Создание карты грозного неба
Ученые, которые в конце 1990-х решили проблему возраста Вселенной, не стремились революционизировать физику. Они всего лишь пытались ответить на, казалось бы, простой вопрос: насколько быстро замедляется процесс расширения Вселенной? На тот момент было общеизвестно, что расширение космоса инициировано Большим взрывом, и с тех пор оно замедляется под воздействием гравитации всех содержащихся во Вселенной объектов. Измерение так называемого параметра замедления должно было помочь выяснить соотношение между направленным вовне импульсом от Большого взрыва и направленной внутрь силой тяготения всех компонентов Вселенной. Чем выше параметр замедления, тем сильнее гравитация тормозит космическое расширение. Высокое значение говорит о том, что Вселенная обречена на Большое сжатие, а низкое – о том, что, несмотря на замедление, процесс расширения никогда полностью не прекратится.
Чтобы измерить параметр замедления, необходимо как-то выяснить скорость расширения Вселенной в прошлом и сравнить с тем, как быстро она расширяется сейчас. К счастью, эта задача вполне решаема благодаря тому, что мы можем непосредственно видеть прошлое, глядя на отдаленные объекты, а также наблюдать за объектами, которые удаляются от нас прямо сейчас. Все, что нам нужно сделать, – это посмотреть на то, что находится рядом, и на то, что расположено очень далеко, определить скорость удаления этих объектов от нас, и произвести небольшие расчеты. Все просто!
На практике, правда, все совсем не просто, поскольку помимо красного смещения необходимо выяснить еще и расстояния до объектов глубокого космоса, измерить которые очень трудно. Однако достаточно знать о том, что это в принципе возможно. К счастью, астрономы обладают обширным и разнообразным инструментарием для проведения подобных измерений, и в данном случае им на помощь приходят катастрофические термоядерные взрывы далеких звезд.
Дело в том, что свойства взрывов некоторых типов сверхновых настолько предсказуемы, что их можно использовать в качестве стандартных измерителей для определения расстояния. Речь идет о гибели белых карликов, до взрыва представляющих собой медленно остывающие звездные остатки, в которые превратится и наше Солнце после того, как преодолеет стадию красного гиганта, уничтожив ближайшие планеты. Когда масса белого карлика достигает критической отметки (за счет поглощения вещества звезды-компаньона или слияния с другим белым карликом), он взрывается. Этот взрыв называется вспышкой сверхновой типа Ia и имеет характерную кривую блеска и спектр, по которым мы можем довольно уверенно отличить его от других светящихся космических объектов. В принципе, хорошо понимая физику подобного взрыва, мы знаем, насколько ярким он должен выглядеть вблизи, и, учитывая то, каким ярким он нам кажется, мы можем выяснить расстояние, преодоленное светом. (Мы называем такой взрыв «стандартной свечой», поскольку он представляет собой своеобразную лампочку, мощность которой нам точно известна. На основании этой информации мы можем определить, где находится данная лампочка, учитывая то, что ее яркость обратно пропорциональна квадрату расстояния. Только мы говорим «свеча», а не «лампочка», поскольку это звучит более поэтично.)
После выяснения расстояния до сверхновой необходимо определить скорость ее удаления. Для этого можно использовать красное смещение в спектре галактики, в которой взорвалась звезда, говорящее о том, насколько быстро в этой точке происходит космическое расширение. Используйте полученное расстояние и скорость света, чтобы выяснить, как давно все это произошло, и вы получите значение скорости расширения в прошлом.
В 1998 году, всего через несколько лет после публикации в журнале Discover статьи о возрасте космоса, две независимые исследовательские группы, наблюдавшие за далекими сверхновыми, пришли к одинаковому и совершенно невероятному выводу о том, что параметр замедления процесса расширения Вселенной является отрицательным. Из этого следует, что процесс расширения не замедляется, а ускоряется.