Квантовая куча
Первое, что вам следует запомнить, – это то, что большинство субатомных частиц, в том числе электроны, протоны, нейтроны, нейтрино и кварки, являются фермионами, что в контексте физики элементарных частиц означает их крайнюю самодостаточность. Они подчиняются принципу запрета (или исключения) Паули, согласно которому два и более тождественных фермиона не могут одновременно находиться в одном и том же квантовом состоянии. Именно поэтому, как вы, наверное, помните из школьного курса химии, электроны в атомах занимают разные «орбитали», которые, по сути, представляют собой различные энергетические уровни.
По мере того как в ядре выгоревшей коллапсирующей звезды скапливается все больше плотно прижатых друг к другу атомов, их электроны становятся все более «дерганными». При таком давлении электроны уже не связаны с конкретными атомами, а спрессованы так сильно, что вынуждены перепрыгивать на более высокие энергетические уровни, чтобы не находиться в одном и том же квантовом состоянии. Это обеспечивает так называемое давление вырожденного электронного газа, которое способно остановить коллапс звезды и породить совершенно новый тип объекта: белый карлик.
Белый карлик – это звезда, которая уже не горит, поскольку в ней не происходят реакции термоядерного синтеза. Это твердый объект, существующий исключительно за счет квантово-механического принципа, который сводится к тому, что электроны просто не особенно любят друг друга. И он может тихо тлеть многие миллиарды лет, медленно угасая и остывая, до тех пор, пока не распадется в результате тепловой смерти, не загорится в процессе Большого сжатия или не будет разорван фантомной темной энергией в момент Большого разрыва наряду со всем остальным.
Но это только в том случае, если его масса не увеличится.
Давление вырожденного электронного газа способно на многое. Оно может поддерживать существование целой звезды, но только до определенного момента. Если что-то выведет белого карлика из состояния равновесия, например, если он поглотит вещество звезды-компаньона или столкнется с другим белым карликом, его масса увеличится настолько, что давление вырожденного электронного газа уже не сможет предотвратить дальнейший коллапс. После этого может произойти целый ряд событий.
Температура центрального ядра звезды резко увеличится, и она начнет сжигать углерод. Вещество звезды будет бурлить и перемешиваться. В конце концов, процесс дефлаграционного горения вызовет термоядерный взрыв такой мощности, что звезда будет окончательно разорвана на части.
Взрыв белого карлика сопровождается очень яркой вспышкой, которая на короткое время может затмить блеск галактики, и ее можно увидеть в телескоп с расстояния в миллиарды световых лет. Сверхновые, которые вспыхивали в отдаленных областях Млечного Пути и близлежащих галактиках, в древние времена были видны невооруженным глазом даже в дневное время.
Участников астрономического сообщества несколько смущает тот факт, что мы до сих пор имеем лишь приблизительное представление о механизме взрыва сверхновых типа Ia. Ученые продолжают спорить о том, чем именно он вызван, – перетеканием на белый карлик вещества со звезды-компаньона или столкновением двух белых карликов. Симулировать взрыв звезды чрезвычайно сложно в вычислительном отношении. В результате большинства симуляций получаются весьма впечатляющие визуализации бурлящего звездного вещества, так и не доходящие до стадии взрыва. Но ученые не сдаются. (Оказывается, звезды устроены не так просто, как мы думали. Особенно когда в дело вступают квантовая механика и механизм термоядерного взрыва.)
Причина, по которой мы считаем наблюдение сверхновых типа Ia полезным, заключается в том, что, судя по всему, в момент взрыва масса всех белых карликов одинаковая. В 1930 году двадцатилетний физик-вундеркинд из Индии по имени Субраманьян Чандрасекар плыл на корабле в Англию, чтобы продолжить обучение в Кембридже, и по пути случайно совершил революционное открытие в области звездной эволюции. Усовершенствовав расчеты и включив важные эффекты теории относительности, он обнаружил верхний предел массы, при котором давление вырожденного электронного газа способно поддерживать существование звезды. Это значение, соответствующее примерно 1,4 солнечной массы, получило название «предела Чандрасекара». Любой белый карлик, масса которого превышает эту критическую отметку, неминуемо взрывается в виде сверхновой. Хорошо понимая физику этого взрыва, мы знаем, насколько яркой является вспышка сверхновой типа Ia, благодаря чему можем определить расстояние до нее.
Когда корабль Чандрасекара достиг берега, его прорывная идея распространилась по научному миру, словно фронт детонационной волны, навсегда изменив наше представление об этих странных и удивительных взрывающихся объектах. (Правда, убеждены были не все. Знаменитый астроном сэр Артур Эддингтон, чьи расчеты усовершенствовал Чандрасекар, не особенно обрадовался, что его затмил какой-то выскочка, и в течение многих лет серьезно усложнял жизнь молодого физика, прежде чем признал превосходство его вычислений.)