Книга: Конец всего. 5 сценариев гибели Вселенной с точки зрения астрофизики
Назад: Глава 6. Распад вакуума
Дальше: Пугливая симметрия

Состояние Вселенной

Вернейший способ заставить специалиста по физике элементарных частиц поморщиться – это назвать бозон Хиггса «частицей бога», как он известен широкой публике. Недовольство ученых по поводу этого высокопарного прозвища вызвано не только смешением науки и религии (хотя некоторых именно это раздражает больше всего). Дело в том, что название «частица бога» ужасно неточное и, надо сказать, довольно дерзкое. Это не отменяет огромной важности бозона Хиггса для Стандартной модели физики элементарных частиц. Можно даже утверждать, что именно он является ключом к объединению всего остального. Однако центральную роль в работе физики элементарных частиц и в природе космоса играет поле Хиггса, а не частица.
Если коротко, поле Хиггса представляет собой пронизывающее все пространство энергетическое поле, при взаимодействии с которым другие частицы обретают массу. Бозон Хиггса имеет такое же отношение к полю Хиггса, как фотон, переносчик электромагнитного взаимодействия (и света), к электромагнитному полю, – это локализованное «возбуждение» чего-то, что пронизывает обширное пространство. Более длинная версия этой истории имеет отношение к электрослабой теории, которая объединяет слабое взаимодействие с электричеством и магнетизмом, а также к разделению этих сил вследствие так называемого спонтанного нарушения симметрии.
(Здесь я вынуждена совершить над собой героическое усилие и вместо подробного описания квантовой теории поля ограничиться обсуждением нескольких ключевых вопросов. Однако имейте в виду, что если вы решите изучить математику, стоящую за всем этим, вы увидите, что все намного круче.)
В главе 2 мы говорили о том, что физика работает по-разному в зависимости от уровня энергии. Например, электромагнетизм и слабое взаимодействие проявляются как совершенно независимые феномены на тех уровнях энергии, с которыми мы имеем дело в повседневной жизни, однако в ранней Вселенной, для которой были характерны очень высокие уровни энергии, эти силы представляли собой аспекты одного и того же явления. Поле Хиггса играло важную роль во время этого переходного периода. Когда условия изменились, то же произошло и с законами физики.
Во многом именно для этого мы и создаем ускорители частиц: чтобы воссоздать в небольшом пространстве внутри детекторов экстремальные условия, характерные для начальных стадий развития Вселенной, с помощью которых мы могли бы лучше понять основополагающие физические принципы, сводящие всё воедино. Основная идея заключается в существовании некой всеобъемлющей математической теории, описывающей взаимодействия частиц при всех возможных условиях, и последовательное проведение их столкновений позволяет нам получить более полное представление об этой всеобъемлющей структуре.
В качестве аналогии можно привести воду. На самом фундаментальном уровне она представляет собой набор молекул, состоящих из определенным образом связанных атомов водорода и кислорода. Но в повседневной жизни мы воспринимаем воду в качестве однородной бесцветной жидкости, кристаллического твердого вещества, а в особенно тяжелые времена – в качестве удушающего влажного тумана, который заставляет вас мечтать об одежде, сшитой из полотенец. Изучая поведение воды в этих различных состояниях, мы можем сделать выводы о том, что она на самом деле собой представляет, даже если у нас под рукой нет мощных микроскопов, позволяющих рассмотреть отдельные атомы. Например, форма снежинки может многое рассказать нам о форме молекул, если мы посмотрим, как они организуются в кристаллы. То, как вода испаряется, кое-что говорит нам о связях, которые удерживают молекулы вместе. Если бы мы имели дело с водой лишь в одном из ее агрегатных состояний, мы не смогли бы составить о ней полного впечатления. Точно так же наше представление о взаимодействиях субатомных частиц меняется в зависимости от уровня энергии или температуры во время эксперимента, варьирование которых позволяет нам лучше понять, что с ними на самом деле происходит.
В физике элементарных частиц нас интересует, как частицы взаимодействуют друг с другом и чем обусловлены их фундаментальные свойства, такие как масса. Характерная особенность любой частицы, обладающей массой, состоит в том, что она не может ускориться без применения силы и не способна достичь скорости света. На самых ранних этапах существования Вселенной поле Хиггса подверглось изменению, в результате которого электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие, и некоторые частицы (правда, не фотон и не глюон) получили возможность взаимодействовать с самим полем Хиггса. Интенсивность этого взаимодействия определяет массу частицы. Фотон продолжает путешествовать в пространстве со скоростью света, а частицы, обладающие массой, движутся тем медленнее, чем более сильное воздействие они испытывают со стороны поля Хиггса.
Сравнивать поведение частиц в условиях ранней Вселенной с их текущим поведением все равно что сравнивать собственное взаимодействие с паром и жидкой водой. Представьте, что пар – это поле Хиггса, то есть энергетическое поле, присутствующее в каждой точке пространства. А теперь представьте, что в какой-то момент поле Хиггса претерпело изменение, подобное конденсации пара в жидкую воду. Если вы привыкли иметь дело лишь с влажным воздухом, то пребывание в бассейне с водой станет для вас совершенно новым опытом. В результате внезапного изменения поля Хиггса сами законы физики как бы приобрели совершенно иную форму. Внезапно частицы, которые до этого могли беспрепятственно перемещаться в пространстве со скоростью света, замедлились под действием поля Хиггса, то есть обрели массу.
Этот процесс получил название «нарушение электрослабой симметрии».
Назад: Глава 6. Распад вакуума
Дальше: Пугливая симметрия