Аугуста И., Буриан З. Ящеры древних морей. — Прага: Артия, 1965.
Брусатти С. Время динозавров: Новая история древних ящеров. — М.: Альпина нон-фикшн, 2019.
Вегенер А. Происхождение континентов и океанов. — Л.: Наука, 1984.
Вольтер. Философские сочинения. — М.: Наука, 1988.
Гандзакеци К. История Армении. — М.: Глав. ред. восточ. лит. изд-ва «Наука», 1976.
Геденштром М. Отрывки о Сибири. — СПб.: Типогр. Мед. депт. Мин. внутр. дел, 1830.
Геккер Р. Ф. Введение в палеоэкологию. — М.: Госгеолтехиздат, 1957.
Геродот. История в девяти книгах. — М.: НИЦ «Ладомир», 1993.
Гончарова И. А. Описание раковинного материала (моллюски — класс Scaphopoda, черви — класс Polychaeta, подкласс Sedentaria) из энеолитического могильника Хвалынск II // Хвалынские энеолитические могильники и хвалынская энеолитическая культура / Ред. Д. С. Агапов. — Самара: Поволжье, 2010. С. 386–392.
Ефремов И. А. Тафономия и геологическая летопись. Кн. 1. Захоронение наземных фаун в палеозое. — М.: Изд-во АН СССР, 1950. (Тр. ПИН АН СССР. Т. 24.)
Жерихин В. В. Избранные труды по палеоэкологии и филоценогенетике. — М.: Т-во научных изданий КМК, 2003.
Жерихин В. В., Пономаренко А. Г., Расницын А. П. Введение в палеоэнтомологию. — М.: Т-во научных изданий КМК, 2008.
Игнатьев Г. А. Ископаемые растения и «теория Потопа» // Lethaea rossica. 2012. Т. 7. С. 35–58.
Кириллова И. Легенда ледникового периода: шерстистый носорог // В мире животных. 2010. №6. С. 10–15.
Китнер Ю. И. В. Н. Татищев в Швеции (1724–1726 гг.) // Архангельск в XVIII веке / Отв. ред. Ю. Н. Беспятых. — СПб.: Блиц, 1997. С. 318–412.
Клепиков С. А., Геккер Р. Ф. Лубочное изображение мамонта // Палеонтологический журнал. 1962. №4. С. 124–126.
Коваленко Г. Русские и шведы от Рюрика до Ленина. Контакты и конфликты. — М.: Ломоносовъ, 2010.
Красилов В. А. Происхождение и ранняя эволюция цветковых растений. — М.: Наука, 1989.
Кювье Ж. Рассуждение о переворотах на поверхности земного шара и об изменениях, какие они произвели в животном царстве. — М.; Л.: Биомедгиз, 1937.
Ломоносов М. В. О слоях земных и другие работы по геологии. — М.; Л.: Госгеолиздат, 1949.
Мейен С. В. Теоретические основы палеоботанических исследований (неизданные главы к «Основам палеоботаники» [М.: Недра, 1987]). — М.: ГЕОС, 2009.
Нелихов А. Е. Изобретатель парейазавров. Палеонтолог В. П. Амалицкий и его галерея. — М.: Фитон XXI, 2020.
Паллас П. С. Заметки о путешествии в южные наместничества Российской империи в 1793 и 1794 годах. Том первый (избранное). — Астрахань: ГП АО ИПК «Волга», 2008.
Полякова И. А. Коллекционирование природных образцов янтаря в Пруссии XVI века // Коллекция в пространстве культуры: материалы международной конференции / Отв. ред. И. А. Полякова. — Калининград: Калининградский областной музей янтаря, 2018. С. 71–90.
Пфиценмайер Е. В. В Сибирь за мамонтом. Очерки из путешествия в Северо-Восточную Сибирь. — М.: Госиздат, 1928.
Савицкий В. Е. Новые данные о стратиграфии алданского яруса Анабарской антеклизы и его граница с докембрием // Информационный сборник Института геологии Арктики / Ред. Н. Н. Урванцев. — Л.: НИИГА, 1962. С. 14–21. (Тр. НИИГА. Вып. 27.)
Савкевич С. С. Янтарь. — Л.: Недра, 1970.
Святой Ипполит, епископ Римский. О Христе и антихристе. — СПб.: Библиополис, 2008.
Синицын А. А. Ранний верхний палеолит Восточной Европы: украшения и вопросы эстетики // Верхний палеолит: образы, символы, знаки. Каталог предметов искусства малых форм и уникальных находок верхнего палеолита из археологического собрания МАЭ РАН / Отв. ред. Г. А. Хлопачев. — СПб.: Экстрапринт, 2016. С. 320–337.
Соболев Д. Н. Диастрофизм и органические революции // Природа. 1927. №7/8. С. 566–582.
Соколов Б. С. Очерки становления венда — М.: КМК Лтд., 1997.
Татаринов Л. П. Морфологическая эволюция териодонтов и общие вопросы филогенетики. — М.: Наука, 1976.
Татищев В. Н. Избранные произведения. — М.: Наука, 1979.
Тимофеев Б. В. Древнепалеозойские отложения Молдавии // Доклады АН СССР. 1952. Т. 36, №6. С. 1207–1209.
Хоун Д. Хроники тираннозавра: Биология и эволюция самого известного хищника в мире. — М.: Альпина нон-фикшн, 2017.
Шаповалов А. В., Тесакова Е. М. К истории палеонтологической литературы в России // Труды Государственного Дарвиновского музея. 2007. Вып. 10. С. 112–131.
Широков В. Н. Анималистические изобразительные мотивы Колокольной (Серпиевской 2) пещеры на Южном Урале // Проблемы истории, филологии, культуры. 2018. №2. С. 165–176.
Штернберг Ч. Г. Жизнь охотника за ископаемыми. — М.; Л.: ОНТИ, 1936.
Юрченко А. Книга камней. Чудеса мира в восточных космографиях. — СПб.: Евразия, 2017.
Adams M. M. (1807) Some account of a journey to the frozen sea, and of discovery of the remains of a mammoth. Philosophical Magazine, Series 1, 29 (114), 141–53.
Adler D. S. (2009) Archaeology: The earliest musical tradition. Nature, 460, 695–6.
Álvarez-Fernández E., Álvarez-Alonso D., Cubas M., Cueto M. (2015) La Cueva de El Pindal (Pimiango, Ribadedeva, Asturias): revision de los materiales conservados en el Museo Arqueológico de Asturias. Estudios Interdisciplinares de Arqueología, №2, 191–210.
Ariew R. (1998) Leibniz on the unicorn and various other curiosities. Early Science and Medicine, 3, 267–88.
Atkinson J. W., Wignall P. B., Morton J. D., Aze T. (2020) Body size changes in bivalves of the family Limidae in the aftermath of the end-Triassic mass extinction: the Brobdingnag effect. Palaeontology, 62, 561–82.
Azéma M. (2008) Representation of movement in the Upper Palaeolithic and postglacial art. Anthropozoologica, 43, 117–54.
Balbin Behrmann R. de, Alcolea Gonzalez J. J., Gonzalez Pereda M. A. (1999) Une vision nouvelle de la grotte de El Pindal, Pimiango, Ribadedeva, Asturies. L’Anthropologie, 103, 51–92.
Barthel K. W., Swinburne N. H. M., Conway Morris S. (1978) Solnhofen: A Study of Mesozoic Palaeontology. Cambridge: Cambridge University Press.
Bates K. T., Falkingham P. L. (2012) Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics. Biology Letters, 8, 660–4.
Bath Enright O. G., Minter N. J., Sumner E. J. (2017) Palaeoecological implications of the preservation potential of soft-bodied organisms in sediment-density flows: testing turbulent waters. Royal Society Open Science, 4, 170212. DOI: 10.1098/rsos.170212.
Baucon A. et al. (2012) A history of ideas in ichnology. In Trace fossils as indicators of sedimentary environments. Eds. D. Knaust, R. G. Bromley. Developments in Sedimentology. V. 64. Amsterdam: Elsevier. P. 3–43.
Bergmann U. et al. (2010) Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imagining. Proceedings of the National Academy of Sciences of the USA, 107, 9060–5.
Bhullar B.-A. S. et al. (2016) How to make a bird skull: Major transitions in the evolution of avian cranium, paedomorphosis, and the beak as a surrogate hand. Integrative and Comparative Biology, 56, 389–403.
Boessenecker R. W. et al. (2017) The Early Pliocene extinction of the mega-toothed shark Otodus megalodon: a view from the eastern North Pacific. PeerJ, 7, e6088. DOI: 10.7717/peerj.6088.
Brochu C. (2000) A digitally-rendered endocast for Tyrannosaurus rex. Journal of Vertebrate Paleontology, 20, 1–6.
Buckland W. (1824) Notice on the Megalosaurus or great fossil lizard. Transactions of the Geological Society of London, S2, 1, 390–6.
Cai C. et al. (2020) Structural colours in diverse Mesozoic insects. Proceedings of the Royal Society of London B, 287, 20200301. DOI: 10.1098/rspb.2020.0301.
Cappellini E. et al. (2018) Ancient molecules and evolutionary inference. Annual Review of Biochemistry, 87, 1029–60.
Carlson W. D., Rowe T., Ketcham R. A., Colbert M. W. (2003) Applications of high-resolution X-ray computed tomography in petrology, meteoritics and palaeontology. Geological Society of London Special Publications, 215, 7–22.
Carrasco J., Liñán E., Liñán M., Gámez Vintaned J. A., Gozalo R. (2013) Análisis criptopaleontológico del lapidario de Teofrasto (s. III a.C.). Estudios Geológicos, 69, 115–22.
Criado Boado F., Penedo Romero R. (1993) Art, time and thought: a formal study comparing Palaeolithic and postglacial art. World Archaeology, 25, 187–203.
Clarke J. A. et al. (2016) Fossil evidences of the avian vocal organ from the Mesozoic. Nature, 538, 502–5.
Conway Morris S. (2009) Walcott, the Burgess Shale and rumours of a post-Darwinian world. Current Biology, 19, R927–31.
Cope E. D. (1868) On the origin of genera. Proceedings of the Academy of Natural Sciences of Philadelphia, 20, 242–300.
Cost I. et al. (2020) Palatal biomechanics and its significance for cranial kinesis in Tyrannosaurus rex. The Anatomical Record, 303, 999–1017.
Cunningham J. A. et al. (2014) A virtual world of palaeontology. Trends in Ecology & Evolution, 29, 347–57.
Dean D. R. (1999) Gideon Mantell and the Discovery of Dinosaurs. Cambridge: Cambridge University Press. 312 p.
Deming D. (2019) Robert Hooke’s contributions to hydrogeology. Groundwater, 57, 177–84.
De Vleeschouwer D. et al. (2017) Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nature Communications, 8, 2268. DOI: 10.1038/s41467-017-02407-1.
Dollo L. (1893) Les lois de l’évolution. Bulletin de la Société belge de géologie, paléontologie et d’hydrologie, 7, 164–6.
Droser M. L. (1995) Paleobiology goes into the field. Palaios, 10, 507–16.
Duffin C. J., Gardiner-Thorpe C., Moody R. T. J., eds. (2017) Geology and Medicine: Historical Connections. Geological Society of London Special Publications, 452, 1–298.
Edwards D., Kenrick P., Dolan L. (2018) History and contemporary significance of the Rhynie cherts — our earliest preserved terrestrial ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160489. DOI: 10.1098/rstb.2016.0489.
