. S. Dickinson, M. Tarr, A. Leonardis, and B. Schiele (New York: Cambridge University Press, 2009), 148–65.
. P. Grimaldi, H. Lau, and M. A. Basso, “There Are Things That We Know That We Know, and There Are Things That We Do Not Know We Do Not Know: Confidence in Decision-Making,” Neuroscience and Biobehavioral Reviews 55 (2015): 88–97.
. D. C. Dennett, Consciousness Explained (Boston: Back Bay Books, 1991).
. S. J. Blackmore, “Consciousness in Meme Machines,” Journal of Consciousness Studies 10 (2003): 19–30.
. W. James, Principles of Psychology (New York: Henry Holt & Co., 1890).
. A. M. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem,” Proceedings of the London Mathematical Society S2–42 (1937): 230–65.
. C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal 27 (1948): 379–423.
. R. W. Kentridge, C. A. Heywood, and L. Weiskrantz, “Attention without Awareness in Blindsight,” Proceedings: Biological Sciences 266 (1999): 1805–11; R. W. Kentridge, C. A. Heywood, and L. Weiskrantz, “Spatial Attention Speeds Discrimination without Awareness in Blindsight,” Neuropsychologia 42 (2004): 831–35.
. Здесь я привожу лишь небольшой ряд из множества блестящих работ, показывающих разделение осознания и внимания. Это явление заинтересовало многих исследователей и стало темой большого количества работ, поскольку оказалось одним из немногих экспериментальных результатов, напрямую связанных с сознанием, которые можно получить в контролируемых лабораторных условиях. U. Ansorge and M. Heumann, “Shifts of Visuospatial Attention to Invisible (Metacontrast-Masked) Singletons: Clues from Reaction Times and Event-Related Potentials,” Advances in Cognitive Psychology 2 (2006): 61–76; P. Hsieh, J. T. Colas, and N. Kanwisher, “Unconscious Pop-Out: Attentional Capture by Unseen Feature Singletons Only When Top-Down Attention Is Available,” Psychological Science 22 (2011): 1220–26; J. Ivanoff and R. M. Klein, “Orienting of Attention without Awareness Is Affected by Measurement-Induced Attentional Control Settings,” Journal of Vision 3 (2003): 32–40; Y. Jiang, P. Costello, F. Fang, M. Huang, and S. He, “A Gender- and Sexual Orientation-Dependent Spatial Attentional Effect of Invisible Images,” Proceedings of the National Academy of Sciences USA 103 (2006): 17048–52; R. W. Kentridge, T. C. Nijboer, and C. A. Heywood, “Attended but Unseen: Visual Attention Is Not Sufficient for Visual Awareness,” Neuropsychologia 46 (2008): 864–69; C. Koch and N. Tsuchiya, “Attention and Consciousness: Two Distinct Brain Processes,” Trends in Cognitive Sciences 11 (2007): 16–22; A. Lambert, N. Naikar, K. McLachlan, and V. Aitken, “A New Component of Visual Orienting: Implicit Effects of Peripheral Information and Subthreshold Cues on Covert Attention,” Journal of Experimental Psychology, Human Perception and Performance 25 (1999): 321–40; V. A. Lamme, “Separate Neural Definitions of Visual Consciousness and Visual Attention: A Case for Phenomenal Awareness,” Neural Networks 17 (2004): 861–72; Z. Lin and S. O. Murray, “More Power to the Unconscious: Conscious, but Not Unconscious, Exogenous Attention Requires Location Variation,” Psychological Science 26 (2015): 221–30; P. A. McCormick, “Orienting Attention without Awareness,” Journal of Experimental Psychology, Human Perception and Performance 23 (1997): 168–80; L. J. Norman, C. A. Heywood, and R. W. Kentridge, “Object-Based Attention without Awareness,” Psychological Science 24 (2013): 836–43; Y. Tsushima, Y. Sasaki, and T. Watanabe, “Greater Disruption Due to Failure of Inhibitory Control on an Ambiguous Distractor,” Science 314 (2006): 1786–88; T. W. Webb, H. H. Kean, and M. S. A. Graziano, “Effects of Awareness on the Control of Attention,” Journal of Cognitive Neuroscience 28 (2016): 842–51; G. F. Woodman and S. J. Luck, “Dissociations among Attention, Perception, and Awareness during Object-Substitution Masking,” Psychological Science 14 (2003): 605–11.
