Утешение 3
Сверхнормативный багаж многомировой интерпретации
Если вы слышали о многомировой интерпретации (ММИ), то, вероятно, полагаете, что ее выдвинул американец Хью Эверетт в середине 1950-х гг. В определенном смысле это правда. Эверетт действительно выдвинул эту идею совершенно самостоятельно. Но он не знал, что лет за пять до него та же, по существу, идея приходила в голову Эрвину Шрёдингеру. Версия Эверетта в большей степени математическая, Шрёдингера – более философская, но главное, что оба автора хотели избавиться от идеи «схлопывания волновой функции» и обоим это удалось.
Каждому, кто готов был слушать, Шрёдингер охотно рассказывал, что в уравнениях (включая его знаменитое волновое уравнение) ничего не говорится о схлопывании. Эту штуку Бор прикрутил к теории, чтобы объяснить, почему мы видим только один результат эксперимента – мертвого или живого кота, а не смесь, не суперпозицию этих состояний. Но из того, что мы регистрируем только один исход – одно решение волновой функции, не обязательно следует, что альтернативных решений не существует. В статье, опубликованной в 1952 г., Шрёдингер указал на нелепость ожидания, что какая-то квантовая суперпозиция схлопнется только потому, что мы на нее посмотрим. «Очевидно нелепо», писал он, что волновая функция должна «управляться двумя совершенно разными способами – временами волновым уравнением, но иногда прямым вмешательством наблюдателя, не зависящего от волнового уравнения».
Хотя сам Шрёдингер не применял эту идею к своему знаменитому коту, она легко разрешает эту загадку. Доработав терминологию Шрёдингера, можно сказать, что существуют две параллельные вселенные, два мира, и в одной из них кот остается жить, а в другой – умирает. Когда ящик открывают в одной вселенной, в нем обнаруживается мертвый кот. В другой вселенной кот в ящике оказывается живым. Вселенных всегда было две, просто они были идентичны до того момента, когда адская машина решила судьбу кота(–ов). Никакого схлопывания волновой функции не происходит. В 1952 г. в Дублине Шрёдингер, предвидя реакцию коллег, подчеркнул, что, хотя его уравнение описывает, как кажется, разные возможные варианты, эти варианты «не альтернативны, на самом деле все они происходят одновременно». Он добавил:
Почти любой результат, объявляемый квантовым теоретиком, связан с вероятностью того, этого или вон того… события – причем обычно альтернатив великое множество. Идея о том, что это, возможно, не альтернативные варианты и все это на самом деле происходит одновременно, представляется бредовой и просто невозможной. Теоретик считает, что если бы законы природы приняли такой вид ну, скажем, на четверть часа, то мы увидели бы, как окружающий нас мир стремительно превращается в трясину, в бесформенное желе или плазму, все очертания расплываются, а сами мы, вероятно, превращаемся в медуз. Странно, что он в это верит. Насколько я понимаю, он уверен, что ненаблюдаемая природа ведет себя именно таким образом – согласно волновому уравнению. Вышеупомянутые альтернативы вступают в игру, только когда мы производим наблюдение – ион, разумеется, не обязательно должно быть научным. Тем не менее создается впечатление, что, по мнению квантового теоретика, природу удерживает от стремительного «превращения в желе» только наше восприятие или наблюдение ее… Очень странная мысль.
На эту идею Шрёдингера никто не отреагировал. Ее проигнорировали и забыли, посчитав невозможной, и Эверетт разрабатывал свой вариант ММИ самостоятельно – только для того, чтобы его идею проигнорировали почти столь же единодушно. Но именно Эверетт предположил, что Вселенная «расщепляется» на различные варианты при каждом акте квантового выбора, чем замутил воду на десятилетия вперед.