Eldredge N., Gould S. J. (1972) Punctuated equilibria: an alternative to phyletic gradualism. In Models in Paleobiology. Ed. T. J. M. Schopf. San Francisco: Freeman, Cooper & Co. P. 82–115.
Erwin D. H., Droser M. L. (1993) Elvis taxa. Palaios, 8, 623–4.
Etter W. (2015) Early ideas about fossil cephalopods. Swiss Journal of Palaeontology, 134, 177–86.
Flanagan R. J., Watson K. D. (2009) A petition to Mr Peel: Gideon Mantell and the trial of Hannah Russell. Medicine, Science, and the Law, 49, 153–69.
Foster J. (2007) Jurassic West: The Dinosaurs of the Morrison Formation and Their World. Life of the Past. Bloomington, Indiana: Indiana University Press.
García-Diez M. et al. (2013) Uranium series dating reveals a long sequence of rock art at Altamira Cave (Santillana del Mar, Cantabria). Journal of Archaeological Science, 40, 4098–106.
Glaessner M. F. (1984) The Down of Animal Life: A Biohistorical Study. Cambridge: Cambridge University Press.
Gould S. J. (1989) Wonderful Life: The Burgess Shale and the Nature of History. New York: W. W. Norton & Co.
Gu J.-J. et al. (2012) Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females. Proceedings of the National Academy of Sciences of the USA, 109, 3868–73.
Guthrie R. D. (1990) Frozen Fauna of the Mammoth Steppe: The Story of Blue Babe. Chicago: University Chicago Press.
Heim N. A. et al. (2015) Cope’s rule in the evolution of marine animals. Science, 347, 867–70.
Horvath G. et al. (2012) Cavemen were better at depicting quadruped walking than modern artists: Erroneous walking illustrations in the fine arts from Prehistory to Today. PLoS One, 7, e49786. DOI: 10.1371/journal.pone.0049786.
Hoyal Cuthill J. F., Guttenberg N., Budd G. E. (2021) Impacts of speciation and extinction measured by an evolutionary decay clock. Nature, 588, 636–41.
Hunter W. (1768) Observations on the Bones, commonly supposed to be Elephants Bones, which have been found near the River Ohio in America. Philosophical Transactions of the Royal Society, 58, 34–45.
Jablonski D., Erwin D. H., Lipps J. H. (1996) Evolutionary Paleobiology. Chicago: University Chicago Press.
Kaye T. J. et al. (2015) Laser-stimulating fluorescence in paleontology. PLoS ONE, 10 (5), e0125923. DOI: 10.1371/journal.pone.0125923.
Kelley P. H. et al. (2013) From paleontology to paleobiology: A half-century of progress in understanding life history. Geological Society of America Special Paper, 500, 191–232.
Kislev M., Barkai R. (2019) Neanderthal and woolly mammoth molecular resemblance: Genetic similarities may underlie cold adaptation suite. Human Biology, 90, 115–28.
Lamsdell J. C., Braddy S. J. (2009) Cope’s Rule and Romer’s theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters, 6, 265–9.
Landing E. (2017) Self-taught American scientist. In The Best of New York Archives. Ed. New York State Archive Trust. Albany, New York: Excelsior Press. P. 137–9.
Lewis-Williams J. D. (1997) Harnessing the brain: Vision and shamanism in Upper Paleolithic Western Europe. In Beyond Art: Pleistocene Image and Symbol. Eds. M. Conkey, O. Soffer, D. Stratmann, N. G. Jablonski. San Francisco: California Academy of Sciences. P. 321–42.
Liñán E. (2004) Fósiles, mitos y leyendas: Criptopaleontología. Revista de la Real Academia de Córdoba, de Ciencias, Bellas Letras y Nobles Artes, 146, 189–205.
Liñán E. et al. (2013) 150 años del descubrimiento del yacimiento cámbrico de Murero (Cadenas Ibéricas, NE España). Geogaceta, 53, 25–8.
Liu Y., Scholtz G., Hou X. (2015) When a 520-million-year-old Chengjiang fossil meets a modern micro-CT — a case study. Scientific Reports, 5, 12802. DOI: 10.1038/srep12802.
Malafouris L. (2007) Before and beyond representation: Towards an enactive conception of the Palaeolithic art. In Image and Imagination: A Global History of Figurative Representation. Eds. C. Renfrew, I. Morley. Cambridge: Macdonald Institute for Archaeological Research. P. 289–302.
Manning P. L. et al. (2019) Pheomelanin pigment remnants mapped in fossils of an extinct mammal. Nature Communications, 10, 2250. DOI: 10.1038/s41467-019-10087-2.
Mayor A. (2000) The First Fossil Hunters. Paleontology in Greek and Roman Times. Princeton, New Jersey: Princeton University Press.
McCoy V. E. et al. (2020) Chemical signatures of soft tissues distinguish between vertebrates and invertebrates from the Carboniferous Mazon Creek Lagerstätte of Illinois. Geobiology, 18, 560–5.
McNamara K. J. (2007) Shepherds’ crowns, fairy loves and thunderstones: the mythology of fossil echinoids in England. Geological Society of London Special Publications, 273, 279–94.
Medina-Alcaide M. Á. et al. (2019) Multianalytical and multiproxy approach to the characterization of a Palaeolithic lamp. An example in Nerja cave (Southern Iberian Peninsula). Journal of Archaeological Science: Reports, 28, 102021. DOI: 10.1016/j.jasrep.2019.102021.
Miethe A., Born A. (1928) Die Fluorographie von Fossilien. Paläontologische Zeitschrift, 9, 343–56.
Moody R. T. J., Buffetaut E., Naish D., Martill D. M., eds. (2010) Dinosaurs and other extinct saurians: A historical perspective. Geological Society of London Special Publications, 343, 1–394.
Naimark E. et al. (2021) Taphonomic experiments imply a possible link between the evolution of multicellularity and the fossilization potential of soft-bodied organisms. Ecology and Evolution, 11, 1037–56.
Orr P. J., Briggs D. E. G., Siveter D. J., Siveter D. J. (2000) Three-dimensional preservation of a non-biomineralized arthropod in concretions in Silurian volcanoclastic rocks from Herefordshire, England. Journal of Geological Society of London, 157, 173–86.
Ostrom J. H., Yellis K. (1993) Demons of the mind: robotic dinosaurs, fossils, and Jurassic Park. Discovery, 24 (1), 4–11.
Owen R. (1841) Report on British fossil reptiles. Pt II. In Report of the Eleventh Meeting of the British Association for the Advancement of Science; Held at Plymouth in July 1841, 60–204.
Palkopoulou E. et al. (2018) A comprehensive genomic history of extinct and living elephants. Proceedings of the National Academy of Sciences of the USA, 115, E2566–74.
Parent A. (2017) A tribute to James Parkinson. Canadian Journal of Neurological Sciences, 45, 83–9.
Parkinson J. (1822) Outlines of Oryctology. An Introduction to the Study of Fossil Organic Remains; Especially of Those Found in the British Strata: Intended to Aid the Student in His Enquiries Respecting the Nature of Fossils, and Their Connection with the Formation of the Earth. — L.: Sherwood, Neely, and Jones; W. Phillips, G. Yard.
Payne J. L. et al. (2020) The evolution of complex life and the stabilization of the Earth system. Interface Focus, 10, 20190106. DOI: 10.1098/rsfs.2019.0106.
Plaziat C. (2011) Bernard Palissy (1510–1590) and the French geologists: a critical reappraisal concerning the founding naturalist and his rustic ceramics. Bulletin de la Société géologique de France, 182, 255–67.
Pittman M. et al. (2020) Methods of studying early theropod flight. Bulletin of the American Museum of Natural History, 440, 277–94.
Quiles A. et al. (2016) A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d’Arc, Ardèche, France. Proceedings of the National Academy of Sciences of the USA, 113, 4670–5.
Rahman I. A. (2017) Computational fluid dynamics as a tool for testing functional and ecological hypotheses in fossil taxa. Palaeontology, 60, 451–9.
Rahman I. A., Adcock K., Garwood R. J. (2012) Virtual fossils: a new resource for science communication in paleontology. Evolution: Education and Outreach, 5, 635–41.
Reich M., Gehler A. (2011) Giants’ bones and unicorn horns. Georgia Augusta, Research Magazine of the University of Göttingen, 8, 44–50.
Rifkin R. F. (2009) Engraved art and acoustic resonance: exploring ritual and sound in north-western South Africa. Antiquity, 83, 585–601.
Rogers R. (1834) The History and Antiquities of the Borough of Lyme Regis and Charmouth. L.: Samuel Bagster and William Pickering.
Rossi V., Webb S. M., McNamara M. E. (2020) Hierarchical biota-level and taxonomic controls on the chemistry of fossil melanosomes revealed using synchrotron X-ray fluorescence. Scientific Reports, 10, 8970. DOI: 10.1038/s41598-020-65868-3.
Ruiz-Redondo A., Yanovskaya K., Zhitenev V. S. (2020) The easternmost European Palaeolithic artists: Iconography and graphic features at Kapova Cave (southern Urals, Russia). Journal of Paleolithic Archaeology, 3, 967–88.
Rust J. et al. (2016) The Hunsrück Biota: A unique window into the ecology of Lower Devonian arthropods. Arthropod Structure & Development, 45, 140–51.
Sanchez S. et al. (2012) Three-dimensional synchronous virtual paleohistology: A new insight into the world of fossil bone microstructures. Microscopy and Microanalysis, 18, 1095–105.
Shcherbakov D. E. (2008) Madygen, Triassic Lagerstätte number one, before and after Sharov. Alavesia, 2, 113–24.
Seilacher A. (2007) Trace Fossil Analysis. Berlin; Heidelberg; New York: Springer.
Senter P. (2008) Voices of the past: a review of Paleozoic and Mesozoic animal sounds. Historical Biology, 20, 255–87.
Sepkoski D., Ruse M. (2009) The Paleobiological Revolution: Essays on the Growth of Modern Paleontology. Chicago: University Chicago Press.
Sepkoski J. J., Jr. (1993) Ten years in the library: New data confirm paleontological patterns. Paleobiology, 19, 43–51.
Sertilanges A. D. (1986) The thoughts of Leonardo da Vinci. Amboise: «Le Clos-Lucé».
Siveter D. J., Briggs D. E. G., Siveter D. J., Sutton M. D. (2020) The Herefordshire Lagerstätte: fleshing out Silurian marine life. Journal of Geological Society of London, 177, 1–13.
Snively E. et al. (2019) Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods. PeerJ, 7, e6432. DOI: 10.7717/peerj.6432.
Sprigg R. C. (1989) Geology is Fun: Recollections by Reg Sprigg. Adelaide: Gillingham Printers Pty Ltd.
Sweet W. C., Cooper B. J. (2008) C. H. Pander’s introduction to conodonts. Episodes, 31, 433–6.
Szabó K. et al., eds. (2014) Archaeomalacology: Shells in the Archaeological Record. Oxford: Information Press.
Taquet P., Padian K. (2004) The earliest known restoration of pterosaur and the philosophical origins of Cuvier’s Ossemens Fossils. Comptes Rendus Paleovol, 3, 157–75.
Taylor P. D. (2016) Fossil folklore: Ammonites. Deposits Magazine, 46, 20–3.
Taylor P. D. (2017) Fake fossils by the hundred — the story of Johann Beringer’s ‘lying-stones’. Deposits Magazine, 52, 38–41.
Tihelka E. (2020) Palaeobiotechnology. Geology Today, 36, 188–91.
Tyler S. A., Barghoorn E. S. (1954) Occurrence of structurally preserved plants in Precambrian rocks of the Canadian Shield. Science, 119, 606–8.