. Y. Tsushima, Y. Sasaki, and T. Watanabe, “Greater Disruption Due to Failure of Inhibitory Control on an Ambiguous Distractor,” Science 314 (2006): 1786–88; T. W. Webb, H. H. Kean, and M. S. A. Graziano, “Effects of Awareness on the Control of Attention,” Journal of Cognitive Neuroscience 28 (2016): 842–51.
. T. W. Webb, H. H. Kean, and M. S. A. Graziano, “Effects of Awareness on the Control of Attention,” Journal of Cognitive Neuroscience 28 (2016): 842–51.
. Практически невозможно упомянуть все великое множество теорий, включающих в себя представление о том, что сознание связано с интеграцией информации. Вот лишь немногие из них: B. J. Baars, A Cognitive Theory of Consciousness (Cambridge, UK: Cambridge University Press, 1988); A. B. Barrett, “An Integration of Integrated Information Theory with Fundamental Physics,” Frontiers in Psychology 5 (2014): 63; F. Crick and C. Koch, “Toward a Neurobiological Theory of Consciousness,” Seminars in the Neurosciences 2 (1990): 263–75; A. Damasio, Self Comes to Mind: Constructing the Conscious Brain (New York: Pantheon, 2015); S. Dehaene, Consciousness and the Brain (New York: Viking Press, 2014); G. M. Edelman, J. A. Gally, and B. J. Baars, “Biology of Consciousness,” Frontiers in Psychology 2 (2012): 4; A. K. Engel and W. Singer, “Temporal Binding and the Neural Correlates of Sensory Awareness,” Trends in Cognitive Sciences 5 (2011): 16–25; S. Grossberg, “The Link between Brain Learning, Attention, and Consciousness,” Consciousness and Cognition 8 (1999): 1–44; V. A. Lamme, “Towards a True Neural Stance on Consciousness,” Trends in Cognitive Sciences 10 (2006): 494–501; G. Tononi, M. Boly, M. Massimini, and C. Koch, “Integrated Information Theory: From Consciousness to Its Physical Substrate,” Nature Reviews Neuroscience 17 (2016): 450–61; C. Von der Malsburg, “The Coherence Definition of Consciousness,” in Cognition, Computation, and Consciousness, ed. M. Ito, Y. Miyashita, and E. Rolls (Oxford, UK: Oxford University Press, 1997), 193–204; L. M. Ward, “The Thalamic Dynamic Core Theory of Conscious Experience,” Consciousness and Cognition 20 (2011): 464–86.
. G. Tononi, Phi: A Voyage from the Brain to the Soul (New York: Pantheon, 2012).
. K. Koffka, Principles of Gestalt Psychology (New York: Harcourt, Brace, 1935).
. B. E. Stein and M. A. Meredith, The Merging of the Senses (Cambridge, MA: MIT Press, 1993).
. Синдром Балинта, вызванный повреждением частей теменной доли, может быть примером распада единого чувственного мира при нарушении пространственной информации. H. Udesen and A. L. Madsen, “Balint’s Syndrome — Visual Disorientation,” Ugeskrift for Laeger 154 (1992): 1492–94.
. M. White, Isaac Newton: The Last Sorcerer (New York: Basic Books, 1999).
