Книга: Живой мозг
Назад: Глава 2. Просто добавь реальности
Дальше: Глава 4. Что в него ни поступает, все он, умница, постигает

ГЛАВА 3

ВНУТРЕННЕЕ КАК ЗЕРКАЛО ВНЕШНЕГО

Дело обезьянок из Сильвер-Спринг

В 1951 году нейрохирург Уайлдер Пенфилд опустил кончик тонкого электрода внутрь мозга оперируемого пациента и обнаружил удивительное явление в мозговой ткани, ровно под той полоской кожи на голове, куда приходилась дуга надетых наушников. Когда Пенфилд стимулировал определенную точку в этом участке коры слабым электрическим разрядом, у пациента возникало ощущение, что кто-то дотронулся до его руки. При стимуляции рядом расположенного участка пациент ощущал прикосновение к туловищу. А другой участок, получив электрический разряд, вызывал у пациента ощущение, что дотронулись до его колена. Дальше выяснилось, что каждая область тела представлена в этой области мозга соответствующей чувствительной точкой.

Позже Пенфилду открылись новые глубины обнаруженного им явления: участки мозга, отвечающие за чувствительность прилежащих частей тела, тоже располагаются в коре мозга по соседству. Кисть руки представлена по соседству с предплечьем, предплечье — по соседству с локтем, а отвечающий за локоть участок соседствует с тем, который отвечает за плечо. И так далее. Словом, вдоль этой полоски мозговой ткани располагается подробная топографическая карта тела. Медленно двигаясь вдоль соматосенсорной коры, Пенфилд мог получить карту всего тела человека.

Более того: он нашел еще одну кортикальную карту. Выяснилось, что при последовательной стимуляции участков, расположенных вдоль двигательной (моторной) коры (область непосредственно перед соматосенсорной корой), результат был примерно тем же: слабый разряд тока заставлял сокращаться мышцы в конкретных расположенных по соседству участках тела. Причем представительства прилежащих участков тела в двигательной коре повторяли их расположение в соматосенсорной коре (рис. 3.1).

2

Рис. 3.1. Карты тела обнаружены в тех участках коры, куда поступают входные сигналы (соматосенсорная кора, вверху), откуда исходят ответные сигналы (двигательная кора, внизу). Частям тела с более высокой чувствительностью или более тонким управлением соответствуют большие области коры

Печатается с разрешения автора

Пенфилд назвал эти карты тела гомункулусом.

Разве можно ожидать, что в мозге имеются подобные карты тела? Не странно ли это? Как они вообще там существуют, ведь мозг заключен в черепе, причем в полной темноте? Примерно 1,3 кг мозговой ткани не могут знать, как выглядит ваше тело; мозг лишен возможности напрямую видеть его. У мозга есть доступ лишь к потокам электрических импульсов, которые стремительно проносятся по густым сплетениям информационных кабелей, называемых в обиходе нервами, он, по идее, не может иметь представления, какие конечности, в каких местах и в каком порядке присоединяются к туловищу. Но тогда откуда в абсолютной темноте под сводами черепа берется карта схемы тела?

Небольшое умственное усилие тут же подскажет вам, как просто открывается этот ларчик: схема тела наверняка генетически заложена в коре мозга. Отличная догадка!

Но только неправильная. Все обстоит с точностью до наоборот: разгадка бесподобно изящна и дьявольски хитроумна.

***

Ключик к тайнам карты тела нашелся спустя десятилетия, и то в силу непредвиденного стечения обстоятельств. Научный сотрудник Института поведенческих исследований в Сильвер-Спринг Эдвард Тауб изучал возможности восстановления двигательной активности после тяжелых мозговых повреждений. В ходе экспериментов на 17 обезьянах (макаках) он планировал определить, возможна ли регенерация поврежденных нервов. Каждому животному Эдвард аккуратно перерезал чувствительные нервы, связывающие мозг с одной из конечностей. Как он и ожидал, подопытные животные теряли чувствительность в «отключенной» конечности. Тауб приступил к исследованиям с целью выяснить, существуют ли способы восстановить пользование бездействующей конечностью.

В 1981 году в лаборатории Тауба начал работать молодой волонтер Алекс Пачеко. Он представился студентом, которого якобы весьма интересовала исследуемая Таубом научная проблематика, а на самом деле был лазутчиком и действовал в интересах набиравшей обороты некоммерческой организации «Люди за этичное отношение к животным» (англ. PETA: People for the Ethical Treatment of Animals), сооснователем которой являлся. По ночам Пачеко фотографировал подопытных макак. Некоторые его фото носили явно постановочный характер и преувеличивали страдания животных, но, как бы там ни было, желаемого эффекта он добился. В 1981 году полиция округа Монтгомери провела рейд в лабораторию и закрыла ее на основании жестокого обращения с животными. Доктору Таубу предъявили обвинение по шести пунктам в неоказании должной ветеринарной помощи. В ходе апелляции все обвинения были сняты, но тем не менее события в Сильвер-Спринг привели к тому, что в 1985 году был принят Закон о благополучии животных (Animal Welfare Act), в котором конгресс США прописал новые правила содержания животных в исследовательских лабораториях.

Хотя эта история стала поворотным пунктом в защите прав животных, ее значение не ограничивается баталиями в стенах конгресса. В нашем контексте нас прежде всего интересует, что потом происходило с теми семнадцатью травмированными обезьянками. По следам полицейского рейда в лабораторию набежали активисты PETA и унесли зверьков с собой, что дало повод к обвинениям в краже вещественных доказательств по делу. Разгневанные сотрудники института потребовали вернуть животных. Судебные страсти разгорались все жарче, пока спор о владении подопытными обезьянами не достиг высшей судебной инстанции — Верховного суда США.

Верховный суд отклонил прошение PETA вернуть обезьян и передал опекунство над ними третьей стороне — национальным институтам здравоохранения. Пока «старшие братья» пререкались в залах суда за тридевять земель от Сильвер-Спринг, обезьянки-инвалиды наслаждались досрочной отставкой и беззаботно предавались радостям жизни: ели, пили и играли друг с другом. Так пролетели десять лет.

Под конец эпопеи одна обезьянка неизлечимо заболела. Суд дал согласие на усыпление. Тут-то в сюжете и произошел важный поворот. Группа нейробиологов обратилась к суду с предложением: нанесенное животному жестокое увечье можно будет хоть как-то оправдать, если ученым дадут разрешение перед эвтаназией провести под наркозом картирование мозга животного. После некоторых дебатов суд пошел им навстречу.

14 января 1990 года исследователи поместили регистрирующие электроды в соматосенсорную кору обезьянки. Далее они проделали то же самое, что в свое время Уайлдер Пенфилд на мозге пациента-человека: по очереди дотрагивались до кисти, локтя, мордочки и прочих частей тела животного и фиксировали реакцию нейронов мозга. Таким путем была описана карта тела обезьянки, существующая в коре ее мозга.