Vai G. B., Cavazza W. (2006) Ulisse Aldrovandi and the origin of geology and science. Geological Society of America Special Paper, 411, 43–63.
Walch J. E. I. (1768) Die Naturgeschichte der Versteinerungen zur Erläuterung der Knorrischen Sammlung von Merkwürdigkeiten der Natur, Theil 2, Absschnitt. — Nürnberg: Felssecker.
Van Valen L. (1973) A new evolutionary law. Evolutionary Theory, 1, 1–30.
Van Valkenburgh B., Wang X., Damuth J. (2004) Cope’s Rule, hypercarnivory, and extinction in North American canids. Science, 306, 101–4.
Vermeij G. J. (1987) Evolution and Escalation: An Ecological History of Life. Princeton, New Jersey: Princeton University Press.
Vinther J. (2020) Reconstructing vertebrate paleocolor. Annual Review of Earth and Planetary Sciences, 48, 345–75.
Wyse Jackson P. N. (ed.). (2007) Four centuries of geological travel: The search for knowledge on foot, bicycle, sledge and camel. Geological Society of London Special Publications, 287, 1–424.
Xing L. et al. (2011) The folklore of dinosaur trackways in China: Impact on paleontology. Ichnos, 18, 213–20.
Xu L., Zhou Z., Wang Y., Wang M. (2020) Study on the Jehol Biota: Recent advances and future prospects. Science China: Earth Sciences, 63, 757–73.
Xu X. et al. (2016) An updated review of the Middle-Late Jurassic Yanliao Biota: Chronology, taphonomy, paleontology and paleoecology. Acta Geologica Sinica, 90, 2229–43.
Yuan Y. et al. (2013) Role of β/δ101Gln in regulating the effect of temperature and allosteric effectors on oxygen affinity in woolly mammoth hemoglobin. Biochemistry, 52, 8888–97.
Zhitinev V. S. (2017) Personal ornaments and decorated objects from the Early Upper Paleolithic site of Sungir. Etudes et Recherches archéologiques de l’Université de Liège, 147, 73–84.
Zhuravlev A. Yu., Riding R., eds. (2001) The Ecology of the Cambrian Radiation. New York: Columbia University Press.
Zhuravlev A. Yu., Naimark E. B., Wood R. A. (2015) Controls on the diversity and structure of earliest metazoan communities: early Cambrian reefs from Siberia. Earth-Science Reviews, 147, 18–29.
Zhuravlev A. Yu., Wood R. (2020) Dynamic and synchronous changes in metazoan body size during the Cambrian Explosion. Scientific Reports, 10, 6784. DOI: 10.1038/s41598-020-63774-2.
Бурзин М. Б. Древнейший хитридиомицет (Mycota, Chytridiomycetes incertae sedis) из верхнего венда Восточно-Европейской платформы // Фауна и экосистемы геологического прошлого / Отв. ред. Б. С. Соколов, А. Б. Ивановский. — М.: Наука, 1993. С. 21–33.
Герман Т. Н. Органический мир миллиард лет назад. — Л.: Наука, 1990.
Герман Т. Н., Подковыров В. Н. О грибах в позднем рифее // Палеонтологический журнал. 2006. №2. С. 89–95.
Герман Т. Н., Подковыров В. Н. Находки рифейских гетеротрофов в лахандинской серии Сибири // Палеонтологический журнал. 2010. №4. С. 15–23.
Козо-Полянский Б. М. Новый принцип биологии: очерк теории симбиогенеза. — Л.; М.: Пучина, 1924.
Мережковский К. С. Теория двух плазм как основа симбиогенезиса, нового учения о происхождении организмов. — Казань: Типография Императорского ун-та, 1908.
Наговицин К. Е. Биоразнообразие грибов на границе мезо- и непротерозоя (лахандинская биота, Восточная Сибирь) // Новости палеонтологии и стратиграфии: Приложение к журналу «Геология и геофизика». 2008. Т. 49, №10–11. С. 147–151.
Тимофеев Б. В. Сфероморфиды протерозоя. — Л.: Наука, 1969.
Фаминцын А. С. О роли симбиоза в эволюции организмов // Записки Императорской академии наук по физико-математическому отделению. Сер. VIII. 1907. Т. ХХ, №3. С. 1–14.
Шувалова Ю. В., Наговицин К. Е., Пархаев П. Ю. Следы древнейших трофических взаимодействий в рифейской биоте (лахандинский лагерштетт, Юго-Восточная Сибирь) // Доклады РАН. Науки о жизни. 2021. Т. 496. С. 41–47.
Янкаускас Т. В. и др. Микрофоссилии докембрия СССР. — Л.: Наука, 1989.
Adl S. M. et al. (2019) Revisions to the classification, nomenclature, and diversity of Eukaryotes. Eukaryotic Microbiology, 66, 4–119.
Agic H., Moczydłowska M., Yin L.-M. (2015) Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shaanxi, China. Journal of Paleontology, 89, 28–50.
Arouri K. R., Greenwood P. F., Walter M. R. (2000) Biological affinities of Neoproterozoic acritarchs: microscopic and chemical characterisation. Organic Geochemistry, 31, 75–89.
Baum D. A., Baum B. (2014) An inside-out origin for the eukaryotic cell. BMC Biology, 12, 76. .
Berbee M. L. et al. (2020) Genomic and fossil windows into the secret lives of the most ancient fungi. Nature Reviews Microbiology, 18, 717–30.
Bomfleur B., McLoughlin S., Vajda V. (2014) Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science, 343, 1376–7.
Bosak T., Macdonald F., Lahr D., Matys E. (2011) Putative Cryogenian ciliates from Mongolia. Geology, 39, 1123–6.
Burki F., Roger A. J., Brown M. W., Simpson A. G. B. (2020) The new tree of Eukaryotes. Trends in Ecology & Evolution, 35, 43–55.
Butterfield N. J. (2009) Modes of pre-Ediacaran multicellularity. Precambrian Research, 173, 201–11.
Butterfield N. J. (2015) Early evolution of the Eukaryota. Palaeontology, 58, 5–17.
Cohen P. A., Macdonald F. A. (2015) The Proterozoic record of eukaryotes. Paleobiology, 41, 610–32.
Cohen P. A., Riedman L. A. (2018) It’s protist-eat-protist world: recalcitrance, predation, and evolution in the Tonian-Cryogenian ocean. Emerging Topics in Life Sciences, 2, 173–80.
Cohen P. A., Schopf J. W., Butterfield N. J., Kudryavtsev A. B., Macdonald F. A. (2011) Phosphate biomineralization in mid-Neoproterozoic protists. Geology, 39, 539–42.
Cohen P. A. et al. (2017) Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote. Science Advances, 3, e1700095. DOI: 10.1126/sciadv.1700095.
Embley T. M., Martin W. (2006) Eukaryotic evolution, changes and challenges. Nature, 440, 623–30.
Eme L. et al. (2017) Archaea and the origin of eukaryotes. Microbiology, 15, 711–23.
Erickson H. P. (2016) The discovery of the prokaryotic cytoskeleton: 25th anniversary. Molecular Biology of the Cell, 28, 357–8.
Falcón L. I., Magallon S., Castillo A. (2012) Dating the cyanobacterial ancestor of the chloroplast. The ISME Journal, 4, 777–83.
Fedonkin M. A., Yochelson E. L. (2002) Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue — grade colonial eukaryote. Smithsonian Contributions to Paleobiology, 94, 1–29.
Gargaud M., López-García P., Martin H., eds. (2011) Origins and Evolution of Life. An Astrobiological Perspective. Cambridge: Cambridge University Press.
Gawryluk R. M. R. et al. (2019) Non-photosynthetic predators are sister group to red algae. Nature, 572, 240–3.
Gibson T. M. et al. (2018) Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology, 46, 135–8.
Hehenberger E. et al. (2019) A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proceedings of the National Academy of Sciences of the USA, 116, 17934–42.
Imachi H. et al. (2020) Isolation of an archaeon at the prokaryote-eukaryote interface. Nature, 577, 519–25.
Javaux E. J. (2019) Challenges in evidencing the earliest traces of life. Nature, 572, 451–60.
Javaux E. J., Knoll A. H. (2017) Micropalaeontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. Journal of Paleontology, 91, 199–229.
Knoll A. H. (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspective Biology, 6, a016121. DOI: 10.1101/cshperspect.a016121.
Knoll A. H., Javaux E. J., Hewitt D., Cohen P. (2006) Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 1023–38.
Ku C. et al. (2015) Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. Proceedings of the National Academy of Sciences of the USA, 112, 10139–46.
Kurland C. G., Andersson S. G. E. (2000) Origin and evolution of the mitochondrial proteome. Microbiology and Molecular Biology Review, 64, 786–820.
Lahr D. J. G. et al. (2019) Phylogenomics and morphological reconstruction of Arcellinida testate amoebae highlight diversity of microbial eukaryotes in the Neoproterozoic. Current Biology, 29, 1–11. DOI: 10.1016/j.cub.2019.01.078.
Lane N. (2017) Singular endosymbiosis or singular event at the origin of eukaryotes? Journal of Theoretical Biology, 434, 58–67.
Leonard G. et al. (2018) Comparative genomic analysis of the ‘pseudofungus’ Hyphochytrium catenoides. Open Biology, 8, 170184. DOI: 10.1098/rsob.170184.
López-García P., Moreira D. (2020) The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature Microbiology, 5, 655–67.
Loron C. C. et al. (2018) Implications of selective predation on the macroevolution of eukaryotes: evidence from Arctic Canada. Emerging Topics in Life Sciences, 2, 247–55.
Loron C. C. et al. (2019) Early fungi from the Proterozoic era in Arctic Canada. Nature, 570, 232–5.
Marshall C. P., Javaux E. J., Knoll A. H., Walter M. R. (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to palaeobiology. Precambrian Research, 138, 208–24.
Martin W. F. et al. (2017) The physiology of phagocytosis in the context of mitochondrial origin. Microbiology and Molecular Biology Reviews, 81, e00008–7. DOI: 10.1128/MMBR.00008–7.
Melnikov S. et al. (2020) Archaeal ribosomal proteins possess nuclear localization signal-type motifs: Implications for the origin of the cell nucleus. Molecular Biology and Evolution, 37, 124–33.
Moczydłowska M., Landing E., Zang W., Palacios T. (2011) Proterozoic phytoplankton and timing of chlorophyte algae origins. Palaeontology, 54, 721–33.
Pang K. et al. (2013) The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology, 11, 499–510.
Payne J. L. et al. (2009) Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences of the USA, 106, 24–7.
Porter S. M. (2006) The Proterozoic fossil record of heterotrophic eukaryotes. In Neoproterozoic Geobiology and Paleobiology. Eds. S. Xiao, A. J. Kaufman. Dordrecht: Springer. P. 1–21.
Porter S. (2016) Tiny vampires in ancient seas: evidence for predation via perforation in fossils from 780–740 million-year-old Chuar Group, Grand Canyon, USA. Proceedings of the Royal Society of London B, 283, 20160221. DOI: 10.1098/rspb.2016.0221.
Roger A. J., Muñoz-Gómez S. A., Kamikawa R. (2017) The origin and diversification of mitochondria. Current Biology, 27, R1177–92.
Sergeev V. N., Knoll A. H., Grotzinger J. P. (1995) Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northern Siberia. Journal of Paleontology, 69 (1) II, 1–37.
Sergeev V. N., Knoll A. H., Vorob’eva N. G., Sergeeva N. D. (2016) Microfossils from the lower Mesoproterozoic Kaltasy Formation, East-European Platform. Precambrian Research, 278, 87–107.