. I. Aleksander, Impossible Minds: My Neurons, My Consciousness (Singapore: World Scientific, 2014); B. J. Baars and S. Franklin, “Consciousness Is Computational: The LIDA Model of Global Workspace Theory,” International Journal of Machine Consciousness 1 (2009): 23–32; A. Chella and R. Manzotti, “Machine Consciousness: A Manifesto for Robotics,” International Journal of Machine Consciousness 1 (2009): 33–51; L. A. Coward and R. Sun, “Criteria for an Effective Theory of Consciousness and Some Preliminary Attempts,” Consciousness and Cognition 13 (2004): 268–301; S. Franklin, “IDA: A Conscious Artefact,” in Machine Consciousness, ed. O. Holland (Exeter, UK: Imprint Academic, 2003); P. Haikonen, Consciousness and Robot Sentience (Singapore: World Scientific, 2012); O. Holland and R. Goodman, “Robots with Internal Models: A Route to Machine Consciousness?” Journal of Consciousness Studies 10 (2003): 77–109; N. Marupaka, L. Lyer, and A. Minai, “Connectivity and Thought: The Influence of Semantic Network Structure in a Neurodynamical Model of Thinking,” Neural Networks 32 (2012): 147–58; D. Rudrauf, D. Bennequin, I. Granic, G. Landini, K. Friston, and K. Williford, “A Mathematical Model of Embodied Consciousness,” Journal of Theoretical Biology 428 (2017): 106–31; M. Shanahan, “A Cognitive Architecture That Combines Internal Simulation with a Global Workspace,” Consciousness and Cognition 15 (2006): 443–49.
. A. M. Turing, “Computing Machinery and Intelligence,” Mind 59 (1950): 433–60.
. S. Baron-Cohen, A. M. Leslie, and U. Frith, “Does the Autistic Child Have a ‘Theory of Mind?’” Cognition 21 (1985): 37–46; H. Wimmer and J. Perner, “Beliefs about Beliefs: Representation and Constraining Function of Wrong Beliefs in Young Children’s Understanding of Deception,” Cognition 13 (1983): 103–28.
. N. S. Clayton, “Ways of Thinking: From Crows to Children and Back Again,” Quarterly Journal of Experimental Psychology 68 (2015): 209–41; C. Krupenye, F. Kano, S. Hirata, J. Call, and M. Tomasello, “Great Apes Anticipate That Other Individuals Will Act According to False Beliefs,” Science 354 (2016): 110–14; H. M. Wellman, D. Cross, and J. Watson, “Meta-Analysis of Theory-of-Mind Development: The Truth about False Belief,” Child Development 72 (2001): 655–84.
. M. A. Lebedev and M. A. Nicolelis, “Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation,” Physiological Review 97 (2017): 767–837.
. J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini, “Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex,” Science 293 (2001): 2425–30.
. Внимание так часто встраивали в искусственные устройства, что я в состоянии привести лишь весьма неполный список литературы: H. Adeli, F. Vitu, and G. F. Zelinsky, “A Model of the Superior Colliculus Predicts Fixation Locations during Scene Viewing and Visual Search,” Journal of Neuroscience 37 (2017): 1453–67; A. Borji and L. Itti, “State-of-the-Art in Visual Attention Modeling,” IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (2013): 185–207; G. Deco and E. T. Rolls, “A Neurodynamical Cortical Model of Visual Attention and Invariant Object Recognition,” Vision Research 44 (2004): 621–42; Y. Fang, C. Zhang, J. Li, J. Lei, M. Perreira Da Silva, and P. Le Callet, “Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model,” IEEE Transactions on Image Processing 26 (2017): 4684–96; S. Goferman, L. Zelnikmanor, and A. Tal, “Context-Aware Saliency Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2012): 1915–26; C. Guo and L. Zhang, “A Novel Multi-Resolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression,” IEEE Transactions on Image Processing 19 (2010): 185–98; L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual Attention for Rapid Scene Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1988): 1254–59; O. Le Meur, P. Le Callet, and D. Barba, “A Coherent Computational Approach to Model the Bottom-Up Visual Attention,” IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (2006): 802–17; R. J. Lin and W. S. Lin, “A Computational Visual Saliency Model Based on Statistics and Machine Learning,” Journal of Vision 14 (2014): 1; T. Miconi and R. VanRullen, “A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure,” PLoS Computational Biology 12 (2016): e1004770; J. H. Reynolds and D. J. Heeger, “The Normalization Model of Attention,” Neuron 61 (2009): 168–85; P. Schwedhelm, B. S. Krishna, and S. Treue, “An Extended Normalization Model of Attention Accounts for Feature-Based Attentional Enhancement of Both Response and Coherence Gain,” PLoS Computational Biology 12 (2016): e1005225; M. A. Schwemmer, S. F. Feng, P. J. Holmes, J. Gottlieb, and J. D. Cohen, “A Multi-Area Stochastic Model for a Covert Visual Search Task,” PLoS One 10 (2015): e0136097; S. Vossel, C. Mathys, K. E. Stephan, and K. J. Friston, “Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention,” Journal of Neuroscience 35 (2015): 11532–42; A. L. White, M. Rolfs, and M. Carrasco, “Stimulus Competition Mediates the Joint Effects of Spatial and Feature-Based Attention,” Journal of Vision 15 (2015). doi: 10.1167/15.14.7; P. Zhang, T. Zhuo, W. Huang, K. Chen, and M. Kankanhalli, “Online Object Tracking Based on CNN with Spatial-Temporal Saliency Guided Sampling,” Neurocomputing 257 (2017): 115–27.