Полученные результаты вызвали большой переполох в нейробиологическом сообществе. Оказалось, что карта тела с годами претерпела изменения. То, что от легкого прикосновения к обездвиженной из-за перерезанных нервов конечности животного больше не активировался соответствующий участок коры, сюрпризом не стало: этого и следовало ожидать. Ученых поразило другое: крошечный участок коры, прежде отвечавший за руку, теперь возбуждался в ответ на прикосновение к мордочке. Иными словами, карта тела перестроилась. Гомункулус все еще выглядел как обезьянка, но обезьянка без правой лапы.

Открытие исключило всякую возможность, что отображаемая в мозге карта тела задана генетически. Напротив, выяснилось, что все обстоит намного любопытнее: карта тела в мозге гибко определялась активными входными сигналами от тела. Когда структура тела меняется, соответственно меняется и кортикальный гомункулус.

В том же году нейробиологи провели аналогичные исследования по мозговому картированию других обезьян из Сильвер-Спринг. В каждом случае обнаружилась значительная перестройка соматосенсорной коры: оказалось, что ее участки, ответственные за «отключенные» конечности, перехвачены прилежащими участками, и гомункулус каждой обезьянки перестроился под новый план ее тела.

Какие ощущения возникают, когда мозг подобным образом сам себя реорганизует? К сожалению, обезьяны не могут рассказать об этом. Зато могут люди.

Вице-адмирал Горацио Нельсон и посмертная жизнь его правой руки

Командующий британским флотом вице-адмирал Горацио Нельсон (1758–1805), прославленный герой нации, вознесен на пьедестал, с высоты которого взирает на Трафальгарскую площадь. Величественная статуя на коринфской колонне высотой 46 м — дань признанию его заслуг как вдохновенного человечного военачальника, искусного тактика и гения военной изобретательности. Перечисленные качества помогли Нельсону одержать немало решающих побед на морях и океанах от обеих Америк до Нила и Копенгагена. Он героически пал в решающем морском сражении при мысе Трафальгар, которое стало одной из величайших в истории Великобритании морских побед.

Вдобавок к военно-морским подвигам вице-адмирал Нельсон в некотором роде помог нейрофизиологии. Правда, исключительно волей прихотливого случая. Его пути пересеклись с нейробиологией при штурме гавани Санта-Крус-де-Тенерифе. За час до полуночи 24 июля 1797 года пуля вылетела из ствола испанского мушкета с начальной скоростью около 305 м/с и завершила стремительный полет в правой руке Нельсона, раздробив кость. Пасынок адмирала туго перетянул рану шарфом, чтобы остановить хлеставшую кровь, а гребцы шлюпки (Нельсон лично возглавлял вылазку в гавань) налегли на весла, чтобы поскорее доставить раненого на флагманский корабль, где в страшном беспокойстве его поджидал врач. После быстрого медицинского осмотра врач с облегчением сообщил, что у Нельсона хорошие шансы выжить, однако следом шла плохая новость: ввиду риска гангрены руку следовало ампутировать. Сказано — сделано. Нельсону тут же провели операцию, отхватив часть руки выше локтя, а ампутированная конечность последовала за борт.

В следующие недели Нельсон учился обходиться без правой руки — во время еды, умывания и даже стрельбы. Он даже стал в шутку называть культю «мой плавник».

По прошествии нескольких месяцев Нельсон вдруг стал замечать за собой некую странность. Адмирал чувствовал — в буквальном смысле чувствовал, — что у него по-прежнему есть правая рука. Он испытывал ощущения, как будто идущие от ампутированной конечности. И мог поклясться, что чувствует, как сжимает отсутствующую правую руку в кулак и ногти отсутствующих пальцев больно вонзаются в отсутствующую правую ладонь (рис. 3.2).

005_Eagl__9780307907493_all_art_r1

Рис. 3.2. В музеях Британии во множестве представлены живописные и скульптурные изображения адмирала Горацио Нельсона, но мало кто из посетителей замечает, что у героя нет правой руки. После ампутации в 1797 году у Нельсона наблюдался один из первых случаев фантомной чувствительности ампутированной конечности, что навело его на любопытную, хотя и ошибочную метафизическую интерпретацию сего необычного явления

Нельсон истолковал неведомо откуда взявшуюся чувствительность фантомной руки в оптимистическом духе: он считал, будто обладает неопровержимым доказательством, что жизнь есть и после смерти. В самом деле, если правая рука, которой у него нет, способна вызывать явственное ощущение своего присутствия — как вечный призрак самой себя, — так же должно ощущаться и отсутствующее тело.

Горацио Нельсон не единственный испытывал эти странные ощущения. Спустя годы доктор Сайлас Уир Митчелл по другую сторону Атлантики фиксировал в одном из госпиталей Филадельфии точно такие же фантомные ощущения у многих раненых, лишившихся конечностей на полях Гражданской войны. Его сильно интриговал тот факт, что многие раненые прямо-таки настаивали, что чувствуют свои ампутированные конечности, как будто те по-прежнему на месте. Служило ли это подтверждением идеи Нельсона о телесном бессмертии?

Как потом выяснилось, адмирал слегка поспешил с выводами. Мозг перестраивал карту его тела под его новый план в точности так же, как это происходило у обезьянок из Сильвер-Спринг. Со временем нейробиологи по примеру историков, которые десятилетиями наблюдали, как раздвигаются границы Британской империи, научились отслеживать сдвиги границ в человеческом мозге.

При современных технологиях визуализации можно видеть, что, когда человеку ампутируют кисть руки, территорию ее кортикального представительства забирают соседние представительства. В этом случае, как показано на рис. 3.3, с кортикальными представительствами кисти и предплечья соседствуют те, что отвечают за плечо и лицо. Как и в случае с обезьянами, кортикальные карты преобразуются, чтобы отобразить изменения в плане тела.

3

Рис. 3.3. Мозг редактирует отображаемый им план тела. Когда человеку ампутируют кисть, прилежащие кортикальные проекции узурпируют освободившуюся территорию, которая ранее принадлежала кисти

Печатается с разрешения автора

Но во всем этом сокрыта еще одна тайна. Почему Нельсон продолжал чувствовать руку, когда ее уже не было, и почему, случись вам в те времена прикоснуться к его лицу, он уверял бы вас, что его фантомная рука ощущает ваше прикосновение? Как же так? Разве соседние участки не забрали и не поделили между собой кортикальное представительство ампутированной руки? Дело в том, что прикосновение к руке представлено не только клетками соматосенсорной коры, но и теми, которым они «спускают» сигналы вдоль нисходящей цепочки, и теми, что расположены еще ниже по цепочке и получают сигналы от предыдущих.

Хотя в первичной соматосенсорной коре карта тела быстро модифицируется под его новое строение, в нижележащих областях она меняется все меньше и меньше. У родившегося без руки ребенка карта будет выглядеть совершенно иначе, но у взрослого человека, например у того же Нельсона, система не настолько гибка, чтобы полностью перестроиться. В глубинах его мозга нейроны, расположенные ниже соматосенсорной коры, не могли в такой же степени поменять свои связи и потому продолжали пребывать в уверенности, что любая передаваемая им активность все еще вызвана прикосновением к руке. В итоге Нельсон чувствовал призрачное присутствие отсутствующей руки.