Shalchian-Tabrizi K. et al. (2006) Telonemia, a new protist phylum with affinity to chromist lineages. Proceedings of the Royal Society of London B, 273, 1833–42.
Strother P. K. Battison L., Brasier M. D., Wellman C. H. (2011) Earth’s earliest non-marine eukaryotes. Nature, 473, 505–9.
Tang Q. et al. (2015) Organic-walled microfossils from the Tonian Gouchou Formation, Huaibei region, North China Craton, and their biostratigraphic implications. Precambrian Research, 266, 296–318.
Vafai S. B., Mootha V. K. (2012) Mitochondrial disorders as windows into an ancient organelle. Nature, 491, 374–83.
Villanueva L. et al. (2021) Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. The ISME Journal, 15, 168–82.
Zaremba-Niedzwiedzka K. et al. (2016) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541, 353–8.
Zhu S. et al. (2016) Decimetre-scale multicellular eukaryotes from 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nature Communications, 7, 11500. DOI: 10.1038/ncomms11500.
Животовский Б. Д. Программируемая гибель клеток — медицине // Химия и жизнь XXI век. 2014. №5, 10–5.
Журавлев A. Ю. Ранняя история Metazoa — взгляд палеонтолога // Журнал общей биологии. 2014. Т. 75, №6. C. 411–65.
Иванцов А. Ю. Новая реконструкция кимбереллы — проблематического вендского многоклеточного животного // Палеонтологический журнал. 2009. №6. С. 3–12.
Иванцов А. Ю. Следы питания проартикулят — вендских многоклеточных животных // Палеонтологический журнал. 2011. №3. С. 3–13.
Иванцов А. Ю. Реконструкция Charniodiscus yorgensis (макробиота венда Белого моря) // Палеонтологический журнал. 2016. №1. С. 3–13.
Наймарк Е. Б., Иванцов А. Ю. Возрастная изменчивость поздневендских проблематик Parvancorina Glaessner // Палеонтологический журнал. 2009. Т. 43, №1. С. 14–19.
Петрухин В. Я. Русь в IX–X веках. От призвания варягов до выбора веры. — М.: ФОРУМ; Неолит, 2013.
Федонкин М. А. Бесскелетная фауна венда и ее место в эволюции Metazoa. — М.: Наука, 1987. (Тр. ПИН АН СССР. Т. 226.)
Belahbib H. et al. (2018) New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genomics, 19, 1. DOI: 10.1186/s12864-018-4715-9.
Bobrovskiy I. et al. (2019) Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science, 361, 1246–9.
Bonner J. T. (2006) Migration in Dictyostelium polycephalum. Mycologia, 98, 260–4.
Bowyer F., Wood R. A., Poulton S. W. (2017) Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. Geobiology, 15, 516–51.
Brasier M. D., Antcliffe J. B. (2008) Dickinsonia from Ediacara: A new look at morphology and body construction. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 311–23.
Brasier M. D., Antcliffe J. B. (2009) Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society of London, 166, 2, 363–84.
Brock D. A., Douglas T. E., Queller D. C., Strassmann J. E. (2011) Primitive agriculture in a social amoeba. Nature, 469, 393–6.
Brunet T. et al. (2018) Light-regulated collective contractility in a multicellular choanoflagellate. Science, 366, 326–34.
Butterfield N. J. (2020) Constructional and functional anatomy of Ediacaran rangeomorphs. Geological Magazine, First View, 1–12. DOI: 10.1017/S0016756820000734.
Chen L. et al. (2014) Cell differentiation and germ-soma separation in Ediacaran animal-like fossils. Nature, 516, 238–41.
Coutts F. J., Bradshaw C. J. A., García-Bellido D. C., Gehling J. G. (2018) Evidence of sensory-driven behavior in the Ediacaran organism Parvancorina: Implications and autecological interpretations. Gondwana Research, 55, 21–9.
Dong L. et al. (2008) Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 138–61.
Droser M. L. et al. (2014) A new Ediacaran fossil with a novel sediment displacive habit. Journal of Paleontology, 88, 145–51.
Droser M. L. et al. (2019) Piecing together the puzzle of the Ediacaran biota: Excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia). Palaeogeography, Palaeoclimatology, Palaeoecology, 513, 132–45.
Dudin O. et al. (2019) A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife, 8, e49801. DOI: 10.7554/eLife.49801.
Dunn F. S. et al. (2019) Anatomy of the Ediacaran rangeomorph Charnia masoni. Papers in Palaeontology, 5, 157–76.
Eichinger L. et al. (2005) The genome of the social amoeba Dictyostelium discoideum. Nature, 435, 43–57.
Gehling J. G., Narbonne G. M., Anderson M. M. (2000) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 43, 427–56.
Ghisalberti M. et al. (2014) Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes. Current Biology, 24, 1–5. DOI: 10.1016/j.cub.2013.12.017.
Grazhdankin D. (2014) Patterns of evolution of the Ediacaran soft-bodied biota. Journal of Paleontology, 88, 269–83.
Grazhdankin D., Seilacher A. (2002) Underground Vendobionta from Namibia. Palaeontology, 45, 57–78.
Hehenberger E. et al. (2017) Novel predators reshape holozoan phylogeny and reveal the presence of a two-component signaling system in the ancestor of animals. Current Biology, 27, 2043–50.
Herron M. D. et al. (2019) De novo origins of multicellularity in response to predation. Scientific Reports, 9, 2328. DOI: 10.1038/s41598-019-39558-8.
Hoyal Cuthill J. F., Conway Morris S. (2014) Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan. Proceedings of the National Academy of Sciences of the USA, 111, 13122–6.
Ivantsov A. Yu. et al. (2016) Elucidating Ernietta: new insights from exceptional specimens in the Ediacaran of Namibia. Lethaia, 49, 540–54.
Ivantsov A. Yu., Nagovitsyn A. L., Zakrevskaya M. A. (2019) Traces of locomotion of Ediacaran macroorganisms. Geosciences, 9, 395. DOI: 10.3390/geosciences.9090395.
Ivantsov A., Zakrevskaya M., Nagovitsyn A. (2019) Morphology of integuments of the Precambrian animals, Proarticulata. Invertebrate Zoology, 16, 19–26.
Ivantsov A. et al. (2020) Intravital damage to the body of Dickinsonia (Metazoa of the late Ediacaran). Journal of Paleontology, 94, 1019–33.
Kenchington C. G., Dunn F. S., Wilby P. R. (2018) Modularity and overcompensatory growth in Ediacaran rangeomorphs demonstrate early adaptations for coping with environmental pressures. Current Biology, 28, 3330–6, e2.
Kolesnikov A. V. et al. (2018) The oldest skeletal macroscopic organism Palaeopascichnus linearis. Precambrian Research, 316, 24–37.
Kuzdal-Fick J. J., Foster K. R., Queller D. C., Strassmann J. E. (2007) Exploiting new terrain: an advantage to sociality in the slime mold Dictyostelium discoideum. Behavioral Ecology, 18, 433–7.
Laflamme M., Xiao S., Kowalewski M. (2009) Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences of the USA, 1060, 14438–43.
Liu A. G. (2016) Framboidal pyrite should confirms the ‘death mask’ model for moldic preservation of Ediacaran soft-bodied organisms. Palaios, 31, 259–274.
Liu A. G., McIlroy D., Matthews J. J., Brasier M. D. (2012) A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society of London, 169, 395–403.
Liu A. G., Dunn F. S. (2020) Filamentous connections between Ediacaran fronds. Current Biology, 30, 1322–8.
Luo C., Miao L. (2020) A Horodyskia-Nenoxites-dominated fossil assemblage from the Ediacaran-Cambrian transition (Liuchapo Formation, Hubei Province): Its paleontological implications and stratigraphic potential. Palaeogeography, Palaeoclimatology, Palaeoecology, 545, 109635. DOI: 10.1016/j.palaeo.2020.109635.
Mitchell E. G. et al. (2015) Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature, 524, 343–6.
Mitchell E. G. et al. (2019) The importance of neutral over niche processes in structuring Ediacaran early animal communities. Ecology Letters, 22, 2028–38.
Mitchell E. G. et al. (2020) The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus, 10, 20190109. DOI: 10.1098/rsfs.2019.0109.
Nagy L. G., Kovács G. M., Krizsán K. (2019) Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biological Reviews, 93, 1778–94.
Rahman I. A., Darroch S. A. F., Racicot R. A., Laflamme M. (2015) Suspension feeding in the enigmatic Ediacaran organism Tribrachidium demonstrates complexity of Neopoterozoic ecosystems. Science Advances, 1, e1500800. DOI: 10.1126/sciadv.1500800.
Reid L. M., García-Bellido D. C., Gehling J. G. (2018) An Ediacaran opportunist? Characteristics of a juvenile Dickinsonia costata population from Crisp Gorge, South Australia. Journal of Paleontology, 92, 313–22.
Richter D. J., Fozouni P., Eisen M. B., King N. (2018) Gene family innovation, conservation and loss on the animal stem lineage. eLife, 7, e34226. DOI: 10.7554/eLife.34226.
Ros-Rocher N., Pérez-Posada A., Leger M. M., Ruiz-Trillo I. (2021) The origin of animals: an ancestral reconstruction of unicellular-to-multicellular transition. Open Biology, 11, 200359. DOI: 10.1098/rsob.200359.
Saran S. et al. (2002) cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection. Journal of Muscle Research and Cell Motility, 23, 793–802.
Schaap P. (2007) Evolution of size and pattern in the social amoebas. BioEssays, 29, 635–44.
Seilacher A. (1992) Vendobionta and Psammocorallia: Lost constructions of the Precambrian evolution. Journal of the Geological Society of London, 149, 607–13.
Singer A., Plotnick R., Laflamme M. (2013) Experimental fluid mechanics of an Ediacaran frond. Palaeontologia Electronica, 15, 2 (19A), 1–14. .
Slagter S. et al. (2021) Experimental evidence supports early silica cementation of the Ediacara Biota. Geology, 49, 51–5.
Sternfeld J., O’Mara R. (2005) Aerial migration of the Dictyostelium slug. Development, Growth & Differentiation, 47, 49–58.
Tendal O. S. (1972) A monograph of the Xenophyophoria. Galathea Reports, 12, 7–103.
Wallraff E., Wallraff H. G. (1997) Migrating and bidirectional phototaxis in Dictyostelium discoideum slugs lacking the action cross-linking 120 kDa gelation factor. Journal of Experimental Biology, 200, 3213–20.
Wan B. et al. (2020) A tale of three taphonomic modes: The Ediacaran fossil Flabellophyton preserved in limestone, black shale, and sandstone. Gondwana Research, 84, 296–314.
Wood R., Ivantsov A. Yu., Zhuravlev A. Yu. (2017) First macrobiota biomineralization was environmentally triggered. Proceedings of the Royal Society of London B, 284, 20170059. DOI: 10.1098/rspb.2017.0059.
Xiao S., Yuan X., Steiner M., Knoll A. H. (2002) Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 76, 347–76.
Xiao S. et al. (2005) A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the USA, 102, 10227–32.
Xiao S. et al. (2021) The Shibantan Lagerstätte: insights into the Proterozoic-Phanerozoic transition. Journal of Geological Society, 178. DOI: 10.1144/jgs2020–135.
Yin Z., Zhu M., Bottjer D. J., Zhao F., Tafforeau P. (2016) Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans. Geology, 44, 735–738.
Yin Z. et al. (2017) Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng’an Biota. Precambrian Research, 301, 145–51.