. E. van den Boogaard, J. Treur, and M. Turpijn, “A Neurologically Inspired Neural Network Model for Graziano’s Attention Schema Theory for Consciousness,” International Work Conference on the Interplay between Natural and Artificial Computation: Natural and Artificial Computation for Biomedicine and Neuroscience Part 1 (2017): 10–21.
. M. M. Chun, J. D. Golomb, and N. B. Turk-Browne, “A Taxonomy of External and Internal Attention,” Annual Review of Psychology 62 (2011): 73–101.
. J. Ledoux, The Emotional Brain: The Mysterious Underpinnings of Emotional Life (New York: Simon & Schuster, 1998).
. W. R. Hess, Functional Organization of the Diencephalons (New York: Grune and Stratton, 1957).
. B. G. Hoebel, “Neuroscience and Appetitive Behavior Research: 25 Years,” Appetite 29 (1997): 119–33; T. V. Sewards and M. A. Sewards, “Representations of Motivational Drives in Mesial Cortex, Medial Thalamus, Hypothalamus and Midbrain,” Brain Research Bulletin 61 (2003): 25–49; A. Venkatraman, B. L. Edlow, and M. H. Immordino-Yang, “The Brainstem in Emotion: A Review,” Frontiers in Neuroanatomy 11 (2017): 15.
. J. LeDoux, “The Amygdala,” Current Biology 17 (2007): R868–R874; P. J. Walen and E. A. Phelps, The Human Amygdala (New York: Guilford Press, 2009).
. E. T. Rolls and F. Grabenhorst, “The Orbitofrontal Cortex and Beyond: From Affect to Decision-Making,” Progress in Neurobiology 86 (2008): 216–44.
. M. Tamietto and B. de Gelder, “Neural Bases of the Non-Conscious Perception of Emotional Signals,” Nature Reviews Neuroscience 11 (2010): 697–709; P. Winkielman and K. C. Berridge, “Unconscious Emotion,” Current Directions in Psychological Science 13 (2004): 120–23.
. J. E. LeDoux and R. Brown, “A Higher-Order Theory of Emotional Consciousness,” Proceedings of the National Academy of Sciences, USA 114 (2017): E2016–E2025.
. W. Cannon, “The James-Lange Theory of Emotions: A Critical Examination and an Alternative Theory,” The American Journal of Psychology 39 (1927): 106–24.
. D. G. Dutton and A. P. Aaron, “Some Evidence for Heightened Sexual Attraction under Conditions of High Anxiety,” Journal of Personality and Social Psychology 30 (1974): 510–17.
. M. E. Moran, “The da Vinci Robot,” Journal of Endourology 20 (2006): 986–90.
. I. Asimov, The Bicentennial Man (New York: Ballantine Books, 1976). Русский перевод И. Гуровой. Двухсотлетний человек. В кн.: Азимов А. Мечты роботов: Фантастические произведения. — М.: Эксмо, 2009. — С. 262.
. P. K. Dick, Do Androids Dream of Electric Sheep? (New York: Doubleday, 1968). Русский перевод Н. Романецкого. Мечтают ли андроиды об электрических овцах? В кн.: Дик Ф. К. В ожидании прошлого: Сб. — М.: ООО “Издательство ACT”: ЗАО НПП “Ермак”, 2004.
. D. Levy, “The Ethical Treatment of Artificially Conscious Robots,” International Journal of Social Robotics 1 (1929): 209–16.