***

Случаи обезьянок из Сильвер-Спринг, адмирала Нельсона и ветеранов Гражданской войны в США свидетельствуют об одном и том же явлении: когда поток входных сигналов внезапно обрывается, сенсорные корковые поля не остаются бесхозными; напротив, соседи немедленно занимают их. Тысячи исследований, проводимых сегодня методами сканирования мозга пациентов с ампутированными конечностями, показывают, насколько отличается мозговая ткань от хардвера — аппаратных средств с жестко заданной схемой — тем, что умеет динамично перераспределяться.

Притом что ампутация приводит к кардинальной реорганизации кортикальной ткани, конфигурация мозга способна меняться и в ответ на менее значительные видоизменения в теле. Например, если мне придется затянуть у вас на предплечье манжетку для измерения давления, ваш мозг подстроится под слегка ослабшие входные сигналы от руки тем, что выделит меньшую площадь для этой части тела. То же самое произойдет в мозге, если обслуживающие вашу руку нервы будут надолго заблокированы действием анестезии. И если вы просто свяжете два соседних пальца на руке — так, что вы сможете действовать ими только как единым целым, — их прежде отдельные кортикальные представительства в конце концов сольются в целостную структуру.

Но тогда каким образом мозг, обреченный торчать на высоком насесте в полной тьме, исхитряется непрерывно отслеживать форму тела и любые перемены, происходящие с ней?

Тайминг решает все

Представьте, что вы рассматриваете окрестности с высоты птичьего полета. Вы заметите, что одни собачники обычно выгуливают своих питомцев в шесть утра, другие выходят на прогулку не раньше девяти, третьи выводят своих любимцев на улицу после полудня. Ну а некоторые предпочитают прогулки под покровом ночи. Если вы какое-то время понаблюдаете за ходом жизни в вашей округе, то увидите, что собачники, выбирающие для выгула одно и то же время, обычно знакомы, раскланиваются друг с другом, останавливаются поболтать, а то и ходят друг к другу в гости на барбекю. Совпадение во времени ведет к дружбе.

То же самое происходит и у нейронов. В состоянии возбуждения они проводят лишь крохотную толику времени, когда посылают короткие электрические импульсы (их еще называют спайками). Время их возникновения критически важно. Присмотримся к отдельно взятому типичному нейрону. Он пытается установить контакт с десятком тысяч соседей, но не формирует одинаково прочные связи со всеми ними. Прочность связей зависит от времени. Если нейрон выдал импульс, а сразу следом импульс выдает связанный с ним нейрон, то контакт между ними усиливается. Это правило, известное как правило Хебба, можно кратко обобщить так: нейроны, которые возбуждаются вместе, соединяются вместе (см. также ). В тканях мозга новорожденного нервы, ведущие от тела к мозгу, активно разветвляются. Однако постоянные связи формируются только между нейронами, чьи импульсы очень близки по времени. В силу синхронности контакты между ними укрепляются. Правда, нейроны не ходят друг к другу на барбекю, а вместо этого выделяют больше нейромедиаторов или создают больше рецепторов для их получения, что усиливает связь между ними.

Каким же образом этот нехитрый прием приводит к образованию карты тела? Задумаемся, что происходит, когда вы физически взаимодействуете с объектами окружающего мира, например натыкаетесь на них, трогаете, прижимаете к себе, ударяете, похлопываете. Так, когда вы берете кружку с кофе, соответствующие участки кожи на ваших пальцах обязательно активируются, и притом одновременно. Так же активируются участки кожи на ступнях, когда вы надеваете обувь, и тоже одновременно. А вот противоположный пример: прикосновения к безымянному пальцу руки и к мизинцу ноги не могут похвастаться частой синхронностью, потому что в жизни редко возникают ситуации, в которых они активировались бы в одно и то же время. Та же логика распространяется на все тело: прилежащие участки чаще активируются более синхронно, чем участки не соседствующие. После взаимодействия с миром между участками кожи, которые активируются одновременно, возникает связь, а те, чья активность не сопрягается по времени, как правило, остаются не связанными друг с другом. Вследствие многолетних коактиваций вырисовывается атлас прилежащих участков, это и есть топографическая карта тела. Иными словами, карта тела содержится в мозге благодаря простому правилу, которое диктует отдельно взятым мозговым клеткам, как им образовывать связи между собой: нейроны, чья активность близка по времени, склонны устанавливать и поддерживать взаимные связи. Таким путем в вечной темноте мозга проступает карта тела.

А почему карта меняется с изменением входных сигналов?

Колонизация в режиме нон-стоп

В начале XVII века Франция развернула колонизацию Северной Америки. Каким образом? К берегам новой земли отправлялись суда, под завязку набитые французскими переселенцами. Такая практика оказалась действенной: переселенцы осваивали и обживали новые территории. В 1609 году французы основали факторию для скупки мехов у местного населения. Со временем поселение выросло в город Квебек, которому судьба уготовила стать столицей Новой Франции. Через четверть века французы распространили колонизацию на Висконсин. Потоки все новых и новых французских переселенцев пересекали Атлантику. Новая Франция расширялась.

Однако удерживать колонизованную территорию оказалось не так-то просто. Франция сталкивалась с неослабной конкуренцией со стороны других великих держав, главным образом Великобритании и Испании, которые тоже посылали в Новый Свет суда с переселенцами. С какого-то момента французский король Людовик XIV начал интуитивно постигать важный урок: если он желает прочно закрепить Новую Францию как заморское владение французской короны, следует непрерывно отправлять за океан французские суда, потому что британцы посылали через Атлантику еще больше судов. Кроме того, чутье подсказало Людовику, что население Квебека растет медленно из-за недостатка женщин, и он отправил в колонию 850 девушек на выданье («королевских невест», как их называли), чтобы стимулировать умножение местного французского населения. Замысел короля дал свои плоды: к 1674 году население Новой Франции выросло до 7 тысяч человек, а к 1689 году достигло 15 тысяч (рис. 3.4).

4

Рис. 3.4. Северная Америка, 1750 год

Печатается с разрешения автора

Но вот досада: Британия отправляла в колонии еще больше молодых мужчин и женщин. Если Новую Францию в 1750 году населяли 60 тысяч человек, то население британских колоний разрослось до миллиона. Это и решило исход последующих колониальных войн между двумя державами: несмотря на добрые союзнические отношения с местными индейскими племенами, превосходящие силы оставались на стороне британцев. Одно время французское правительство с целью повышения численности населения даже принуждало освобождавшихся из тюрем мужчин жениться на местных проститутках, после чего молодоженов сковывали цепью, чтобы не разбежались, и отправляли в Луизиану осваивать новые земли. Однако этих усилий оказалось недостаточно.