Yin Z. et al. (2019) The early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology. Current Biology, 29, 4307–14, e2.
Zakrevskaya M. (2014) Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 27–38.
Zhu M. et al. (2008) Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36, 867–70.
Zhuravlev A. Yu. (1993) Were Ediacaran Vendobionta multicellulars? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 299–314.
Zhuravlev A. Yu., Gámez Vintaned J. A., Ivantsov A. Yu. (2009) First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geological Magazine, 146, 775–80.
Журавлев A. Ю., Нитецкий M. Г. O сравнительной морфологии археоциат и рецептакулитов // Палеонтологический журнал. 1985. №2. C. 121–123.
Alegado R. A. et al. (2012) A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife, 1, e00013. DOI: 10.7554/eLife.00013.
Alvarez B. et al. (2002) Systema Porifera: A Guide to the Classification of Sponges. New York: Kluwer Academic / Plenum Publishers.
Antcliffe J. B., Calloway R. H. T., Brasier M. D. (2014) Giving the early fossil record of sponges a squeeze. Biological Reviews, 89, 972–1004.
Arasuna A. et al. (2018) Structural characterization of the body frame and spicules of a glass sponge. Minerals, 8, 88. DOI: 10.3390/min8030088.
Bobrovskiy I. et al. (2021) Algal origin of sponge sterane biomarkers negates the oldest evidence for animals in the rock record. Nature Ecology & Evolution, 5, 165–8.
Borchiellini C. et al. (2001) Sponge paraphyly and the origin of Metazoa. Journal of Evolutionary Biology, 14, 171–9.
Botting J. P., Butterfield N. J. (2005) Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proceedings of the National Academy of Sciences of the USA, 102, 1554–9.
Botting J. P., Muir L. A. (2018) Early sponge evolution: a review and phylogenetic framework. Palaeoworld, 27, 1–29.
Botting J. P., Muir L. A., Xiao S., Li X., Lin J. P. (2012) Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia, 45, 463–75.
Botting J. P., Zhang Y., Muir L. A. (2017) Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution. Scientific Reports, 7, 5286. DOI: 10.1038/s41598-017-05604-6.
Boyajian G. E., Labarbera M. (1987) Biomechanical analysis of passive flow of stromatoporoids — Morphologic, paleoecologic, and systematic implications. Lethaia, 20, 223–9.
Carrera M. G., Maletz J. (2014) Ordovician sponge spicules from the Spitsbergen, Nevada and Newfoundland: new evidence for hexactinellid and demosponge early diversification. Journal of Systematic Palaeontology, 12, 961–81.
Chen J. et al. (2004) Sponge fossil assemblage from the Early Cambrian Hetang Formation in southern Anhui. Chinese Science Bulletin, 49, 1625–8.
Conway K., Barrie J., Krautter M. (2005) Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry. Geo-Marine Letters, 25, 205–13.
Debrenne F. et al. (2015) Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Vol. 4–5: Hypercalcified Porifera. — Lawrence, Kansas: University Kansas Paleontological Institute.
Ehrlich H. et al. (2010) Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nature Chemistry, 2, 1084–8.
Ehrlich H. et al. (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Scientific Reports, 3, 03497. DOI: 10.1038/srep03497.
Ereskovsky A. V. et al. (2009) The homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology. BioEssays, 31, 89–97.
Fairclough S. R., Dayel M. J., King N. (2010) Multicellular development in a choanoflagellate. Current Biology, 20, R875–6.
Fairclough S. R. et al. (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biology, 14, R15. DOI: 10.1186//gb-2013-14-2-r15.
Fernandes M. C. et al. (2021) Mechanically robust lattices inspired by deep-sea glass sponges. Nature Materials, 20, 237–41.
Finks R. M., Reid R. E. H., Rigby J. K. (2004) Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Vol. 3: Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea). — Boulder, Colorado: Geological Society of America; Lawrence, Kansas: University Kansas Paleontological Institute.
Gautret P., Reitner J., Marin F. (1996). Mineralization events during growth of the coralline sponges Acanthochaetetes and Vaceletia. Bulletin de l’Institut océanographique de Monaco, no. special 14, 325–334.
Gazave E. et al. (2012) No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia, 687, 3–10.
Harvey T. H. P. (2010) Carbonaceous preservation of Cambrian hexactinellid sponge spicules. Biological Letters, 6, 834–7.
Kirkpatrick R. (1908) On two new genera of Recent pharetronid sponges. Annals and Magazine of Natural History; Zoology, Botany, and Geology, Series 8, 2, 503–514.
Kirkpatrick R. (1913) The Nummulosphere. An Account of the Organic Origin of So-Called Igneous Rocks and of Abyssal Red Clays. — L.: Lamley & Co.
Kozur H. W., Mostler H., Repetski J. E. (2008) A new heteractinellid sponge from the lowermost Ordovician of Nevada and a discussion of the suborder Heteractinellidae. Geo.Alp, 5, 53–67.
Kruse P. D., Zhuravlev A. Yu. (2008) Middle-Late Cambrian Rankenella-Girvanella reefs of the Mila Formation, northern Iran. Canadian Journal of Earth Sciences, 45, 619–39.
Lavrov A. I., Kosevich I. A. (2018) Stolonial movement: A new type of whole-organism behavior in Porifera. The Biological Bulletin, 234 (1), 58–67.
Lee W. L. et al. (2012) An extraordinary new carnivorous sponge, Chondrocladia lyra, in the new subgenus Symmetrocladia (Demospongiae, Cladorhizidae), from off of northern California, USA. Invertebrate Biology, 131, 259–84.
Leys S. P. (2003) The significance of syncytial tissues for the position of the Hexactinellida in the Metazoa. Integrative and Comparative Biology, 43, 19–27.
Leys S. P. (2015) Elements of a ‘nervous system’ in sponges. The Journal of Experimental Biology, 218, 581–91.
Luo C., Zhao F., Zeng H. (2020) The first report of a vauxiid sponge from the Cambrian Chengjiang Biota. Journal of Paleontology, 94, 28–33.
Luo C., Yang A., Zhuravlev A. Y., Reitner J. (2021) Vauxiids as descendants of archaeocyaths: a hypothesis. Lethaia. DOI: 10.1111/let.12433.
Maldonado M. (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebrate Biology, 123, 1–22.
Mehl D. (1996) Phylogenie und Evolutionsökologie der Hexactinellida (Porifera) im Paläozoikum. Geologische Paläontologische Mitteilungen der Universität Innsbruck, Sonderband, 4, 1–55.
Mills D. B. et al. (2018) The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. eLife, 7, e31176. DOI: 10.7554/eLife.31176.
Mostler H. (1990) Mikroskleren von Demospongien (Porifera) aus dem basalen Jura der nördlichen Kalkalpen. Geologische Paläontologische Mitteilungen der Universität Innsbruck, 17, 119–42.
Mostler H. (1996) Polyactinellid Schwämme, eine auf das Paläozoikum beschränkte Calcispongien-Gruppe. Geologische Paläontologische Mitteilungen der Universität Innsbruck, 21, 223–43.
Nitecki M. H. (1972) North American Silurian receptaculitid algae. Fieldiana (Geology), 28, 1–108.
Peña J. F. et al. (2016) Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges. EvoDevo, 7, 13. DOI: 10.1186/s13227-016-0050-x.
Pronzato R., Manconi R. (2008) Mediterranean commercial sponges: over 5000 years of natural history and cultural heritage. Marine Ecology, 29, 146–66.
Pronzato R., Pisera A., Manconi R. (2017) Fossil freshwater sponges: Taxonomy, geographic distribution, and critical review. Acta Palaeontologica Polonica, 62, 467–95.
Rhebergen F., Botting J. P. (2014) A new Silurian (Llandovery, Telychian) sponge assemblage from Gotland, Sweden. Fossil and Strata, 60, 1–87.
Rigby J. K. (1986) Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana, 2, 1–105.
Rigby J. K., Collins D. (2004) Sponges of the Middle Cambrian Burgess Shale and Stephen Formation, British Columbia. Royal Ontario Museum Contributions in Science, 1, 1–164.
Rigby J. K., Johnston P. A. (2004) An unusually large Aulocopella winnipegensis and associated demosponges from the Upper Ordovician Beaverfoot Formation, southeastern British Columbia. Canadian Journal of Earth Sciences, 41, 939–47.
Schuster A. et al. (2015) Deceptive desmas: Molecular phylogenetics suggests a new classification and uncovers convergent evolution of lithistid sponges. PLoS ONE, 10, e116038. DOI: 10.1371/journal.pone.0116038.
Sethmann I., Wörheide G. (2007) Structure and composition of calcareous sponge spicules: A review and comparison to structurally related biominerals. Micron, 39, 209–28.
Soest R. W. M. van. (1984) Deficient Merlia normani Kirkpatrick, 1908, from the Curacao reefs, with a discussion on the phylogenetic interpretation of sclerosponges. Bijdragen tot de Dierkunde, 54, 211–9.
Sogabe S. et al. (2019) Pluripotency and the origin of animal multicellularity. Nature, 570, 519–22.
Tang Q. et al. (2019) Spiculogenesis and biomineralization in early sponge animals. Nature Communications, 10, 3348. DOI: 10.1038/s41467-019-11297-4.
Uriz M.-J. (2006) Mineral skeletogenesis in sponges. Canadian Journal of Zoology, 84, 322–56.
Vacelet J. (1977) Une nouvelle relique du Secondaire: un représentant actuel des Eponges fossiles Sphinctozoaires. Comptes Rendus de l’Académie des Sciences, Séries D, 285, 509–11.
Vacelet J., Boury-Esnault N. (1995) Carnivorous sponges. Nature, 373, 333–5.
Voigt O. et al. (2017) Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and spicule-type specific genes. Scientific Reports, 7, 45658. DOI: 10.1038/srep45658.
Walcott C. D. (1920) Cambrian geology and paleontology IV. No. 6 Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67, 261–364.
Weaver J. C. et al. (2007) Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of Structural Biology, 158, 93–106.
Wörheide G. (2008) A hypercalcified sponge with soft relatives: Vaceletia is a keratose demosponge. Molecular Phylogenetics and Evolution, 47, 433–8.
Wu W., Zhu M., Steiner M. (2014) Composition and tiering of the Cambrian sponge communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 86–96.
Zhuravlev A. Yu. (1986) Radiocyathids. In Problematic Fossil Taxa. Eds. A. Hoffman, M. H Nitecki. New York: Oxford University Press; Oxford: Clarendon Press. P. 35–44.
Zhuravlev A. Yu. (1989) Poriferan aspects of archaeocyathan skeletal function. Memoirs of the Association of Australasian Palaeontologists, 8, 387–99.
Zhuravlev A. Yu. (1993) A functional morphological approach to the biology of the Archaeocyatha. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 315–327.
Журавлев A. Ю. Новый коралл из нижнего кембрия Сибири // Палеонтологический журнал. 1999. №5. C. 27–33.
Марфенин Н. Н. Феномен колониальности. — М.: Изд-во МГУ, 1993.
Adler L., Röper M. (2012) Description of a new potential fossil hydromedusa Palaequorea rygoli and revision of the fossil medusa Hydrocraspedota mayri from the Plattenkalks of the Franconian Alb, Southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 264/3, 249–62.
Baliński A., Sun Y. (2017) Early Ordovician black corals from China. Bulletin of Geosciences, 92, 1–12.
Baliński A., Sun Y., Dzik J. (2014) Probable advanced hydroid from the Early Ordovician of China. Paläontologische Zeitschrift, 88, 1–10.