. B. Hood, The Self Illusion: How the Social Brain Creates Identity (Oxford, UK: Oxford University Press, 2012); F. Podschwadek, “Do Androids Dream of Normative Endorsement? On the Fallibility of Artificial Moral Agents,” Artificial Intelligence and Law 25 (2017): 325–39; J. Sullins, “Artificial Phronesis and the Social Robot,” Frontiers in Artificial Intelligence and Applications 290 (2016): 37–39.
. R. Blackford and D. Broderick, eds., Intelligence Unbound: The Future of Uploads and Machine Minds (Hoboken, NJ: Wiley Blackwell, 2014); C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and D. Rasmussen, “A Large-Scale Model of the Functioning Brain,” Science 338 (2012): 1202–05; D. Eth, J.-C. Foust, and B. Whale, “The Prospects of Whole Brain Emulation within the Next Half-Century,” Journal of Artificial General Intelligence 4 (2013): 130–52; R. A. Koene, “Feasible Mind Uploading,” in Intelligence Unbound: The Future of Uploaded and Machine Minds, ed. R. Blackford and D. Broderick (Hoboken, NJ: Wiley-Blackwell, 2014); R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology (New York: Penguin Books, 2006); H. Markram, E. Muller, S. Ramaswamy, M. Reimann, M. Abdellah, C. A. Sanchez, A. Ailamaki, et al., “Reconstruction and Simulation of Neocortical Microcircuitry,” Cell 163 (2015): 456–92; H. Moravec, Mind Children: The Future of Robot and Human Intelligence (Cambridge, MA: Harvard University Press, 1988).
. S. Herculano-Houzel, “The Human Brain in Numbers: A Linearly Scaled-Up Primate Brain,” Frontiers in Human Neuroscience 3 (2009). doi: 10.3389/neuro.09.031.2009
. C. S. Sherrington, “Santiago Ramón y Cajal 1852–1934,” Biographical Memoirs of Fellows of the Royal Society 1 (1935): 424–41.
. S. R. Cajal, J. DeFelipe, and E. G. Jones, Cajal on the Cerebral Cortex: An Annotated Translation of the Complete Writings (Oxford, UK: Oxford University Press, 1988).
. D. E. Rumelhart and J. McClelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Cambridge, MA: MIT Press, 1986); J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural Networks 61 (2015): 85–117.
. D. M. Barch, “Resting-State Functional Connectivity in the Human Connectome Project: Current Status and Relevance to Understanding Psychopathology,” Harvard Review of Psychiatry 25 (2017): 209–17; D. D. Bock, W. C. Lee, A. M. Kerlin, M. L. Andermann, G. Hood, A. W. Wetzel, S. Yurgenson, et al., “Network Anatomy and In Vivo Physiology of Visual Cortical Neurons,” Nature 471 (2011): 177–82; G. Gong, Y. He, L. Concha, C. Lebel, D. W. Gross, A. C. Evans, and C. Beaulieu, “Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography,” Cerebral Cortex 19 (2009): 524–36; P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and O. Sporns, “Mapping the Structural Core of Human Cerebral Cortex,” PLoS Biol 6 (2008): e159; P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, and J.-P. Thiran, “Mapping Human Whole-Brain Structural Networks with Diffusion MRI,” PLoS One 2 (2007): e597; M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk, “Connectomic Reconstruction of the Inner Plexiform Layer in the Mouse Retina,” Nature 500 (2013): 168–74; O. Sporns, G. Tononi, and R. Kötter, “The Human Connectome: A Structural Description of the Human Brain,” PLoS Computational Biology 1 (2005): e42; L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii, “Structural Properties of the Caenorhabditis elegans Neuronal Network,” PLoS Computational Biology 7 (2011): e1001066; Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols, D. Milkie, O. Torrens, et al., “A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster,” Cell 174 (2018): 730–43.
. L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii, “Structural Properties of the Caenorhabditis elegans Neuronal Network,” PLoS Computational Biology 7 (2011): e1001066; Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols, D. Milkie, O. Torrens, et al., “A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster,” Cell 174 (2018): 730–43.
