Глава 2. От большого взрыва до наших дней
Начала подразумевают и требуют завершений.
Энн Леки, «Слуги правосудия»
Мне нравятся истории о путешествиях во времени. Несмотря на то что физика машины времени вызывает споры и порождает парадоксы, есть нечто очень привлекательное в идее о том, что мы можем как-то узнать и вмешаться в прошлое и будущее, чтобы сойти с поезда, состоящего из череды моментов «сейчас», неумолимо приближающего нас к какому-то неизвестному исходу. Линейное время кажется слишком ограничивающим и даже расточительным. Почему мы должны навсегда потерять все эти возможности лишь потому, что стрелка часов отсчитала несколько секунд? Может быть, мы и привыкли к хронологическому диктату, но это не значит, что он нас устраивает.
К счастью, космология способна помочь. Разумеется, не в практическом смысле, – мы по-прежнему говорим об относительно эзотерической отрасли физики, которая никоим образом не позволит вам вернуть зонт, если вы забыли его в поезде накануне. Скорее, речь идет о том, что после знакомства с ней ваша жизнь будет прежней, но все остальное изменится для вас навсегда.
Для космолога прошлое не является каким-то недостижимым, навсегда утраченным царством. Это реальное место, наблюдаемая область космоса, в которой мы проводим большую часть своего рабочего дня. Сидя за столом, мы можем наблюдать за развитием астрономических событий, которые имели место миллионы и даже миллиарды лет назад. И это не просто особенность, присущая лишь космологии, но свойство структуры Вселенной, в которой мы живем.
Это обусловлено тем фактом, что свет распространяется не мгновенно, а с конечной скоростью, хоть и очень высокой – примерно 300 миллионов метров в секунду. В повседневной жизни это означает, что свет от фонарика преодолевает около одной трети метра за наносекунду, и столько же времени требуется отраженному свету, чтобы достичь вас. На самом деле, когда вы смотрите на какой-то объект, изображение, которое вы видите, слегка устаревает к тому моменту, когда свет, отраженный от объекта, достигает ваших глаз. Человек, сидящий в другом углу кафе, с вашей точки зрения, находится на несколько наносекунд в прошлом, что может частично объяснить его отсутствующее выражение лица и устаревший костюм. Все, что вы видите, находится в прошлом относительно вас. Когда вы смотрите на Луну, вы заглядываете в прошлое чуть больше, чем на секунду. Солнце вы видите с задержкой более чем в восемь минут. А созерцая звезды в ночном небе, вы заглядываете в глубокое прошлое, от которого вас отделяет от нескольких лет до тысячелетий.
Благодаря этой задержке, обусловленной конечной скоростью распространения света, астрономы могут смотреть в небо и наблюдать за эволюцией Вселенной от самого ее начала вплоть до сегодня. В астрономии мы используем такую единицу измерения, как «световой год», не только потому, что она представляет собой удобный способ обозначения огромного расстояния (около 9,5 триллиона километров, или 5,9 триллиона миль), но и потому, что она говорит нам, сколько времени потребовалось свету от объекта, чтобы достичь нас. Глядя на звезду, находящуюся на расстоянии 10 световых лет от нас, мы смотрим на 10 лет в прошлое. А рассматривая галактику, удаленную от нас на 10 миллиардов световых лет, мы заглядываем в прошлое на 10 миллиардов лет. Поскольку возраст нашей Вселенной составляет около 13,8 миллиарда лет, эта галактика может рассказать нам о состоянии Вселенной на ранних этапах ее развития. В этом смысле взгляд в космос равносилен взгляду в прошлое.
Здесь есть важный нюанс, о котором я не могу не упомянуть. Технически мы не можем видеть собственное прошлое. Задержка, обусловленная конечной скоростью света, означает, что чем сильнее от нас удален объект, тем в более глубоком прошлом он находится, и это работает в обе стороны: мы не только не способны увидеть собственное прошлое, но и не можем узнать, что происходит с этими далекими галактиками в настоящем. Чем сильнее от нас удален объект, тем дальше он находится на космической временной шкале.
