Книга: Конец всего. 5 сценариев гибели Вселенной с точки зрения астрофизики
Назад: Бесконечная космическая беговая дорожка
Дальше: Максимальная энтропия

Медленное погружение во тьму

Утверждение, что «темная энергия все портит», не является преувеличением. Как это ни парадоксально, степень влияния, оказываемого объектами во Вселенной, которая расширяется с ускорением, постоянно уменьшается. Далекие галактики, покидающие сферу Хаббла вследствие космического расширения, будут потеряны для нас навсегда. Галактики, далекое прошлое которых мы сейчас наблюдаем, станут медленно растворяться во тьме, словно изображение на древней фотографии. В ближайшей к нам области космического пространства после слияния Млечного Пути и Андромеды наша маленькая местная группа галактик будет становиться все более и более изолированной, окруженной тьмой и умирающим первородным светом. В остальном космосе невидимые для нас группы галактик будут сливаться воедино, образуя гигантские эллиптические скопления звезд, которые будут ярко загораться при первоначальном столкновении, но постепенно превратятся в затухающие угольки, чей свет никогда не достигнет границы их собственной расширяющейся сферы пустоты.
В конце концов, каждая умирающая супергалактика окажется в полном одиночестве. Ничто и никогда больше не пополнит их запасы газа, чтобы зажечь новые звезды. Уже существующие звезды выгорят, а затем взорвутся как сверхновые или, что вероятнее, сбросят внешние слои и превратятся в медленно догорающие остатки, охлаждающиеся на протяжении миллиардов или триллионов лет. В течение какого-то времени некоторые черные дыры будут продолжать расти, поглощая целые галактики, состоящие из мертвых звездных остатков. Рост других прекратится, поскольку никакая новая материя уже не приблизится к ним достаточно близко для того, чтобы быть поглощенной.
Когда все звезды погаснут во тьме, начнется окончательный распад.
Начнут испаряться черные дыры.
Изначально считалось, что черные дыры вечны, то есть способны расти, поглощая материю, но не способны терять массу. Учитывая, что из черной дыры не может вырваться даже свет, логично предположить, что данный объект представляет собой своеобразную бездну. Однако в 1970-х годах Стивен Хокинг произвел расчеты и показал, что квантовые эффекты, проявляющиеся вблизи горизонта событий черной дыры, вызывают слабое свечение. Это свечение приводит к потере энергии – или, что одно и то же, массы, в результате чего размер черной дыры уменьшается. Поначалу процесс идет медленно, но затем начинает ускоряться. При этом излучение черной дыры становится все более интенсивным и горячим вплоть до ее взрыва и исчезновения. Даже сверхмассивным черным дырам в центрах галактик, масса которых в миллионы или миллиарды раз превышает массу Солнца, суждено со временем исчезнуть.
Обычную материю, то есть вещество, из которого состоят звезды, планеты, а также газ и пыль, ждет та же, хотя и менее драматичная судьба.
Известно, что большинство элементарных частиц на каком-либо уровне нестабильны. Если оставить их в покое на длительное время, они распадутся на другие компоненты, потеряв при этом массу и энергию. Например, нейтрон в итоге распадется на протон, электрон и антинейтрино. Хотя мы никогда не наблюдали распад протона в ходе экспериментов, у нас есть основания полагать, что это возможно, но придется подождать примерно 1033 лет. К тому моменту перестанут существовать даже атомы водорода, которые составляли самую многочисленную группу атомов во Вселенной со времен Большого взрыва.
Для далекого будущего Вселенной, предопределенного темной энергией в форме космологической постоянной, характерна тьма, изоляция, пустота и распад. Однако это медленное угасание – лишь начало конца, называемого «тепловой смертью».
Термин «тепловая смерть» может показаться не вполне подходящим для описания самого холодного и темного состояния космоса в истории Вселенной. Но в данном случае под техническим термином «теплота» понимается не «тепло», а «неупорядоченное движение частиц или энергии». И речь идет не о смерти самой теплоты, а о смерти из-за теплоты. Именно беспорядок в итоге нас погубит. Вот почему нам следует немного поговорить об энтропии.
Энтропия – это, пожалуй, одна из самых важных, глубоких и плохо понимаемых тем во всей науке. Она проявляется везде – не только в физике всего, начиная от воздушных шаров и заканчивая черными дырами, но и в сфере компьютерных наук, статистики, а также экономики и нейробиологии.