Bingham B. L., Dimond J. L., Muller-Parker G. (2014) Symbiotic state influences life-history of a clonal cnidarian. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140548. DOI: 10.1098/rspb.2014.0548.
Brinkman D., Burnell J. (2007) Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon, 50, 850–60.
Boschma H. (1951) Notes on Hydrocorallia. Zoologische Verhandelingen, 13, 1–49.
Buss L. W. et al. (2016) Control of hydroid colony form by surface heterogeneity. PLoS ONE, 11 (6), e0156249. DOI: 10.1371/journal.pone.0156249.
Carrera M. G., Astini R. A., Gomez F. J. (2018) A lowermost Ordovician tabulate-like coralomorph from the Precordillera of western Argentina: a main component of a reef-framework consortium. Journal of Paleontology, 91, 73–85.
Cartwright P., Nawrocki A. M. (2010) Colony evolution in hydrozoan. Integrative and Comparative Biology, 50, 456–72.
Cartwright P. et al. (2007) Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS ONE, 2 (10), e1121. DOI: 10.1371/journal.pone.0001121.
Cartwright P. et al. (2018) New probable cnidarians fossil from the lower Cambrian of the Three Gorges area, South China, and their ecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 150–66.
Chatterton B. D. E., Copper P., Dixon O. A., Gibb S. (2008) Spicules in Silurian tabulate corals from Canada, and implications for their affinities. Palaeontology, 51, 173–98.
Chen J.-Y. et al. (2007) Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proceedings of the National Academy of Sciences of the USA, 104, 6289–92.
Collins A. G., Lieberman B. S. (2007) Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS ONE, 2 (10), e1121. DOI: 10.1371/journal.pone.0001121.
Conway Morris S., Collins D. H. (1996) Middle Cambrian ctenophores from the Stephen Formation, British Columbia Canada. Proceedings of the Royal Society of London B: Biological Sciences, 351, 279–308.
Cope J. C. W. (2005) Octocorallian and hydroid fossils from the Lower Ordovician of Wales. Palaeontology, 48, 433–45.
Copper P. (1985) Fossilized polyps in 430-myr-old Favosites corals. Nature, 316, 142–4.
Coronado I., Pérez-Huerta A., Rodríguez S. 2013. Primary biogenic skeletal structures in Multithecopora (Tabulata, Pennsylvanian). Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 286–99.
Cortijo I. et al. (2015) Life history and autoecology of an Ediacaran index fossil: Development and dispersal of Cloudina. Gondwana Research, 28, 419–24.
Cuif J.-P. (1971) Structure et position systematique du genre Heterastridium Reuss 1865 (Hydrozoaire). Geobios, 4, 69–79.
Dixon O. A. (2010) Fossilized polyp remains in Silurian Heliolites (Anthozoa, Tabulata) from Nunavut, Arctic Canada. Lethaia, 43, 60–72.
Dzik J., Baliński A., Sun Y. (2017) The origin of tetraradial symmetry in cnidarians. Lethaia, 50, 306–21.
Ezaki Y. (2000) Palaeoecological and phylogenetic implications of a new scleractiniamorph genus from Permian sponge reefs, South China. Palaeontology, 43, 199–217.
Fuller M., Jenkins R. (2007) Reef corals from the Lower Cambrian of the Flinders Ranges, South Australia. Palaeontology, 50, 961–80.
Gutschick R. C., Rodriguez J. (1990) By-the-wind-sailors from a Late Devonian foreshore environment in western Montana. Journal of Paleontology, 64, 31–9.
Higuchi T., Shirai K., Mezaki T., Yuyama I. (2017) Temperature dependence of aragonite and calcite skeleton formation by a scleractinian coral in low mMg/Ca seawater. Geology, 45, 1087–90.
Hogler J. A., Hanger R. A. (1989) A new chondrophorine (Hydrozoa, Velellidae) from the Upper Triassic of Nevada. Journal of Paleontology, 63, 249–51.
Jakubowicz M. et al. (2015) Stable isotope signatures of middle Palaeozoic ahermatypic rugose corals — Deciphering secondary alteration, vital fractionation effects, and palaeoecological implications. PloS ONE, 10 (9), e0136289. DOI: 10.1371/journal.pone.0136289.
Johnson R. G., Richardson E. S., Jr. (1968) The Essex fauna and medusae. Fieldiana (Geology), 12, 109–15.
Kayal E. et al. (2018) Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evolutionary Biology, 18, 68. DOI: 10.1186/s12862-018-1142-0.
Kouchinsky A., Bengtson S. (2002) The tube wall of Cambrian anabaritids. Acta Palaeontologica Polonica, 47, 431–44.
Kozłowski R. (1959) Les hydroïdes ordoviciens à squelette chitineux. Acta Palaeontologica Polonica, 4, 209–71.
Leme J. M., Simões M. G., Marques A. C., Van Iten H. (2008) Cladistic analysis of the suborder Conulariina Miller and Gurley, 1896 (Cnidaria, Scyphozoa; Vendian — Triassic). Palaeontology, 51, 649–62.
Marfenin N. N., Kosevich, I. A. (2002) Morphogenetic evolution of hydroid colony pattern. Hydrobiologia, 530/531, 319–27.
Moroz L. L., Koh A. B. (2016) Independent origins of neurons and synapses: insights from ctenophores. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150041. DOI: 10.1098/rstb.2015.0041.
Muller-Parker G., D’Elia C. F., Cook C. B. (2015) Interactions between corals and their symbiotic algae. In Coral reefs in the Anthropocene. Ed. C. Birkeland. Dordrecht: Springer Science+Business Media. P. 99–116.
Muscente A. D., Allmon W. D. (2013) Revision of the hydroid Plumalina Hall, 1858 in the Silurian and Devonian of New York. Journal of Paleontology, 87, 710–25.
Muscente A. D., Allmon W. D., Xiao S. (2016) The hydroid fossil record and analytical techniques for assessing the affinities of putative hydrozoans and possible hemichordates. Palaeontology, 59, 71–87.
Ou Q. et al. (2015) A vanished history of skeletonization in Cambrian comb jellies. Science Advances, 1, e1500092. DOI: 10.1126/sciadv.1500092.
Panchin A. Y., Aleoshin V. V., Panchin Y. V. (2019) From tumors to species: a SCANDAL hypothesis. Biology Direct, 14, 3. DOI: 10.1186/s13062-019-0233-1.
Reich M., Kutscher M. (2011) Sea pens (Octocorallia: Pennatulacea) from the Late Cretaceous of northern Germany. Journal of Paleontology, 85, 1042–51.
Romero A., Rogers R. R., Gershwin L. A. (2011) Medusoid cnidarians from the Montral-Alcover Lagerstätten (Triassic), northeastern Spain. Batalleria, 16, 50–7.
Ryan J. F. et al. (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science, 342, 1242592. DOI: 10.1126/science.1242592.
Santodomingo N., Renema W., Johnson K. G. (2016) Understanding the murky history of the Coral Triangle: Miocene corals and reef habitats in East Kalimantan (Indonesia). Coral Reefs, 35, 765–81.
Scrutton C. T. (1975) Hydroid-serpulid symbiosis in the Mesozoic and Tertiary. Palaeontology, 18, 255–74.
Scrutton C. T. (1997) The Palaeozoic corals, I: origins and relationships. Proceedings of the Yorkshire Geological Society, 51, 177–208.
Scrutton C. T. (1998) The Palaeozoic corals, II: structure, variation and palaeoecology. Proceedings of the Yorkshire Geological Society, 52, 1–57.
Scrutton C. T., Jeram A. J., Armstrong H. A. (1998) Kilbuchophyllid corals from the Ordovician (Caradoc) of Pomeroy, Co. Tyrone: implications for coral phylogeny and for movement on the Southern Uplands Fault. Transactions of the Royal Society of Edinburgh: Earth Sciences, 88 (for 1997), 117–26.
Sebé-Pedrós A. et al. (2018) Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell, 173, 1520–34.
Semenoff-Tian-Chansky P. (1991) Rythme de croissance chez les coraux fossiles et ralentissement de la rotation terreste. Publication de l’Association Francaise pour l’Avancement des Sciences, Paris, 91 (2), 127–63.
Sendino C., Darrell J. (2009) History of conulariid research. Journal of the Palaeontological Society of India, 54, 121–33.
Sendino C., Bochmann M. M. (2021) An exceptionally preserved conulariid from Ordovician erratics of Northern European Lowlands. Paläontologische Zeitschrift, 95, 71–84.
Stanley G. D., Jr. (2003) The evolution of modern corals and their early history. Earth-Science Reviews, 60, 195–225.
Stanley G. D., Jr., Stürmer W. (1983) A new fossil ctenophore discovered by X-rays. Nature, 327, 61–3.
Stolarski J. et al. (2011) The ancient evolutionary origins of Scleratinia revealed by azooxanthellate corals. BMC Evolutionary Biology, 11, 316. DOI: 10.1186/1471-2148-11-316.
Tornabene C., Martindale R. C., Wang X. T., Schaller M. F. (2017) Detecting photosymbiosis in fossil scleractinian corals. Scientific Reports, 7, 9465. DOI: 10.1038/s41598-017-09008-4.
Van Iten H., Simões M. G., Marques A., Collins A. (2006) Reassessment of the phylogenetic position of conulariids in the subphylum Medusozoa (phylum Cnidaria). Journal of Systematic Palaeontology, 4, 109–18.
Van Iten H. et al. (2014) Origin and early diversification of the phylum Cnidaria Verrill: Major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology, 57, 677–90.
Waggoner B. M., Langer M. R. (1993) A new hydroid from the Upper Cretaceous of Mississippi. Paläontologische Zeitschrift, 67, 253–9.
Whelan N. V. (2017) Ctenophore relationships and their placement as the sister group to all other animals. Nature Ecology & Evolution, 1, 1737–46..
Wooldridge S. A. (2013) Breakdown of the coral-algal symbiosis: towards formalizing a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences, 10, 1647–58.
Yang B. et al. (2020) Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Scientific Reports, 10, 535. DOI: 10.1038/s41598-019-56317-x.
Young G. A., Hagadorn J. W. (2010) The fossil record of cnidarians medusae. Palaeoworld, 19, 212–21.
Young G. A. et al. (2012) Great Canadian Lagerstätten 3: Late Ordovician Konservat-Lagerstätten in Manitoba. Geoscience Canada, 39, 201–13.
Zágoršek K., Taylor P. D., Vodrážka R. (2009) Coexistence of symbiotic hydroids (Protulophila) on serpulids and bryozoans in a cryptic habitat at Chrtníky (lower Turonian, Czeck Republic). Bulletin of Geosciences, 84, 631–6.
Zapalski M. K., Clarkson E. N. K. (2015) Enigmatic fossils from the Lower Carboniferous Shrimp Bed, Granton, Scotland. PLoS ONE 10 (12), e0144220. DOI: 10.1371/journal.pone.0144220.
Zhao Y. et al. (2019) Cambrian sessile, suspension feeding stem-group ctenophores and evolution of the comb jelly body plan. Current Biology, 29, 1112–25.
Zhuravlev A. Yu., Debrenne F., Lafuste J. (1993) Early Cambrian microstructural diversification of Cnidaria. Courier Forschungsinstitut Senckenberg, 164, 365–72.
Карасева Н. П., Римская-Корсакова Н. Н., Галкин С. В., Малахов В. В. Таксономия, географическое и батиметрическое распространение вестиментифер (Annelida, Siboglinidae) // Зоологический журнал. 2016. Т. 95, №6. С. 624–659.
Малахов В. В., Галкин С. В. Вестиментиферы — бескишечные беспозвоночные морских глубин. — М.: КМК Scientific Press Ltd., 1998.