К исходу шестой войны с британцами французы осознали, что их дело проиграно. Составлявшие Новую Францию территории растащили противники: остатки Канады перешли под контроль Великобритании, а Луизиана — к новообразованному государству Соединенные Штаты Америки.

Причина, по которой Франция сначала прочно удерживала свои заморские колонии, а потом ее хватка безвозвратно ослабла, имеет самое непосредственное отношение к количеству посылаемых в колонии судов. В условиях беспощадной конкуренции французы отправляли в Новую Францию слишком мало переселенцев, чтобы те смогли прочно закрепиться там и удержать территорию. И от французского присутствия в Новом Свете осталось разве что топонимическое воспоминание в виде названных на французский лад Луизианы, Вермонта и Иллинойса.

Легко колонизовать новые земли, когда тебе никто не мешает, зато, когда на них претендуют могущественные соперники, требуются постоянные усилия, иначе окажешься в проигрыше. Такая же нескончаемая колониальная война протекает у нас в мозге. Когда какая-либо часть тела перестает посылать в мозг сигналы, она теряет свою кортикальную территорию. Руку адмирала Нельсона можно уподобить Франции, а кору его мозга — Новому Свету. Все начиналось со здоровой колонизации: несущие информацию электрические импульсы от руки адмирала исправно поставляли по нервным волокнам полезную информацию в адмиральский мозг, и в юности его правая рука надежно удерживала закрепленную за ней территорию. Но прилетела мушкетная пуля, а спустя несколько часов раздробленная рука сгинула в морской пучине и мозг Нельсона перестал получать сигналы от этой части тела. Со временем ампутированная рука утратила кортикальную недвижимость, в коре сохранились лишь слабые отзвуки ее былого присутствия в виде фантомных болей.

Эти уроки колонизации применимы не только к руке, они распространяются на любую систему организма, посылающую информацию мозгу. Когда у индивида повреждены оба глаза, визуальная информация больше не проходит по сигнальным путям в затылочную кору (участок в задней части мозга, часто называемый зрительной корой). Соответственно, эта часть коры перестает быть зрительной. Груженные визуальной информацией суда больше не пристают к ее берегам, и на бесхозную территорию тут же находятся охотники — конкурирующие царства-государства сенсорной информации. И когда незрячая женщина скользит пальцами по выпуклым точкам набранного шрифтом Брайля стихотворения, ее затылочная кора активируется от простого прикосновения. Если у этой женщины в результате инсульта будет повреждена затылочная доля коры, она утратит способность понимать шрифт Брайля, потому что после утраты зрения эта часть ее мозга колонизирована осязанием (рис. 3.5).

5

Рис. 3.5. Кортикальная реорганизация: неиспользуемый участок коры захвачен соседями-конкурентами. На скане мозга можно видеть, что у незрячего индивида звук и прикосновение активируют затылочную долю коры, которая у зрячего человека от звука или прикосновения не активируется (черной заливкой отмечены участки, более активные у незрячего индивида по сравнению со зрячим). Для лучшей видимости образуемых корой головного мозга холмов и долин изображение мозга слегка «раздуто» компьютерными методами

Печатается с разрешения автора

Все это относится не только к осязанию, но и к другим поставляющим мозгу информацию органам чувств. Когда незрячие индивиды слышат звуки, у них активируется не только слуховая зона коры мозга, но и зрительная.

У слепца активировать прежде закрепленный за зрением участок коры способны не только звуки и прикосновения, но и запахи, вкус, а также вспоминание событий или решение математической задачи. Так же, как могущественные колониальные державы в Новом Свете отобрали земли у побежденного конкурента, в мозге жестоко конкурирующие органы чувств забирают у зрения его корковую территорию.

В последние годы история кортикальных захватов украсилась еще более любопытными подробностями: когда новоявленные оккупанты захватывают территорию зрительной коры, они сохраняют часть прежней архитектуры — так в Турции бывшие римско-католические храмы перестроили в мечети. Приведу пример: область коры у зрячего человека, отвечающая за обработку визуально воспринимаемого письменного языка, — это та же самая область, которая у незрячего активируется при чтении текста, набранного шрифтом Брайля. Аналогично область, обрабатывающая визуальные движения у зрячих, активируется при тактильных движениях у слепых (например, когда человек что-то трогает пальцами или языком). Главная нервная сеть, задействованная у зрячего индивида в визуальном распознавании объектов, у незрячего активируется от прикосновений к ним. Данные наблюдения привели к гипотезе, что мозг представляет собой скорее «машину для решения задач» (например, для распознавания движения или объектов окружающего мира), чем систему, организацию которой определяют конкретные органы чувств. Иными словами, области мозга заботятся о решении определенного типа задач независимо от того, по какому из сенсорных каналов поступает информация.

Попутно замечу, что возраст играет здесь свою роль, к чему мы вернемся немного позже. У индивидов с врожденным отсутствием зрения вся затылочная кора перехвачена представительствами других органов чувств. Если человек теряет зрение в раннем возрасте (скажем, лет в пять), захват затылочной доли коры происходит не полностью. У поздно ослепших (утративших зрение позже десятилетнего воз­рас­та) кортикальные захваты еще меньше. Чем старше мозг, тем меньше в нем остается гибкости для перераспределения кортикальной территории — как у государственных границ на североамериканском континенте, которые почти не меняются с тех пор, как установились три века тому назад.

Происходящее в мозге ослепшего человека наблюдается и при утрате функции любого другого органа чувств. Например, у глухих индивидов территорию слуховой коры перехватывают и используют зрение, а также другие чувства. Как потеря руки у адмирала Нельсона привела к кортикальным захватам освободившейся территории соседними представительствами, так и потеря слуха, обоняния, вкуса или другого чувства влечет за собой подобного же рода передел кортикальных границ. Картография мозга постоянно меняется, чтобы входящие данные могли быть представлены наилучшим образом.

Стоит только присмотреться, и вы увидите, что конкуренция за территории происходит постоянно и повсеместно. Возьмем для примера аэропорт в крупном городе. Если он принимает много рейсов одной авиакомпании (пусть это будет United), а рейсов, выполняемых другой авиакомпанией (скажем, Delta), меньше, то вполне ожидаемо, что количество стоек регистрации United станет увеличиваться, а тех, что обслуживают пассажиров Delta, наоборот, — уменьшаться. Авиакомпании United аэропорт отведет больше ворот выхода на посадку, больше места в зоне получения багажа и больше пространства на мониторах воздушных диспетчеров. Если какая-то из авиакомпаний свернет свою деятельность (вспомните Trans World Airlines), отведенные ей пространства в аэропорту будут тут же перехвачены другими авиакомпаниями. То же самое происходит в мозге при распределении кортикальных территорий, принимающих входные потоки сенсорной информации.

Теперь мы понимаем, как конкуренция приводит к захвату территорий более успешными конкурентами. Возникает следующий вопрос: когда одно из чувств расширяет свое представительство в коре мозга, обостряется ли оно, расширяются ли его возможности?