Как правило, энтропия описывается как мера беспорядка. Чем менее упорядочена система, тем выше ее энтропия. Кучка кусочков мозаики имеет более высокую энтропию, чем сложенная картинка; яичница имеет более высокую энтропию по сравнению с нетронутым яйцом. В тех случаях, когда «беспорядок» неочевиден, энтропию можно рассматривать как меру того, насколько свободными или неограниченными являются элементы системы. Например, сложенная картинка имеет низкую энтропию, поскольку существует только один правильный способ организации кусочков мозаики, тогда как кучка кусочков может иметь любую из множества конфигураций, не теряя при этом своей сущности.
Несмотря на то что из приведенных примеров это неочевидно, более высокая энтропия связана с более высокой температурой. Это имеет смысл, если подумать о разнице между глыбой льда и облаком пара. Чтобы стать льдом, молекулы воды должны сложиться в кристаллическую структуру, тогда как частицы пара могут свободно перемещаться в трех измерениях. Однако даже простое охлаждение пара приводит к некоторому уменьшению его энтропии, поскольку частицы двигаются менее активно и не так беспорядочно.
Важно то, что в масштабе Вселенной энтропия со временем возрастает. Согласно второму закону термодинамики, в любой изолированной системе совокупная энтропия может лишь увеличиваться, но не уменьшаться. Другими словами, порядок не возникает спонтанно из ниоткуда, и если вы оставите систему в покое на достаточно длительное время, мера беспорядка в ней неизбежно увеличится. Любой, кто пытался поддерживать порядок на своем столе, знаком с этим самым раздражающим законом природы.
Вопрос о том, является ли Вселенная изолированной системой, все еще предмет дискуссий, но если мы согласимся с этим, нам придется признать, что в будущем космос ожидает лишь нарастание беспорядка и распад. Фактически второй закон термодинамики считается настолько незыблемым и фундаментальным, что им объясняют существование самой стрелы времени.
Как правило, законы физики не учитывают направление течения времени; в большинстве ситуаций обращение времени в уравнениях не влияет на результат. Единственная часть физики, которой, судя по всему, есть дело до этого, – энтропия. На самом деле, вполне возможно, что единственная причина, по которой мы помним прошлое, а не будущее, заключается в том, что истина «дальше будет только хуже», настолько универсальна, что она формирует саму реальность, какой мы ее знаем.
Вы можете возразить: «Но я же сложил мозаику! Я создал порядок! Я что, обратил время вспять?!»
Не совсем. Мозаика – это не изолированная система, и вы тоже. Технически любое локальное увеличение энтропии можно обратить вспять, если приложить достаточно усилий. Собрать разбитое яйцо обратно чрезвычайно сложно, но возможно при наличии достаточного количества времени и невероятно сложного лабораторного оборудования. Однако совокупная энтропия всегда будет нарастать. В случае с мозаикой, усилия, которые вы должны приложить для того, чтобы ее собрать, потребуют затрат энергии, а это означает, что вы будете переваривать пищу и выделять в окружающую среду тепло и продукты жизнедеятельности (например, углекислый газ). В результате воздух в комнате нагреется и загрязнится твердыми частицами. Кроме того, за то время, пока вы складываете мозаику, вы, вероятно, помнете свою рубашку. Я не знаю, что могла бы сделать с окружающей средой машина для сборки яиц, но я точно не хотела бы оказаться в закрытой комнате, в которой она работает.
Кстати, именно поэтому, если оставить дверцу холодильника открытой, в итоге нагреется весь воздух в кухне. По той же причине кондиционеры могут способствовать глобальному потеплению. Каждая наша попытка подчинить своей воле какую-то часть мира создает беспорядок в другой его части, как правило, в форме теплоты.
Каких бы интересных последствий это ни имело для яиц, холодильников и кондиционеров, все становится гораздо более странным, если включить в эту картину черные дыры.
Еще в 1970-х годах физики много говорили об энтропии, о ее постепенном увеличении в масштабе всей Вселенной, а также о возможных последствиях этого процесса. В то же самое время молодой и малоизвестный Стивен Хокинг и еще более молодой постдокторант Джейкоб Бекенштейн размышляли о черных дырах и задавались вопросом, не способны ли эти странные космические мусороперерабатывающие предприятия как-то вмешаться в действие второго закона термодинамики. Например, что будет, если собрать разбитое яйцо, а затем выбросить нагретую лабораторию, которая для этого использовалась, в ближайшую черную дыру? Уменьшится ли совокупная энтропия Вселенной, если собрать яйцо и избавиться от энтропии, возникшей в ходе этого процесса? В конце концов, черная дыра описывается как некая область, из которой не может вырваться даже свет. Это объект настолько массивный и компактный, что его гравитация сгибает световые лучи, направляя их обратно к центральной сингулярности. Попав за горизонт событий черной дыры, то есть преодолев гравитационную точку невозврата, ничто – ни свет, ни информация, ни теплота – уже не сможет вырваться оттуда. Может ли сокрытие энтропии за горизонтом событий черной дыры считаться идеальным преступлением?