Так как же мы можем узнать что-то о собственном прошлом, глядя на прошлое далекой галактики? Все сводится к основному положению космологии, которое называется «космологическим принципом». В соответствии с этим положением для всех наблюдателей, где бы они ни находились, Вселенная выглядит примерно одинаково. Очевидно, в человеческих масштабах это не так, – поверхность Земли существенно отличается от глубокого космоса или центра Солнца, однако когда речь идет о космических масштабах, в которых целые галактики представляются отдельными незначительными пятнышками, Вселенная выглядит одинаково во всех направлениях и состоит из одних и тех же компонентов.
Эта идея тесно связана с принципом Коперника, еретическим мнением, высказанным в XVI веке. Николай Коперник считал, что мы не занимаем какого-то «особенного положения» в космосе, а находимся в совершенно обычном месте, которое могло быть выбрано абсолютно произвольно. Поэтому, когда мы смотрим на галактику, удаленную от нас на миллиард световых лет, и видим ее такой, какой она была миллиард лет назад во Вселенной на миллиард лет моложе той, в которой мы находимся, мы можем с уверенность полагать, что в то время здесь имелись примерно такие же условия. На самом деле это предположение можно проверить с помощью наблюдений. Исследование распределения галактик по всему космическому пространству показало, что единообразие, подразумеваемое космологическим принципом, наблюдается во всех направлениях.
Таким образом, если мы хотим узнать об эволюции самой Вселенной и условиях, в которых развивалась наша галактика Млечный Путь, все, что нам нужно сделать, это посмотреть на очень удаленный от нас объект.
Это также означает, что в космологии на самом деле нет четко определенного понятия «сейчас». Иными словами, переживаемый вами «настоящий момент» сильно зависит от того, где вы находитесь и что делаете. Как можно говорить, что «взрыв сверхновой происходит сейчас», когда мы наблюдаем, как она взрывается, в настоящий момент, но свет от нее шел к нам миллионы лет? То, что мы видим, по сути, принадлежит прошлому, однако «настоящее» этой взорвавшейся звезды нами ненаблюдаемо, и мы не получим о нем никаких сведений на протяжении миллионов лет, что делает ее «настоящее» нашим будущим.
Когда мы воспринимаем Вселенную как существующую в пространстве-времени – всеобъемлющей универсальной сетке, в которой пространство имеет три измерения, а время является четвертым, мы можем думать о прошлом и будущем как об отдаленных точках единого полотна, тянущегося по всему космосу от его зарождения до самого конца. Для наблюдателя, находящегося в другой точке этого полотна, событие, принадлежащее нашему будущему, может быть далеким прошлым. И свет (или любая другая информация об этом событии), который мы не увидим на протяжении еще нескольких тысячелетий, прямо «сейчас» несется к нам сквозь пространство-время.
Так принадлежит ли это событие будущему, прошлому или, может быть, и тому, и другому? Все зависит от положения наблюдателя.
У человека, привыкшего мыслить в терминах трехмерного мира, от этого голова может пойти кругом, однако для астрономов конечная скорость света представляет собой фантастически полезный инструмент. Благодаря этому мы можем изучать историю космоса не по косвенным подсказкам и следам, а непосредственно наблюдая за тем, как он изменяется с течением времени. Мы можем увидеть Вселенную в возрасте всего трех миллиардов лет, когда в ней формировались звезды и вспыхивали галактики, а также как их блеск потускнел за прошедшие эоны. Мы можем заглянуть еще дальше в прошлое и увидеть, как материя втягивалась в сверхмассивные черные дыры спустя менее 500 миллионов лет после зарождения Вселенной, когда звездный свет еще только начинал заполнять межгалактическую тьму.
Совсем скоро благодаря новым космическим телескопам мы сможем рассмотреть некоторые из самых ранних галактик, которые сформировались, когда возраст Вселенной составлял всего несколько сотен миллионов лет. Но можно ли заглянуть еще дальше в прошлое, когда никаких галактик не было? У нас есть такие планы. Разрабатываемые в настоящее время радиотелескопы, возможно, помогут нам увидеть материал, из которого сформировались первые галактики, благодаря особому взаимодействию света и водорода. Глядя на водород, вещество, из которого однажды сформируются звезды и галактики, мы можем наблюдать за возникновением самых первых структур во Вселенной.
Но что если мы заглянем еще дальше в прошлое, в то время, когда не было ни звезд, ни галактик, ни водорода? Можем ли мы увидеть сам Большой взрыв?
Да, можем.