Чем больше, тем лучше

Мать бросила Ронни в возрасте одного года, вскоре после того как стало понятно, что малыш слеп. Она заявила, что слепоту сына Господь послал ей в наказание. До пяти лет Ронни воспитывался в бедности на попечении бабки и деда, а потом его отослали в школу для незрячих.

Когда мальчику было шесть лет, его навестила мать, единственный раз за все время. К тому моменту у нее появился второй ребенок, девочка. «Рон, я хочу, чтобы ты потрогал ее глаза. У нее, понимаешь ли, очень миленькие глазки. Она не опозорит свою мамочку, как это сделал ты. Она видит». С тех пор Ронни больше ни разу не встречался со своей мамашей.

Мальчику досталось тяжелое детство, но при всех невзгодах со временем стало ясно, что он необычайно музыкально одарен. Воспитатели заметили его дар и определили изучать классическую музыку. Через год Ронни научился играть на скрипке, да так, что учителя объявили его виртуозом. Затем освоил фортепиано, гитару и еще несколько струнных и деревянных духовых инструментов.

Отсюда и начался его взлет: Ронни завоевал невероятную популярность, был признан одним из выдающихся певцов и исполнителей своего времени, его композиции в жанрах поп-музыки и кантри-вестерн 40 раз взлетали на вершины чартов, а сам Ронни удостоился шести премий «Грэмми».

Ронни Милсап если и первый, то далеко не единственный незрячий музыкант, вознесшийся к вершинам славы; в этой плеяде — Андреа Бочелли, Рэй Чарльз, Стиви Уандер, Дайан Шуур, Хосе Фелисиано и Джефф Хили. Не получая зрительной информации, их мозг выучился полагаться на слуховые и тактильные сигналы от окружающего мира и более искусно обрабатывать их, чем мозг зрячих людей.

Хотя далеко не всем слепцам гарантированы вершины музыкальной славы, реорганизация мозга им обеспечена безусловно. Благодаря этой реорганизации в мозге незрячих сверхразвита способность распознавать высоту звука (музыкальный слух); они вдесятеро тоньше, чем зрячие, улавливают малейшие оттенки музыкальных тонов — потому, что отвечающая за слух кортикальная территория у них обширнее. В одном лабораторном эксперименте с участием зрячих и незрячих индивидов и тем и другим наглухо закрывали одно ухо и просили указать место, откуда исходит тот или иной звук. Поскольку для локализации источника звука мозгу необходимо сопоставлять слуховые сигналы от обоих ушей, авторы эксперимента ожидали, что участники феерически провалят задание. Собственно, у зрячих испытуемых эти ожидания полностью подтвердились. А незрячие в целом более или менее правильно определяли, где располагается источник звука. Почему? Да потому, что причудливый хрящ ушной раковины (даже одной) очень тонко отражает звуки и подсказывает их источник, но только если индивид настроен улавливать именно эти звуки. У зрячих за слух отвечает меньшая, чем у незрячих, область коры, и потому способность улавливать нюансы звуковой информации у них недоразвита.

Незрячим людям свойственен невероятно обостренный слух. Так, у Бена Андервуда в возрасте двух лет перестал видеть левый глаз. Мать отвела его к врачу, и вскоре обследование выявило у мальчика рак сетчатки обоих глаз. Облучение и химиотерапия не дали результатов, и Бену в три года удалили оба глаза. А к семи годам он самостоятельно освоил полезную, но очень уж неожиданную методу «зрения»: щелкал языком и улавливал эхо от окружающих предметов. Таким образом он научился различать, где располагаются, например, дверные проемы, окружающие его люди, припаркованные автомобили. Мальчик овладел техникой эхолокации: посылал звуковые волны и ловил их отражения от предметов.

Документальный фильм о Бене начинался с заявления, что он единственный в мире человек, способный видеть с помощью эхолокации. Но тут авторы допустили ряд ошибок. Во-первых, мы не знаем, мог или не мог Бен видеть в том смысле, какой вкладывают в это понятие зрячие; известно лишь, что его мозг обладал способностью преобразовывать акустические волны в некоторое практическое понимание, преграждают ли ему путь крупные объекты. Впрочем, подробнее поговорим об этом ниже.

Во-вторых, и это важнее, Бен не единственный, кто освоил метод эхолокации: тысячи незрячих людей тоже преуспели в этом. На самом деле данный феномен обсуждается по меньшей мере с 1940-х годов, ког­да впервые появился термин «эхолокация», употребленный автором статьи Echolocation by Blind Men, Bats and Radar, опубликованной в журнале Science. Автор среди прочего отмечал: «Многие слепые люди со временем вырабатывают значительную способность не наталкиваться на препятствия, руководствуясь слуховыми подсказками от намеренно издаваемых ими звуков». В качестве примеров он назвал звуки шагов, постукивание тростью или щелчки пальцами. И показал также, что у таких людей способность успешно применять эхолокацию резко снижается из-за посторонних шумов или ушных тампонов.

Как мы уже видели, мозг может привлекать прежде отвечавшую за зрение затылочную долю коры для многих других функций, кроме слуха. Так, от дополнительной кортикальной территории может выиграть запоминание. В одном исследовании проверяли способность незрячих запоминать списки слов. Лучше всего проявили себя индивиды с большей территорией, захваченной у затылочной коры: это дало им возможность уделить больше кортикальной территории тесту на запоминание.

Если рассматривать данный феномен в целом, правило простое и однозначное: чем больше кортикальной территории, тем лучше. Правда, иногда это приводит к неожиданным результатам, казалось бы противоречащим здравому смыслу. У большинства людей от рождения имеются три типа фоторецепторов для цветного зрения, но некоторые рождаются с двумя типами фоторецепторов, всего с одним или вообще без таковых, из-за чего у них снижена (или вообще отсутствует) способность различать цвета. Однако у людей с цветовой слепотой дела обстоят не совсем плохо: они лучше распознают градации серого цвета. Почему? А потому, что их зрительная кора занимает такую же территорию, как у других людей, а работает с меньшим числом характеристик цвета. Таким образом, когда для решения простой задачи отводится больше кортикальной территории, эффективность восприятия повышается. Например, в армии военнослужащих с цветовой слепотой не задействуют в целом ряде задач, однако уже известно, что они способны лучше распознавать на местности маскировочные ухищрения противника, чем те, у кого нормальное цветовое зрение.

И хотя мы привычно задействуем систему визуализации, когда дело касается чего-либо важного, функциональная реорганизация кортикальных областей происходит повсеместно. Когда человек теряет слух, нейронная ткань, прежде отвечавшая за эту функцию, принимает на себя представительство других органов чувств. Поэтому не стоит удивляться, что у страдающих глухотой улучшается периферическое визуальное внимание или что они нередко видят особенности вашего выговора, например способны определить, из какой части страны вы родом, потому что отлично приспособились читать по губам. (Аналогично после ампутации конечности обостряется чувствительность туловища.) Такой человек способен уловить даже легчайшее прикосновение, а если два прикосновения следуют друг за другом и воспринимаются как одно, он все равно почувствует, что их было два, потому что мозг передает больше кортикальной территории в ведение неповрежденных органов и их чувствительность приобретает большее разрешение.