Какую бы часть физики вы ни решили перехитрить, никогда не ставьте против второго закона термодинамики. Решение проблемы энтропии черных дыр изменило наши представления об этих объектах. Энтропию нельзя скрыть в черных дырах, потому что им присуща собственная энтропия. У них есть температура (они производят тепло). А это означает, что они вовсе не «черные».
Бекенштейн и Хокинг в итоге пришли к выводу, что черная дыра должна иметь энтропию, чтобы существовать в соответствии со вторым законом термодинамики. Поскольку эта энтропия должна увеличиваться всякий раз, когда черная дыра что-то поглощает, логично предположить, что энтропия связана с размером самой черной дыры – в частности, с общей площадью поверхности горизонта событий. Если бросить в черную дыру холодильник, ее масса увеличится на массу холодильника, что приведет к увеличению размера горизонта событий и, следовательно, площади его поверхности.
Тот факт, что энтропия связана с температурой, означает, что черные дыры должны что-то излучать (например, радиацию и частицы). И это излучение может иметь место лишь на горизонте событий или непосредственно вблизи него, снаружи, поскольку вырваться за его пределы не может ничто. Таким образом, в этой области должно происходить нечто странное.
К счастью, если нам понадобятся странности, мы всегда можем найти что-нибудь в области квантовой физики. В данном случае Хокинг воспользовался такой странностью, как виртуальные частицы – пары частиц с положительной и отрицательной энергией, которые рождаются и исчезают в вакууме. Идея заключалась в том, что это происходит постоянно и повсюду в пространстве-времени, как правило, не оказывая никакого влияния, поскольку виртуальные частицы исчезают практически сразу после своего спонтанного появления, аннигилируя друг с другом. Однако Хокинг считал, что вблизи черной дыры может возникнуть ситуация, когда виртуальная частица с отрицательной энергией попадает за горизонт событий, а виртуальная частица с положительной энергией превращается в реальную и улетает. Вследствие поглощения отрицательной энергии масса черной дыры немного уменьшается, при этом такое же количество положительной энергии излучается на ее горизонте событий. Поскольку виртуальные частицы появляются и исчезают постоянно и повсюду в космосе, любая черная дыра, которая активно не поглощает вещество из своего ближайшего окружения, должна постепенно терять массу в ходе такого процесса испарения.
Каким бы сложным ни казалось это описание, оно используется чаще всего и представляет собой сильно упрощенную картину, предназначенную лишь для передачи основной идеи без лишних технических подробностей. Однако меня оно никогда не удовлетворяло, поскольку оно предполагает, что частицы с отрицательной энергией преимущественно падают в черную дыру, тогда как частицы с положительной энергией улетают прочь, обладая достаточным количеством энергии для того, чтобы преодолеть ее притяжение. Несмотря на то что Хокинг использовал это объяснение, выступая перед широкой аудиторией, он не хотел, чтобы оно воспринималось буквально, но настоящее объяснение предполагает расчет волновых функций и рассеяния, которое происходит с волнами вблизи черной дыры. В этом невозможно разобраться без серьезной подготовки в области математики и физики. Однако если вы сейчас тоже пришли в недоумение, я просто хочу вас заверить, что, несмотря на неадекватность популярной аналогии, результаты расчетов имеют смысл, если произвести их по всем правилам, используя общую теорию относительности и квантовую теорию поля.
Таким образом, мы можем с уверенностью предположить, что перед лицом тепловой смерти черные дыры действительно испаряются, не оставляя ничего, кроме небольшого количества радиации, которая распространяется по опустошающейся Вселенной. Надеюсь, это более или менее понятно.
Кроме того, способность горизонтов излучать радиацию и учитывать энтропию своего содержимого не только обрекает все черные дыры на гибель, но и вносит важный вклад в процесс тепловой смерти. Ведь у нашей наблюдаемой Вселенной тоже есть горизонт, и мы находимся внутри него.
Назад: Бесконечная космическая беговая дорожка
Дальше: Максимальная энтропия