Эту идею Эверетт высказал в 1955 г., работая над диссертацией в Принстоне. В ее черновом варианте он использовал сравнение с делящейся амебой, которая расщепляется на две дочерние клетки. Если бы простейшие обладали разумом, в памяти каждой дочерней амебы сохранилась бы абсолютно идентичная история до момента разделения, а затем начала бы накапливаться собственная личная история. В аналогии с котом Шрёдингера до срабатывания адской машины существуют одна вселенная и один кот, затем две вселенные, каждая с собственным котом, и так далее. Научный руководитель Эверетта Джон Уилер посоветовал ему проработать математическое описание идеи – для диссертации и для статьи, опубликованной в Reviews of Modern Physics в 1957 г., но при этом аналогия с амебой куда-то пропала и в печатном виде появилась много позже. Однако Эверетт указал, что, хотя ни один наблюдатель никогда не ощутит существования иных миров, утверждение, что их не может быть, поскольку мы их не видим, не более убедительно, чем утверждение, что Земля не может обращаться вокруг Солнца, поскольку мы не ощущаем ее движение.
Сам Эверетт никогда не пытался продвигать идею ММИ. Еще до защиты диссертации он начал работать на Пентагон в Группе оценки систем оружия. Он должен был заниматься применением математических методов (в документах они невинно назывались теорией игр) к задачам холодной войны. Некоторые его работы не рассекречены до сих пор. Фактически он исчез из поля зрения академического сообщества. Только в конце 1960-х гг. идея Эверета получила некоторую известность, когда ее принял и стал с энтузиазмом продвигать Брайс Девитт из Университета Северной Каролины. Девитт писал: «Каждый квантовый переход, происходящий в каждой звезде каждой галактики, в каждом отдаленном уголке Вселенной, расщепляет наш локальный мир на Земле на мириады копий самого себя». Для Уилера это было уже слишком; он отказался от поддержки ММИ, к которой склонялся первоначально, и уже в 1970-х гг. говорил: «В конце концов мне пришлось с большой неохотой отказаться от поддержки этой гипотезы, потому что, боюсь, она несет в себе слишком большую метафизическую нагрузку». По иронии судьбы именно в этот момент идея переживала возрождение и развитие в сфере космологии и квантовых вычислений.
Силу этой интерпретации начали признавать даже те, кто не был готов полностью ее поддержать. Джон Белл отметил, что «люди, конечно, множатся вместе с мирами, и обитатели какой-то конкретной его ветви должны ощущать только то, что происходит в этой ветви», и с неохотой признал, что в этой идее, возможно, что-то есть:
«Многомировая интерпретация» кажется мне экстравагантной – и в первую очередь экстравагантно неопределенной гипотезой. Я почти готов отбросить ее как нелепую. И все же… Возможно, ей есть что сказать в связи с парадоксом Эйнштейна – Подольского – Розена, и, как мне кажется, стоило бы сформулировать некую строгую ее версию и посмотреть, действительно ли это так. К тому же существование вероятных миров, возможно, позволило бы нам спокойнее относиться к существованию нашего собственного мира… который в некоторых отношениях представляется весьма маловероятным.
Строгая версия ММИ появилась благодаря Дэвиду Дойчу из Оксфорда. По сути, она подвела прочную основу под версию Шрёдингера, хотя Дойч не знал о ней, формулируя свою интерпретацию. В 1970-х Дойч работал с Девиттом, а в 1977 г. на организованной последним конференции встретился с Эвереттом – это был единственный раз, когда Эверетт представлял свои идеи перед большой аудиторией. Убежденный в том, что ММИ – верный способ понимания квантового мира, Дойч стал пионером в области квантовых вычислений – не потому, что интересовался компьютерами, а поскольку верил, что создание квантового компьютера докажет реальность ММИ.
И здесь мы вновь возвращаемся к варианту мысленного эксперимента с «котом Шрёдингера». По мнению Эверетта, до момента срабатывания адской машины существует один-единственный кот, а после этого вся Вселенная расщепляется надвое. Аналогичным образом, как указывал Девитт, произвольный электрон в далекой галактике, столкнувшись с выбором из двух (или более) квантовых траекторий, вызывает расщепление всей Вселенной, включая и нас с вами. Вариант Дойча – Шрёдингера предполагает бесконечное разнообразие вселенных, соответствующих всем возможным решениям квантовой волновой функции (так называемую Мультивселенную). Так в эксперименте с котом существует множество идентичных вселенных, в которых идентичные экспериментаторы строят идентичные адские машины. Эти вселенные остаются идентичными ровно до того момента, когда машина сработает. После этого в некоторых вселенных кот умирает, в некоторых продолжает жить, и то же происходит в последующих историях.
Параллельные миры ни при каких условиях не могут связываться друг с другом. Или все же могут?