***

На смену прежней парадигме, считающей функции областей мозга предопределенными, приходит понятие нейронной реорганизации: мозг способен перераспределять функции нейронной ткани. Таким образом область может быть переориентирована для решения других задач. Например, в нейронах зрительной коры ничего особенного нет. Это просто-напросто нейроны, которые волей случая задействованы в обработке информации, касающейся выступающих поверхностей и цветов у людей со здоровыми глазами. У незрячих те же самые нейроны способны прекрасно обрабатывать информацию от других органов чувств.

Прежняя парадигма допускала, что обозначенная как Луизиана территория на североамериканском континенте предназначена исключительно для французов. В соответствии с новой парадигмой нет ничего удивительного в том, что земли Луизианы были выставлены на продажу и их покупали выходцы со всех концов света. Поскольку мозг вынужден распределять все свои задачи между участками коры, объем которой конечен, можно предположить, что часть мозговых нарушений вызвана неоптимальностью их распределения. Один из примеров этого — ученый аутист (когда ребенок с тяжелыми нарушениями способностей к познанию, социальному взаимодействию и общению искусен в какой-либо одной узкой области, скажем может с легкостью запом­нить все номера в телефонной книге, с исключительной точностью деталей нарисовать увиденную сценку или в мгновение ока собрать кубик Рубика). По поводу сочетания умственной отсталости и выдающейся одаренности выдвинуто множество теорий, но в нашем контексте интерес представляет та, что связывает данный феномен с необычным распределением кортикального пространства. Здесь идея в том, что виртуозно проделывать странные вещи возможно, если мозг отдает для решения какой-то одной задачи слишком большой участок кортикальной поверхности (скажем, для запоминания, визуального анализа или сборки пазлов). Однако подобные сверхспособности достигаются в ущерб другим задачам, между которыми в норме распределяется кортикальная территория, включая, например, подмножество задач, в сумме обеспечивающих прочные коммуникативные навыки.

Ослепительная скорость

Последние годы ознаменовались рядом научных прозрений относительно пластичности мозга, но думается, что наибольший сюрприз преподнесла нам скорость, с которой он срабатывает. Несколько лет назад ученые из Университета Макгилла провели сканирование мозга группе взрослых, только что лишившихся зрения. Участникам эксперимента давали слушать звуки. Неудивительно, что при этом у них активировалась слуховая кора. Но одновременно наблюдалась активность и в затылочной доле, что было невозможно всего несколькими неделями ранее, когда участники эксперимента еще не утратили зрения. Правда, активность эта оказалась слабее, чем у людей, долгое время пробывших незрячими, но тем не менее измеримой.

Эксперимент показал, что при утрате зрения мозг способен быстро меняться. Но насколько быстро?

Нейролог Альваро Паскуаль-Леоне заинтересовался, какими темпами могут происходить крупные перемены в мозге. Он обратил внимание, что начинающих воспитателей (инструкторов) в школах для слепых просят семь полных дней ходить с завязанными глазами, чтобы на собственном примере понять, каковы опыт и впечатления от общения с миром у их будущих учеников. В результате, как отмечали сами воспитатели, у большинства из них улучшилась способность различать и анализировать звуки, ориентироваться в пространстве, сообразуясь с ними, судить о расстоянии до предметов и определять, что это за предметы:

«По словам некоторых, у них появилась способность быстро и безошибочно узнавать человека по голосу, когда он только начинал говорить, или по ритму шагов, если он просто проходил мимо. Кто-то научился различать автомашины разных марок по звуку работающего двигателя, а один описал, как его радовало, что он может различить по характеру шума мотора марки проезжающих вдали мото­циклов».

Все это навело Паскуаля-Леоне и его коллег на мысль проверить в лабораторных условиях, что произойдет в мозге зрячего человека, если он проведет несколько дней с завязанными глазами. Эксперимент был реализован и открыл нечто на грани чуда: обнаружилось, что реорганизация нервных функций — того же типа, что и у незрячих, — происходит также и у зрячих, на некоторое время лишенных зрения. И происходит быстро.

В одном из последующих экспериментов группа Паскуаля-Леоне в течение пяти дней держала участников с завязанными глазами, и все это время их интенсивно обучали читать точечно-рельефный шрифт Брайля. По прошествии пяти дней испытуемые этой группы уже очень неплохо узнавали буквы Брайля по легким различиям в образующих их значках — и притом намного лучше, чем контрольная группа зрячих участников, которых тоже все эти дни обучали освоению шрифта Брайля, но без повязок на глазах. Особенно впечатляющими оказались перемены, выявленные при сканировании мозга. В течение пяти дней участники с завязанными глазами, прикасаясь к предметам, задействовали свою затылочную кору, а контрольная группа, как и ожидалось, — только соматосенсорную. У условно незрячих обнаружилась также реакция затылочных долей на звуки и слова.

Когда экспериментаторы намеренно нарушали новоявленную активность затылочной доли магнитными импульсами, преимущество в чтении шрифта Брайля у условно незрячих исчезало, и это указывало, что включение данной части мозга было не случайным побочным эффектом, а важной частью усовершенствования поведенческой активности. Когда же с участников эксперимента сняли повязки, ответ затылочной коры на прикосновение и звук исчез в тот же день, и с того момента их мозг на сканах уже ничем не отличался от мозга любого зрячего человека.

В другом исследовании визуальные области мозга были тщательно картированы с применением более совершенных методик нейровизуализации. Испытуемых с завязанными глазами поместили в сканирующее устройство и попросили выполнить тест на касание, требовавший высокой тактильной чувствительности пальцев. В таких условиях исследователи могли фиксировать активность, возникавшую в первичной зрительной коре участников всего через 40–60 минут в состоянии вынужденной слепоты.

В результатах эксперимента ошеломляла скорость, с какой происходили перемены. Мозг меняет конфигурацию замечательно быстро, это вам не флегматичный дрейф литосферных плит. Обратившись к следующим главам, мы увидим, как зрительная депривация демаскирует уже существующий поток невизуальной информации, поступающей в зрительную кору, и поймем, что мозг, как пружина в мышеловке, все время на взводе и готов быстро перестроиться. Сейчас важно, что изменения в нем происходят быстрее, чем осмеливались предполагать самые оптимистичные нейробиологи в начале XXI столетия.

***

Теперь давайте отступим назад и посмотрим на картину немного шире. Как острые клыки и быстрые ноги полезны для выживания, так полезна и гибкость нервной системы: она позволяет мозгу оптимизировать свои функции в разнообразных средах.

Однако конкуренция в мозге может дать и негативный эффект. При всяком нарушении баланса в действии чувств в коре потенциально возможен территориальный захват, и притом быстрый. Перераспределение кортикальных ресурсов может быть оптимальным, когда конечность или какой-то из органов чувств утрачены безвозвратно, однако в других сценариях быстрый захват участка кортикальной территории может встретить решительный отпор. Это соображение подвело нас с моим бывшим студентом Доном Воном к новой теории о происходящем в мозге под покровом ночной темноты.