. D. D. Bock, W. C. Lee, A. M. Kerlin, M. L. Andermann, G. Hood, A. W. Wetzel, S. Yurgenson, et al., “Network Anatomy and In Vivo Physiology of Visual Cortical Neurons,” Nature 471 (2011): 177–82.
. D. M. Barch, “Resting-State Functional Connectivity in the Human Connectome Project: Current Status and Relevance to Understanding Psychopathology,” Harvard Review of Psychiatry 25 (2017): 209–17; G. Gong, Y. He, L. Concha, C. Lebel, D. W. Gross, A. C. Evans, and C. Beaulieu, “Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography,” Cerebral Cortex 19 (2009): 524–36; P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and O. Sporns, “Mapping the Structural Core of Human Cerebral Cortex,” PLoS Biol 6 (2008): e159; P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, and J.-P. Thiran, “Mapping Human Whole-Brain Structural Networks with Diffusion MRI,” PLoS One 2 (2007): e597; O. Sporns, G. Tononi, and R. Kötter, “The Human Connectome: A Structural Description of the Human Brain,” PLoS Computational Biology 1 (2005): e42.
. S. Herculano-Houzel, “The Human Brain in Numbers: A Linearly Scaled-Up Primate Brain,” Frontiers in Human Neuroscience 3 (2009). doi: 10.3389/neuro.09.031.2009
. N. A. O’Rourke, N. C. Weiler, K. D. Micheva, and S. J. Smith, “Deep Molecular Diversity of Mammalian Synapses: Why It Matters and How to Measure It,” Nature Reviews Neuroscience 13 (2012): 365–79; V. Pickel and M. Segal, The Synapse: Structure and Function (New York: Academic Press, 2014).
. B. A. Barres, B. Stevens, and M. R. Freeman, Glia (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2014).
. A. Einstein, The Collected Papers of Albert Einstein: Vol. 7: The Berlin Years: Writings, 1918–1921, trans. A. Engel (Princeton, NJ: Princeton University Press, 2002).
. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Physical Review Letters 116 (2016): 061102.
. M. L. Cappuccio, “Mind-Upload. The Ultimate Challenge to the Embodied Mind Theory,” Phenomenology and the Cognitive Sciences 16 (2017): 425–48; M. Wheeler, “Cognition in Context: Phenomenology, Situated Robotics and the Frame Problem,” International Journal of Philosophical Studies 16 (2008): 323–49.
. O. Blanke and T. Metzinger, “Full-Body Illusions and Minimal Phenomenal Selfhood,” Trends in Cognitive Sciences 13 (2009): 7–13; M. S. A. Graziano and M. M. Botvinick, “How the Brain Represents the Body: Insights from Neurophysiology and Psychology,” in Common Mechanisms in Perception and Action: Attention and Performance XIX, ed. W. Prinz and B. Hommel (Oxford, UK: Oxford University Press, 2002), 136–57; C. Lopez, “Making Sense of the Body: The Role of Vestibular Signals,” Multisensory Research 28 (2015): 525–57; A. Serino, A. Alsmith, M. Costantini, A. Mandrigin, A. Tajadura-Jimenez, and C. Lopez, “Bodily Ownership and Self-Location: Components of Bodily Self-Consciousness,” Consciousness and Cognition 22 (2013): 1239–52.
. Статья, посвященная имитации руки, не была опубликована. Обзор моих исследований контроля движения см. в работе: M. S. A. Graziano, The Intelligent Movement Machine (Oxford, UK: Oxford University Press, 2008).
. T. D. Bancroft, “Ethical Aspects of Computational Neuroscience,” Neuroethics 6 (2013): 415–18; P. Eckersley and A. Sandberg, “Is Brain Emulation Dangerous?” Journal of Artificial General Intelligence 4 (2013): 170–94; K. Muzyka, “The Outline of Personhood Law Regarding Artificial Intelligences and Emulated Human Entities,” Journal of Artificial General Intelligence 4 (2013): 164–69.
. D. Sheils, “Toward a Unified Theory of Ancestor Worship: A Cross-Cultural Study,” Social Forces 54 (1975): 427–40.