Дэвид Дойч
robert wallis/Corbis via Getty Images
Дойч утверждает, что, когда две или более идентичных прежде вселенных под действием квантовых процессов вынужденно, как в эксперименте с двумя отверстиями, становятся различными, между ними на время возникает интерференция (с развитием вселенных она подавляется). Именно это взаимодействие вызывает наблюдаемые результаты экспериментов. Мечта Дойча – увидеть работающий квантовый компьютер, который будет отслеживать некоторое квантовое явление с участием интерференции, происходящее внутри его «мозга». Дойч утверждает, что разумный квантовый компьютер будет способен помнить опыт временного существования в параллельных реальностях. Конечно, этому проекту еще очень далеко до воплощения, но у Дойча имеется и гораздо более простое «доказательство» существования Мультивселенной.
Качественное отличие квантового компьютера в том, что «ключи» внутри него находятся в суперпозиции состояний. Традиционный компьютер состоит из набора ключей (компонентов электрических схем), которые либо включены, либо выключены, что соответствует цифрам 1 и 0. Это позволяет производить вычисления, манипулируя строками чисел в двоичном коде. Каждый ключ называется битом, и чем больше в нашем распоряжении имеется битов, тем мощнее компьютер. Восемь бит составляют байт, и сегодня компьютерная память измеряется в миллиардах байтов – гигабайтах (Гбайт). Строго говоря, поскольку мы работаем в двоичном коде, гигабайт равняется 230 байт, но на это обычно не обращают внимания. А вот в квантовом компьютере каждый ключ представляет собой объект, который может находиться в суперпозиции состояний. Как правило, это атом, но, в принципе, можно считать, что это электрон, спин которого может быть положительным или отрицательным. Различие в том, что в суперпозиции электрон обладает одновременно положительным и отрицательным спином – представляет собой и 0 и 1. Каждый ключ здесь называется кубитом.
Благодаря этому квантовому свойству каждый кубит эквивалентен двум битам. На первый взгляд не особенно впечатляет, но на самом деле это существенно. Так, если у вас есть три кубита, их можно организовать восемью способами: 000, 001, 010, 011, 100, 101, 110, 111. Суперпозиция включает в себя все эти варианты. Таким образом, три кубита эквивалентны не шести битам (2 × 3), а восьми (23). Эквивалентное число бит всегда равно двум в степени числа кубитов. Всего лишь 10 кубитов были бы эквивалентны 210 бит, то есть, строго говоря, 1024, но обычно это число называют килобитом. Подобные геометрические прогрессии очень быстро растут и уходят в бесконечность. Компьютер всего с 300 кубитами был бы эквивалентен традиционному компьютеру с числом бит, превышающим число атомов в наблюдаемой Вселенной. Но как бы такой компьютер мог проводить вычисления? Вопрос этот стал весьма насущным, поскольку первые простые квантовые компьютеры, включающие по нескольку кубитов, уже построены и продемонстрировали работу в соответствии с ожиданиями. Они на самом деле оказались мощнее, чем традиционные компьютеры с тем же числом битов.
Ответ Дойча состоит в том, что вычисления производятся одновременно на идентичных компьютерах в каждой из параллельных вселенных, соответствующих нашим суперпозициям. Для трехкубитного компьютера это означает восемь суперпозиций компьютерщиков, работающих над одной и той же задачей с использованием идентичных компьютеров для получения ответа. Неудивительно, что они должны «сотрудничать» таким образом, поскольку все экспериментаторы идентичны и имеют идентичные причины заниматься одной и той же задачей. Это не слишком трудно себе представить. Но если мы построим 300-кубитную машину – а это, безусловно, когда-нибудь произойдет, – то, если Дойч прав, мы получим при этом «коллаборацию» между громадным числом вселенных, превышающим число атомов в нашей видимой Вселенной. Возникает вопрос: не слишком ли велика получается метафизическая нагрузка? Ответ каждый выбирает сам. Но если вы считаете, что слишком, то вам придется как-то иначе объяснять, почему работают квантовые компьютеры.
Большинство специалистов по квантовым компьютерам предпочитает не задумываться об этих вопросах. Но существует группа ученых, которые привыкли ежедневно перед завтраком думать даже больше чем о шести невозможных вещах, и эта группа – космологи. Некоторые из них приняли многомировую интерпретацию как лучший способ объяснить само существование Вселенной.