Римская-Корсакова Н. Н., Малахов В. В., Галкин С. В. Строение щупальцевого аппарата вестиментиферы Riftia pachyptila (Polychaeta, Vestimentifera) // Зоологический журнал. 2011. Т. 90, №3. С. 259–271.
Bomfleur B. et al. (2015) Fossilized spermatozoa preserved in a 50-Myr-old annelid cocoon from Antarctica. Biology Letters, 11, 20150431. DOI: 10.1098/rsbl.2015.0431.
Broomell C. C., Mattoni M. A., Zok F. W., Waite J. H. (2006) Critical role of zinc in hardening of Nereis jaws. Journal of Experimental Biology, 209, 3219–225.
Chen H. et al. (2020) A Cambrian crown annelid reconciles phylogenomics and the fossil record. Nature, 583, 249–52.
Conway Morris S. (1979) Middle Cambrian polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society B: Biological Sciences, 285, 227–74.
Conway Morris S., Peel J. S. (2008) The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica, 53, 137–48.
Danise S., Higgs N. D. (2015) Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls. Biology Letters, 11 (4), 20150072. DOI: 10.1098/rsbl.2015.0072.
Darwin C. (1881) The Formation of Vegetable Mould, Through the Action of Worms, with Observations on Their Habits. — L.: J. Murray.
Ehlers E. (1869) Ueber fossile Würmer aus dem lithographischen Schiefer in Bayern. Palaeontographica, 17, 145–75.
Eibye-Jacobsen D., Vinther J. (2012) Reconstructing the ancestral annelid. Journal of Zoological Systematics and Evolutionary Research, 50, 85–7.
Eriksson M., Elfman M. (2000) Enrichment of metals in the jaws of fossil and extant polychaetes — distribution and function. Lethaia, 33, 75–81.
Eriksson M. E., Parry L. A., Rudkin D. M. (2017) Earth’s oldest ‘Bobbit worm’ — gigantism in a Devonian eunicidan polychaete. Scientific Reports, 7, 43061. DOI: 10.1038/srep43061.
Gügel B. et al. (2017) A new subdisarticulated machaeridian from the Middle Devonian of China: Insights into taphonomy and taxonomy using X-ray microtomography and 3D-analysis. Acta Palaeontologica Polonica, 62, 237–47.
Han J., Conway Morris S., Hoyal Cuthill J. F., Shu D. (2019) Sclerite-bearing annelids from the lower Cambrian of South China. Scientific Reports, 9, 4955. DOI: 10.1038/s41598-019-40841-x.
Hazen B. M. (1937) A fossil earthworm (?) from the Paleocene of Wyoming. Journal of Paleontology, 11, 250.
Hints O. et al. (2017) Early Middle Ordovician scolecodonts from north-western Argentina and the emergence of labiognath polychaete jaw apparatuses. Palaeontology, 60, 583–93.
Ippolitov A. P., Vinn O., Kupriyanova E. K., Jäger M. (2014) Written in stone: history of serpulids polychaetes through time. Memoirs of Museum Victoria, 71, 123–59.
Kiel S., Kahl W.-A., Goedert J. L. (2011) Osedax borings in fossil marine bird bones. Naturwissenschaften, 98, 51–5.
Kielan-Jaworowska Z. (1966) Polychaete jaw apparatuses from the Ordovician and Silurian of Poland and a comparison with modern forms. Palaeontologia Polonica, 16, 1–152.
Kozur H. (1970) Fossile Hirudinea aus dem Oberjura von Bayern. Lethaia, 3, 225–32.
Little C. T. S. et al. (1999) Two Palaeozoic hydrothermal vent communities from the southern Ural Mountains, Russia. Palaeontology, 42, 1043–78.
Little C. T. S., Danelian T., Herrington R. J., Haymon R. M. (2004) Early Jurassic hydrothermal vent community from the Franciscan Complex, California. Journal of Paleontology, 78, 542–59.
Manum S. B., Bose M. N., Sawyer R. T. (1991) Clitellate cocoons in freshwater deposits since the Triassic. Zoologica Scripta, 20, 347–66.
McLoughlin S., Bomfleur B., Mörs T., Reguero M. (2016) Fossil clitellate annelid cocoons and their microbiological inclusions from the Eocene of Seymour Island, Antarctica. Palaeontologia Electronica, 19.1.11A, 1–27. .
Muir, L. A., Botting, J. P. (2007) A Lower Carboniferous sipunculan from the Granton Shrimp Bed, Edinburgh. Scottish Journal of Geology, 43, 51–6.
Nanglu K., Caron J.-B. (2018) A new Burgess Shale polychaete and the origin of the annelid head revisited. Current Biology, 28, 319–26.
Parry L., Tanner A., Vinther J. (2014) The origin of annelids. Palaeontology, 57, 1091–1103.
Parry L., Vinther J., Edgecombe G. D. (2015) Cambrian stem-group annelids and a metameric origin of the annelid head. Biology Letters, 11, 20150763. DOI: 10.1098/rsbl.2015–0763.
Parry L., Eriksson M. E., Vinther J. (2019) The annelid fossil record. In Handbook of Zoology: Annelida — V. 1. Annelida Basal Groups and Pleistoannelida, Sedentaria I. Eds. G. Purschke, M. Böggemann, W. Westheide. Berlin; Boston: De Gruyter. P. 69–88.
Parry L., Caron J.-B. (2019) Canadia spinosa and the early evolution of the annelid nervous system. Science Advances, 5, eaax5858. DOI: 10.1126/sciadv.aax5858.
Paxton H., Eriksson M. E. (2013) Ghosts from the past — ancestral features reflected in the jaw ontogeny of the polychaetous annelids Marphysa fauchaldi (Eunicidae) and Diopatra aciculata (Onuphidae). GFF, 134, 309–16.
Poinar G. O., Jr. (2007) Enchytraeidae (Annelida: Oligochaeta) in amber. Megadrilogica, 11, 53–7.
Sanfilippo R., Rosso A., Reitano A., Insacco G. (2017) First record of sabellid and serpulid polychaetes from the Permian of Sicilia. Acta Palaeontologica Polonica, 62, 25–38.
Shcherbakov D. E., Timm T., Tzetlin A. B., Vinn O., Zhuravlev A. Yu. (2020) A probable oligochaete from an Early Triassic Lagerstätte of the southern Cis-Urals and its evolutionary implications. Acta Palaeontologica Polonica, 65, 219–233.
Struck T. et al. (2015) The evolution of annelids reveals two adaptive routes to the interstitial realm. Current Biology, 25, 1993–9.
Szaniawski H., Imajima M. (1996) Hartmaniellidae — living fossils among polychaetes. Acta Palaeontologica Polonica, 41, 111–25.
Timm T. (1981) On the origin and evolution of aquatic Oligochaeta. Eesti NSV Teaduste Akadeemia Toimetised, Bioloogia, 30, 174–81.
Ulrich H., Schmelz R. M. (2001) Enchytraeidae as prey of Dolichopodidae, recent and in Baltic amber (Oligochaeta; Diptera). Bonner zoologische Beiträge, 50, 89–101.
Vinn O., ten Hove H. A., Mutvei H. (2008) On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology, 51, 295–301.
Vinn O., Luque H. (2013) First record of a pectinariid-like (Polychaeta, Annelida) agglutinated worm tube from the Late Cretaceous of Colombia. Cretaceous Research, 41, 107–10.
Vinther J., Briggs D. E. G. (2009) Machaeridian locomotion. Lethaia, 42, 357−64.
Vinther J., Van Roy P., Briggs D. E. G. (2008) Machaeridians are Palaeozoic armoured annelids. Nature, 451, 185−8.
Weigert A, Bleidorn C. (2016) Current status of annelid phylogeny. Organisms Diversity and Evolution, 16, 345–62.
Weller S. (1925) A new type of Silurian worm. Journal of Geology, 33, 540–4.
Westheide W., McHugh D., Purschke G., Rouse G. W. (1999) Systematization of the Annelida: different approaches. Hydrobiologia, 402, 291–307.
Whittle R., Gabbott S., Aldridge R., Theron J. (2008) Late Ordovician (Hirnantian) scolecodont clusters from the Soom Shale Lagerstätte, South Africa. Journal of Micropalaeontology, 27, 147–59.
Барсков И. С., Морозов Ю. Е. Хитон (Mollusca, Polyplacophora) из верхнего карбона Подмосковья // Палеонтологический журнал. 1996. №4. С. 3–6.
Мироненко А. А. Анатомия и некоторые аспекты палеобиологии аммоноидей: современные данные // Юрские отложения юга Московской синеклизы и их фауна / Отв. ред. М. А. Рогов, В. А. Захаров. — М.: ГЕОС, 2017. С. 161–182.
Несис К. Н. Головоногие: умные и стремительные (Истории из частной и семейной жизни кальмаров, каракатиц, осьминогов, а также наутилуса помпилиуса). — М.: Октопус, 2005.
Пархаев П. Ю. Новые данные по морфологии раковинной мускулатуры кембрийских гельционеллоидных моллюсков //Палеонтологический журнал. 2004. №3. С. 27–29.
Пархаев П. Ю. Строение раковинной мускулатуры кембрийских брюхоногих моллюсков рода Bemella (Gastropoda: Archaeobranchia: Helcionellidae) // Палеонтологический журнал. 2014. №1. С. 20–27.
Пархаев П. Ю. Происхождение и ранняя эволюция типа Mollusca // Палеонтологический журнал. 2017. №6. C. 91–112.
Arkhipkin A. I., Bizikov V. A., Fuchs D. (2012) Vestigial phragmocone in the gladius points to a deepwater origin of squid (Mollusca: Cephalopoda). Deep-Sea Research I, 61, 109–122.
Barskov I. S. et al. (2008) Cephalopods in the marine ecosystems of the Paleozoic. Paleontological Journal, 42 (11), 1167–284.
Bengtson S. (1992) The cap-shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs. Lethaia, 25, 401–20.
Bengtson S., Collins D. (2015) Chancelloriids of the Cambrian Burgess Shale. Palaeontologia Electronica, 15, 1.6A, 1–67. .
Bengtson S., Hou X. (2001) The integument of Cambrian chancelloriids. Acta Palaeontologica Polonica, 46, 1–22.
Breton G., Wisshak M., Néraudeau D., Morel N. (2017) Parasitic gastropod bioerosion trace fossil on Cenomanian oysters from Le Mans, France and its ichnologic and taphonomic context. Acta Palaeontologica Polonica, 62, 45–57.
Caron J.-B., Scheltema A., Schander C., Rudkin D. (2006) A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature, 442, 159–63.
Checa A. G., Jiménez-Jiménez A. P. (2003) Evolutionary morphology of oblique ribs of bivalves. Palaeontology, 46, 709–24.
Checa A. G., Jiménez-Jiménez A. P. (2003) Rib fabrication in Ostreoidea and Plicatuloidea (Bivalvia, Pteriomorphia) and its evolutionary significance. Zoomorphology, 122, 145–59.
Checa A. G., Ramírez-Rico J., González-Segura A., Sánchez-Navas A. (2009) Nacre and false nacre (foliated aragonite) in extant monoplacophorans (=Tryblidiida: Mollusca). Naturwissenschaften, 96, 111–22.
Clements T., Colleary C., De Baets K., Vinther J. (2017) Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology, 60, 1–14.
Connors M. J. et al. (2012) Three-dimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. Journal of Structural Biology, 177, 314–28.