. B. B. Powell, Writing: Theory and History of the Technology of Civilization (Oxford, UK: Blackwell Press, 2009).
. J. P. Mallory and D. Q. Adams, The Oxford Introduction to Proto-Indo-European and the Proto-Indo-European World (Oxford, UK: Oxford University Press, 2006).
. G. Santayana, Reason in Common Sense (New York: Dover, 1980).
. R. Klette, Concise Computer Vision (New York: Springer, 2014); L. G. Shapiro and G. C. Stockman, Computer Vision (Upper Saddle River, NJ: Prentice Hall, 2001); M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision (Stamford, CT: Cengage Learning, 2008).
. P. M. Merikle, D. Smilek, and J. D. Eastwood, “Perception without Awareness: Perspectives from Cognitive Psychology,” Cognition 79 (2001): 115–34; R. Szczepanowski and L. Pessoa, “Fear Perception: Can Objective and Subjective Awareness Measures Be Dissociated?” Journal of Vision 10 (2007): 1–17.
. M. Tegmark, “Consciousness as a State of Matter,” arXiv (2014): 1401.1219; G. Tononi, M. Boly, M. Massimini, and C. Koch, “Integrated Information Theory: From Consciousness to Its Physical Substrate,” Nature Reviews Neuroscience 17 (2016): 450–61.
. M. S. A. Graziano and M. M. Botvinick, “How the Brain Represents the Body: Insights from Neurophysiology and Psychology,” in Common Mechanisms in Perception and Action: Attention and Performance XIX, ed. W. Prinz and B. Hommel (Oxford, UK: Oxford University Press, 2002), 136–57; N. Holmes and C. Spence, “The Body Schema and the Multisensory Representation (s) of Personal Space,” Cognitive Processing 5 (2004): 94–105; F. de Vignemont, Mind the Body: An Exploration of Bodily Self-Awareness (Oxford, UK: Oxford University Press, 2018).
. S. Bluck and T. Habermas, “The Life Story Schema,” Motivation and Emotion 24 (2000): 121–47; M. A. Conway and C. W. Pleydell-Pearce, “The Construction of Autobiographical Memories in the Self-Memory System,” Psychological Review 107 (2000): 261–88; M. A. Conway, J. A. Singer, and A. Tagini, “The Self and Autobiographical Memory: Correspondence and Coherence,” Social Cognition 22 (2004): 491–529.
. O. Blanke, “Multisensory Brain Mechanisms of Bodily Self-Consciousness,” Nature Reviews Neuroscience 13 (2012): 556–71; O. Blanke and T. Metzinger, “Full-Body Illusions and Minimal Phenomenal Selfhood,” Trends in Cognitive Sciences 13 (2009): 7–13; C. Preston, B. J. Kuper-Smith, and H. H. Ehrsson, “Owning the Body in the Mirror: The Effect of Visual Perspective and Mirror View on the Full-Body Illusion,” Scientific Reports 5 (2015): 18345.
. M. S. Gazzaniga, The Bisected Brain (New York: Appleton Century Crofts, 1970); R. E. Nisbett and T. D. Wilson, “Telling More Than We Can Know — Verbal Reports on Mental Processes,” Psychological Review 84 (1977): 231–59.
. D. M. Beck and S. Kastner, “Top-Down and Bottom-Up Mechanisms in Biasing Competition in the Human Brain,” Vision Research 49 (2009): 1154–65; R. Desimone and J. Duncan, “Neural Mechanisms of Selective Visual Attention,” Annual Review of Neuroscience 18 (1995): 193–222.
. G. Deco and E. T. Rolls, “Neurodynamics of Biased Competition and Cooperation for Attention: A Model with Spiking Neurons,” Journal of Neurophysiology 94 (2005): 295–313; L. Layon and S. L. Denham, “A Biased Competition Computational Model of Spatial and Object-Based Attention Mediating Active Visual Search,” Neurocomputing 58 (2004): 655–62; J. Reynolds and D. Heeger, “The Normalization Model of Attention,” Neuron 61 (2009): 168–85; J. K. Tsotsos, A Computational Perspective on Visual Attention (Cambridge, MA: MIT Press, 2011).