Стартовой площадкой для них служит отмеченный Шрёдингером факт, что в уравнениях нет ничего, что говорило бы о схлопывании волновой функции. При этом они имеют в виду одну-единственную волновую функцию – ту самую, что описывает весь мир целиком как суперпозицию состояний, Мультивселенную, представляющую собой суперпозицию вселенных.
Первый вариант диссертации Эверетта (впоследствии доработанной и сокращенной по совету Уилера) назывался «Теория универсальной волновой функции». Под «универсальной» (universal) в данном случае автор подразумевал буквально «вселенскую» (Вселенная – Universe) сущность. Он писал:
Поскольку утверждается универсальная справедливость описания функции состояния, можно рассматривать сами функции состояния как фундаментальные объекты и даже рассматривать функцию состояния всей Вселенной. В таком смысле эта теория может быть названа теорией «универсальной волновой функции», поскольку предполагается, что вся физика проистекает из одной этой функции.
Здесь, имея в виду нашу нынешнюю цель, «функция состояния» – всего лишь другое название волновой функции. «Вся физика» означает всё, включая нас – «наблюдателей» на физическом жаргоне. Космологи радуются этой теории не потому, что их тоже включили в волновую функцию, но потому, что такая идея единой, несхлопывающейся волновой функции представляет собой единственный способ описать всю Вселенную на квантово-механическом языке, не теряя при этом совместимости с общей теорией относительности. В краткой версии диссертации, опубликованной в 1957 г., Эверетт приходил к выводу, что его формулировка квантовой механики «могла бы, следовательно, оказаться плодотворной основой для квантования общей теории относительности». Хотя его мечта до сих пор не воплотилась в жизнь, она вдохновила космологов к активной работе с середины 1980-х гг. Но все же эта теория тащит за собой большой груз.
Универсальная волновая функция описывает положение каждой частицы во Вселенной в какой-то конкретный момент времени. Но она также описывает все возможные положения этих частиц в этот момент. И все возможные положения каждой частицы в любой другой момент времени, хотя число возможных вариантов ограничено квантовой дискретностью пространства и времени. Из этого невообразимого множества возможных вселенных многие варианты окажутся такими, где невозможно существование стабильных звезд и планет, как и людей, которые жили бы на этих планетах. Но по крайней мере некоторые вселенные будут более или менее похожи на нашу, как это часто изображают в научной фантастике и в художественной литературе вообще. Дойч указывал, что, согласно ММИ, любой мир, описанный в любом литературном произведении, на самом деле существует где-то в Мультивселенной, при условии, что он подчиняется законам физики. Где-то обязательно существует, к примеру, мир «Грозового перевала» (но не мир «Гарри Поттера»).
И это еще не все. Единая волновая функция описывает все возможные вселенные во все возможные моменты времени. Но она ничего не говорит о переходе из одного состояния в другое. Время не течет. Строго говоря, один из Эвереттовых параметров, называемый вектором состояния, включает в себя описание мира, в котором существуем мы и все записи истории этого мира – от наших воспоминаний до окаменелостей и света, доходящего до нас из далеких галактик. Должна также существовать еще одна вселенная, в точности такая же, как наша, но «сдвинутая во времени», скажем, на одну секунду (или час, или год). Но нет никаких указаний на то, что любая вселенная движется от одного момента времени к другому. Во второй вселенной, описанной универсальной волновой функцией, должен существовать и «я», обладающий всеми воспоминаниями, которые имеются у меня на первый момент времени, плюс воспоминания, соответствующие следующей секунде (или часу, или году, или любому другому промежутку). Однако невозможно сказать, что все эти варианты «меня» – одна и та же личность. Разные временные состояния могут быть упорядочены при помощи событий, которые они описывают, определяя таким образом разницу между прошлым и будущим, но вселенная не изменяется от одного состояния к другому. Все состояния просто существуют. Время, каким мы привыкли его воспринимать, в ММИ Эверетта не «течет».
Однако, насколько я понимаю, нам пора что-то изменить. Пришло время поискать утешение иного рода, и на этот раз мы будем искать его в декогеренции.