Что общего у сновидений и вращения планеты?

Нейрофизиология еще не разрешила загадку, почему в мозге возникают сновидения. Что вообще такое эти причудливые ночные галлюцинации? Содержатся ли в снах некие смыслы и значения или же это всего лишь случайная активность мозга в попытках составить связный нарратив? И почему сны так богаты зрительными образами и еженощно взрывают затылочную кору неистовыми всполохами активности?

Подумаем вот о чем: в беспрерывной и беспощадной конкуренции за кортикальную территорию зрительная система сталкивается с проблемой, неизвестной другим сенсорным системам. При каждом обороте Земли вокруг своей оси зрительная система погружается во мрак примерно на двенадцать часов. (Сказанное относится к 99,9999% эволюционной истории нашего вида, но понятно, что не к нашей озаренной благословенным электричеством современности.) Как мы уже видели, сенсорная депривация разжигает захватнические инстинкты прилежащих кортикальных представительств. А что может противопоставить этому изъяну незаслуженно обиженная природой зрительная система?

Она поддерживает активность затылочной доли коры в неурочные ночные часы.

Итак, мы с Воном предположили, что сновидения призваны ограж­дать зрительную кору от территориальных посягательств соседей. В конце концов, не нарушает же вращение планеты ваши способности осязать, слышать, чувствовать вкус или запах; от темноты страдает только зрение. Каждая ночь несет зрительной коре угрозу захвата со стороны других чувств. Угрозу жуткую и неотвратимую, если учесть, с какой ошеломительной скоростью свершаются в мозге территориальные переделы (как мы уже видели, для этого достаточно каких-то 40–60 минут). Сновидения и есть оружие, которое выковала зрительная кора для защиты своих пределов и отпора загребущим соседям-захватчикам.

Теперь для большего понимания сути вопроса снова перейдем на общий план. На беглый взгляд, спящий расслаблен и отключен, но на самом деле в его мозге в это время отмечается полноценная электричес­кая активность. Большую часть ночи спящий человек снов не видит. Однако в фазе быстрого сна (БДГ-сна, то есть сна с быстрым движением глаз) в мозге приключается нечто любопытное: частота сердечных сокращений и дыхания возрастает, мелкие мышцы подергиваются, мозговые волны уменьшаются и ускоряются. В этой фазе мозг рождает сновидения.

Фазу БДГ-сна запускает действие определенной группы нейронов в структуре стволового отдела мозга, называемой варолиев мост. Повышенная активность данных нейронов имеет два следствия. Первое состоит в том, что в этой фазе крупные мышечные группы находятся в расслабленном состоянии. Сложная нейронная схема «замораживает» тело, ее затейливость указывает на высокое биологическое значение сна со сновидениями; как предполагается, схема такой сложности не могла бы развиться, не выполняй она важную для организма функцию. Заблокированные на время сна мышцы позволяют мозгу имитировать опыт взаимодействия с миром без фактических передвижений тела.

Второе следствие также очень важно: из ствола головного мозга в затылочную (зрительную) кору поступают волны нервных импульсов (рис. 3.6). Когда эти волны достигают места назначения, их активность воспринимается нами как зрительная; иными словами, мы видим. Вот почему наши сны так живописны, колоритны и кинематографичны, а не схематичны или абстрактны.

009_Eagl__9780307907493_all_art_r2

Рис. 3.6. Во время сна со сновидениями волны импульсов зарождаются в стволе головного мозга и достигают затылочной коры. Мы предполагаем, что это вливание активности вызвано вращением планеты во тьме ночи. Следовательно, визуальная система нуждается в особой стратегии, чтобы охранять свои пределы от посягательств

Печатается с разрешения автора

Сочетание двух описанных выше следствий активности в варолиевом мосту искусно сплетается в опыт переживания сновидений: вторжение электрических волн в зрительную кору активирует зрительную систему, а из-за заблокированных мышц двигательная активность в русле сюжета сновидения невозможна.

Согласно нашей теории схема нейронной сети, лежащая в основе визуальных сновидений, образовалась совсем не случайно. Напротив, чтобы не допускать захвата своей кортикальной территории, зрительная система вынуждена отстаивать ее, для чего генерирует всплески электрической активности всякий раз, когда в силу вращения планеты наступает ночь. В условиях постоянной конкуренции за территорию сенсорного представительства затылочная доля коры хорошо поднаторела в самообороне. Как-никак зрение снабжает нас критически важной для совершения действий информацией, однако половину времени ее предательски крадет ночная тьма. В этом смысле сновидения можно рассматривать как нечаянное дитя любви от союза нейронной пластичности с суточным вращением планеты.

Ключевой момент, на который следует обратить особое внимание, — анатомическая точность ночных залпов электрической активности. Они исходят из стволового отдела мозга и направлены всегда в одно и то же место — затылочную долю коры. Если бы эта часть нейронной сети разветвлялась широко и беспорядочно, следовало бы ожидать, что она установит связи со многими областями по всему мозгу. Но не тут-то было. Нейронная сеть анатомически безошибочно прорастает в одно и только одно конкретное место — крошечную структуру, называемую латеральным коленчатым ядром, которое транслирует сигналы конкретно и точно в затылочную долю коры. С позиций нейроанатомии такая конкретная направленность нейронных связей должна быть предназначена для важной функции.

С этой точки зрения неудивительно, что даже у незрячего от рождения индивида сохраняется такая же, как у всех других людей, схема нейронных связей, соединяющая стволовой отдел мозга с затылочной долей коры. А как обстоит дело со сновидениями у незрячих? Можно ли ожидать, что они совсем не видят снов, поскольку темнота для их мозга ничего не значит? Ответ на этот вопрос открывает глаза на многое. С рождения слепые люди (или утратившие зрение в очень раннем возрас­те) не видят в снах зрительных образов, но определенно и непременно переживают другого рода чувственный опыт, например ощущают, что идут по знакомой гостиной, где мебель переставлена на другие места, слышат лай или вой диковинных зверей. Это прекрасно укладывается в недавно усвоенный нами урок: затылочная доля коры у незрячих захвачена и поделена другими органами чувств. Таким образом, у слепых от рождения людей все равно происходит ночная активация затылочной коры, но переживается это как нечто невизуальное. Иными словами, при нормальных обстоятельствах ваша генетика исходит из той логики, что лучший способ бороться с несправедливостью ночной темноты по отношению к зрению — ночами посылать волны активности в затылочную долю коры; точно так же обстоит дело в мозге незрячего человека, несмотря на то что первопричина этой задумки утрачена. Обратите внимание, что в сновидениях людей, потерявших зрение после семи лет, больше визуального содержания, чем у тех, кто стал незрячим раньше, и это укладывается в тезис, что у ослепших в более позднем возрасте затылочная доля коры в меньшей степени захвачена другими чувствами, и потому ее активность переживается индивидом как более насыщенная зрительными образами.

Весьма любопытно, что две другие области мозга — гиппокамп и префронтальная кора — во время сна со сновидениями менее активны, что предположительно объясняет, почему нам так трудно запоминать сновидения. Почему мозг на время сна выключает из работы эти две области? Одна из возможных причин в том, что нет смысла записывать в память сюжеты снов, если главное их назначение — всего лишь поддерживать активность зрительной коры для отражения атак соседей на ее кортикальную территорию.

Много важного и любопытного дают межвидовые сравнения. У ряда млекопитающих детеныши рождаются недоразвившимися — в том смысле, что не могут передвигаться, регулировать температуру тела, добывать пищу или защищаться от противников. Примерами служат человек, хорек, утконос. Детеныши других видов млекопитающих — морских свинок, овец, жирафов — появляются на свет уже развитыми: у них имеются зубы, меховой покров, открытые глаза и способность к терморегуляции, а самостоятельно передвигаться они способны уже через час после рождения, равно как и питаться твердой пищей. Важное различие тут вот в чем: животные, которые рождаются недоразвившимися, проводят в фазе БДГ-сна гораздо больше времени, чем те, что родились уже развившимися. Это особенно очевидно в первый месяц жизни. Мы объясняем этот факт тем, что, приходя в этот мир, высокопластичный мозг вынужден беспрерывно бороться за поддержание своих составляющих в состоянии равновесия. А когда на свет является в основном уже сложившийся мозг, необходимость ввязываться в ночные битвы уменьшается.

Более того, обратите внимание, что с возрастом количество БДГ-сна снижается. Фаза быстрого сна свойственна млекопитающим всех видов, однако по мере старения ее продолжительность неуклонно падает. Что касается нашего вида, у младенцев примерно 50% сна приходится именно на эту фазу, у взрослых — только от 10 до 20%, а у пожилых людей быстрый сон занимает и того меньше времени. Данная межвидовая закономерность хорошо согласуется с тем фактом, что младенческий мозг намного более пластичен, чем повзрослевший (и мы еще увидим это в ), и потому конкуренция за кортикальную территорию приобретает еще более критическое значение. По мере взросления животного возможность кортикальных захватов снижается. Ослабление пластичности мозга происходит параллельно с сокращением времени, проводимого в фазе быстрого сна.

Наша гипотеза позволяет сделать одно предположение на отдаленное будущее, когда мы обнаружим жизнь на других планетах. Некоторые планеты (в особенности на орбитах вокруг так называемых красных карликов, значительно меньших, чем другие холодные звезды) «застревают» в одном положении относительно своей звезды и потому постоянно обращены к ней только одной стороной: в одном полушарии таких планет царит нескончаемый день, а в другом — вечная ночь. Если бы формы жизни на подобной планете имели оснащенный нейронной сетью мозг, хотя бы отдаленно напоминающий наш, можно было бы предположить, что жители дневной стороны могут обладать зрением, подобным нашему, но без способности видеть сны. Такое же предположение резонно сделать относительно планет с очень высокой скоростью вращения: если ночное время на них длится меньше времени кортикального захвата, сон со сновидениями их обитателям не нужен. Пройдут тысячи лет, и мы, вероятно, узнаем точно и окончательно, составляем ли мы, человечество, с нашим даром видеть сны, так сказать, вселенское меньшинство.

Что снаружи, то и внутри

Большинство посещающих Трафальгарскую площадь в Лондоне, желая взглянуть на величественную колонну Нельсона, едва ли задумываются о том, как искажена соматосенсорная кора в левом полушарии доблестного адмирала. А вообще-то должны бы. Ибо в этом вынуж­денном непорядке находит отражение один из самых впечатляющих трюков мозга: способность оптимально кодировать тело, отданное ему в попечение.

Как мы уже уяснили, всякое изменение входных сенсорных сигналов (как бывает при ампутации конечности, слепоте или глухоте) ведет к крупным кортикальным реорганизациям. Хранящиеся в мозге карты тела не закреплены генетически, а наоборот, прорисовываются в соответствии с входящей информацией. Эти карты опытозависимы. Они не есть результат заранее прописанного в генах всеобщего плана, а складываются под действием приграничных конкурентных войн и переделов кортикальной территории. И поскольку между нейронами, которые возбуждаются одновременно, возникает прочная связь, их коактивация задает конфигурацию участков, отданных под те или иные кортикальные представительства. Какова бы ни была форма вашего тела, каким бы переменам ни подвергалась, в конце концов она будет в точности картирована на поверхности мозга. В эволюционном плане такие механизмы, зависящие от активности, позволяют быстро проверять естественным отбором бесчисленное множество типов телосложения — от когтей до перьев, от крыльев до цепких хвостов. Природе нет нужды генетически перечерчивать мозг всякий раз, когда она проводит ходовые испытания новых телесных форм; все, что надо, — позволить ему самому подстроиться к переменам. Это соображение подчеркивает главный момент, красной нитью вплетенный в содержательное полотно данной книги: живой мозг очень отличается от цифровой вычислительной машины. Продвижение вглубь нейронных просторов заставит нас отказаться от понятий традиционной инженерной науки и пошире раскрыть глаза.

Любые изменения форм тела, в каком бы его уголке они ни осущест­влялись, иллюстрируют происходящее во всех сенсорных системах. Мы уже знаем, что, когда человек рождается незрячим, его зрительная кора настраивается на слух, осязание и прочие чувства. В плане восприятия последствия такого кортикального захвата оборачиваются повышенной чувствительностью: чем больше кортикальной территории отдано под решение задачи, тем с лучшим качеством она выполняется.

Помимо всего прочего, мы открыли для себя, что, если человеку с нормальной зрительной системой временно перекрыть зрительное восприятие повязкой на глазах, его первичная зрительная кора будет активироваться, когда он станет выполнять какие-либо операции пальцами, а также слушать звуки разной тональности или речь. Если повязку через короткое время снять, зрительная кора быстро возвратится в исходное состояние и начнет реагировать только на входные визуальные сигналы. Как мы увидим в следующих главах, внезапно открывающаяся способность мозга «видеть» пальцами и ушами опирается на связи, проложенные в зрительную кору от других органов чувств, причем эти связи изначально присутствуют в мозге, но бездействуют во время поступления сигналов от глаз.

Сказанное в целом подводит нас к предположению, что зрительные сновидения — это побочный продукт конкуренции нейронов и осевого вращения нашей планеты. Организм, желающий оградить свою зрительную систему от захвата другими чувствами, должен выработать способ поддерживать ее в активном состоянии, когда темнота перекрывает ей поток входной информации от глаз.

Вот теперь мы созрели для следующего вопроса. Нам уже ясно, что кора мозга обладает чрезвычайной гибкостью. Но каковы пределы этой гибкости? Можно ли поставлять мозгу данные самых разных типов? Сможет ли он с легкостью сам догадаться, как использовать данные, которые к нему попали?

Назад: Глава 2. Просто добавь реальности
Дальше: Глава 4. Что в него ни поступает, все он, умница, постигает