Conway Morris S., Caron J.-B. (2007) Halwaxiids and the early evolution of the lophotrochozoans. Science, 315, 1255–8.
Conway Morris S., Peel J. S. (1995) Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 347, 305–58.
Cope J. C. W. (1999) Middle Ordovician bivalves from mid-Wales and the Welsh Borderland. Palaeontology, 42, 467–99.
Dean C. D., Sutton M. D., Siveter D. J., Siveter D. J. (2015) A novel respiratory architecture in the Silurian mollusk Acaenoplax. Palaeontology, 58, 839–47.
De Blasio F. V. (2007) The role of suture complexity in diminishing strain and stress in ammonoid phragmocones. Lethaia, 41, 15–24.
Distel D. L. et al. (2017) Discovery of chemoautotrophic symbiosis in the giant shipworm Kuphus polythalamia (Bivalvia, Teredinidae) extends wooden-steps theory. Proceedings of the National Academy of Sciences of the USA, 114, E3652–8.
Doguzhaeva L. A., Mapes R. H. (2018) A new late Carboniferous coleoid from Oklahoma, USA: implications for the early evolutionary history of the subclass Coleoidea (Cephalopoda). Journal of Paleontology, 92, 157–69.
Doguzhaeva L. A., Weaver P. G., Ciampaglio C. N. (2012) A unique late Eocene coleoid cephalopod Mississaepia from Mississippi, USA: New data on cuttlebone morphology, ultrastructure, chemical composition, and their phylogenetic implications. Acta Palaeontologica Polonica, 59, 147–62.
Doguzhaeva L. A. et al. (2018) An Early Triassic gladius associated with soft tissue remains from Idaho, USA — a squid-like coleoid cephalopod at the onset of the Mesozoic Era. Acta Palaeontologica Polonica, 63, 341–55.
Ebbestad J. O. R. (2008) The tergomyan mollusc Carcassonnella from the Upper Ordovician Girvan, Scotland. Palaeontology, 51, 663–75.
Fang X. et al. (2018) Palaeogeographic distribution and diversity of cephalopods during the Cambrian-Ordovician transition. Palaeoworld, 28, 51–7.
Fuchs D., Iba Y. (2015) The gladiuses in coleoid cephalopods: homology, parallelism, or convergence? Swiss Journal of Palaeontology, 134, 281–7.
Fuchs D., Bracchi G., Weis R. (2009) New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (upper Cenomanian) of Hâkel and Hâdjoula, Lebanon. Palaeontology, 52, 65–81.
Fuchs D. et al. (2015) The locomotion system of Mesozoic Coleoidea (Cephalopoda) and its phylogenetic significance. Lethaia, 49, 433–54.
Gabbott S. E. (1999) Orthoconic cephalopods and associated fauna from the Late Ordovician Soom Shale Lagerstätte, South Africa. Palaeontology, 42, 123–48.
Gubanov A. P., Bogolepova O. K. (2014) Early Ordovician molluscs with preserved colour pattern from the Timan-Pechora Basin of Russia. GFF, 136, 85–9.
Harper E. M., Dreyer H., Steiner G. (2006) Reconstructing the Anomalodesmata (Mollusca, Bivalvia): morphology and molecules. Zoological Journal of the Linnean Society, 148, 395–420.
Hoffmann R. et al. (2018) Integrating 2D and 3D shell morphology to disentangle the palaeobiology of ammonoids: A virtual approach. Palaeontology, 61, 89–104.
Hoffmann R. et al. (2020) Pterosaurs ate soft-bodied cephalopods (Coleoidea). Scientific Reports, 10, 1230. DOI: 10.1038/s41598-020-57731-2.
Hoffmann R., Stevens K. (2020) The palaeobiology of belemnites — foundation for the interpretation of rostrum geochemistry. Biological Reviews, 95, 94–123.
Hoffmann R. et al. (2021) Recent advances in heteromorph ammonoid palaeobiology. Biological Reviews. DOI: 10.1111/brv.12669.
Horný R. J. (1995) Solandangella, a problematic Lower Ordovician mollusc from the Montagne Noire, southern France. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 50, 1–11.
Hryniewicz K., Amano K., Jenkins R. G., Kiel S. (2017) Thyasirid bivalves from Cretaceous and Paleogene cold seeps. Acta Palaeontologica Polonica, 62, 45–57.
Iba Y., Sano S.-i., Mutterlose J., Kondo Y. (2012) Belemnites originated in the Triassic — A new look at an old group. Geology, 40, 911–4.
Inoue S., Kondo S. (2016) Suture pattern formation in ammonites and the unknown rear mantle structure. Scientific Reports, 6, 33689. DOI: 10.1038/srep33689.
Kauffman E. G. et al. (2007) Paleoecology of giant Inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado. Journal of Paleontology, 81, 64–81.
Klug C., Schweigert G., Fuchs D., Dietl G. (2010) First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia, 43, 445–56.
Klug C. et al., eds. (2015) Ammonoid Paleobiology: From anatomy to ecology. Dordrecht: Springer Science+Business Media.
Klug C. et al. (2015) The anatomical information on arms and fins from exceptionally preserved Plesioteuthis (Coleoidea) from the Late Jurassic of Germany. Swiss Journal of Palaeontology, 134, 245–55.
Klug C. et al. (2016) The oldest Gondwanan cephalopod mandibles (Hangenberg Black Shale, Late Devonian) and the mid-Palaeozoic rise of jaws. Palaeontology, 59, 611–29.
Kluessendorf J., Doyle P. (2000) Pohlsepia mazonensis, an early ‘octopus’ from the Carboniferous of Illinois, USA. Palaeontology, 43, 919–26.
Knight R. I. et al. (2014) Exceptional preservation of a novel gill grade in large Cretaceous inoceramids: Systematic and palaeobiological implications. Palaeontology, 57, 37–54.
Kröger B. (2013) Cambrian — Ordovician cephalopod palaeogeography and diversity. Geological Society of London Memoir, 38, 429–48.
Kröger B., Mutvei H. (2005) Nautiloids with multiple paired muscle scars from Lower-Middle Ordovician of Baltoscandia. Palaeontology, 48, 781–91.
Kröger B., Servais T., Zhang Y. (2009) The origin and initial rise of pelagic cephalopods in the Ordovician. PLoS ONE, 4 (9), e7262. DOI: 10.1371/journal.pone.0007262.
Kröger B., Vinther J., Fuchs D. (2011) Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules. Bioessays, 33, 602–13.
Kruta I. et al. (2011) The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science, 331, 70–2.
Kruta I. et al. (2016) Proteroctopus riberti in coleoid evolution. Palaeontology, 59, 767–73.
Landman N. H. et al. (2012) Methane seeps as ammonite habitats in the U. S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology, 40, 507–10.
Laptikhovsky V., Nikolaeva S., Rogov M. (2018) Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa. Biological Reviews, 93, 270–83.
Lemanis R. (2020) The ammonite septum is not an adaptation to deep water: re-evaluating a centuries-old idea. Proceedings of the Royal Society of London B, 287, 20201919. DOI: 10.1098/rspb.2020.1919.
Lemanis R. et al. (2016) The evolution and development of cephalopod chambers and their shape. PLoS ONE, 11 (3), e0151404. DOI: 10.1371/journal.pone.0151404.
Li L., Zhang X., Yun H., Li G. (2017) Complex hierarchical microstructures of Cambrian mollusk Pelagiella: insight into early biomineralization and evolution. Scientific Reports, 7, 1935. DOI: 10.1038/s41598-017-02235-9.
Lucena Santiago G. (2015) Revisión de la fauna de rudistas de les Collades de Basturs (Lleida, Pirineos centro-meridionales). Barcelona: Universitat Autònoma de Barcelona.
Lukeneder A. (2012) Computed 3D visualisation of extinct cephalopods using computer tomographs. Computers & Geosciences, 45, 68–74.
Mapes R. H., Doguzhaeva L. A. (2018) New Pennsylvanian coleoids (Cephalopoda) from Nebraska and Iowa, USA. Journal of Paleontology, 92, 146–56.
Mapes R. H., Landman N. H., Klug C. (2018) Caught in act? (Distracting sinking in ammonoid cephalopods). Swiss Journal of Palaeontology, 138, 141–9.
Mazurek D., Zatón M. (2011) Is Nectocaris pteryx a cephalopod? Lethaia, 44, 2–4.
Mironenko A. A. (2015) Soft-tissue preservation in the Middle Jurassic ammonite Cadoceras from Central Russia. Swiss Journal of Palaeontology, 134, 281–7.
Mironenko A. A. (2017) Siphuncle soft-parts in the Upper Jurassic ammonite Kachpurites fulgens. Palaios, 32, 153–7.
Mironenko A. A. (2018) Microstructure of aptychi of Upper Jurassic (Upper Oxfordian) ammonites from Central Russia. Lethaia, 51, 75–85.
Mironenko A. A. (2020) Endocerids: suspension feeding nautiloids? Historical Biology, 32, 281–9.
Mironenko A. A., Rogov M. A. (2016) First direct evidence of ammonoid ovoviviparity. Lethaia, 49, 245–60.
Mutvei H., Zhang Y.-B., Dunca E. (2007) Late Cambrian plectronocerid nautiloids and their role in cephalopod evolution. Palaeontology, 50, 1327–33.
Niko S., Nishida T. (2003) Devonohelicoceras hidaense, a new torticonic oncocerid (Cephalopoda) from the Devonian of Central Japan. Proceedings of the Japan Academy, Series B, 79 (7), 201–6.
Nützel A., Lehnert O., Frýda J. (2007) Origin of planktotrophy — evidence from early molluscs: a response to Freeman and Lundelius. Evolution & Development, 9, 313–8.
Peel J. S. (1991) Functional morphology, evolution, and systematics of Early Palaeozoic univalved molluscs. Grønlands Geologiske Undersøgelse, №161, 1–116.
Peel J. S. (2004) Asymmetry and musculature in some Carboniferous bellerophontiform gastropods (Mollusca). GFF, 126, 213–20.
Peterman D. J., Ciampaglio C. N., Shell R. C., Yacobucci M. M. (2019) Mode of life and hydrostatic stability of orthoconic ectocochleate cephalopods: Hydrodynamic analyses of restoring moments for 3D printed, neutrally buoyant models. Acta Palaeontologica Polonica, 64, 441–60.
Pojeta J., Jr., Runnegar B. (1976) The paleontology of rostroconch mollusks and the early history of the phylum Mollusca. United States Geological Survey Professional Paper, №968, 1–88.
Ponder W. F., Parkhaev P. Yu., Beechey D. L. (2007) A remarkable similarity in scaly shell structure in Early Cambrian univalved limpets (Monoplacophora; Maikhanellidae) and a Recent fissurellid limpet (Gastropoda: Vetigastropoda) with a review of Maikhanellidae. Molluscan Research, 27, 153–63.
Porter S. M. (2008) Skeletal microstructure indicates chancelloriids and halkieriids are closely related. Palaeontology, 51, 865–79.
Radtke G., Keupp H. (2017) The dorsal shell wall structure of Mesozoic ammonoids. Acta Palaeontologica Polonica, 62, 59–96.
Roger T. D. K., Runnegar B., Matt K. (2020) Pelagiella exigua, an early Cambrian stem gastropod with chaetae: Lophotrochozoan heritage and conchiferan novelty. Palaeontology, 63, 601–27.
Rogers C. S. et al. (2019) Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: implications for the affinity of Tullimonstrum. Proceedings of the Royal Society of London B, 286, 20191649. DOI: 10.1098/rspb.2019.1649.
Rosenbluth J., Szent-Györgyi A. G., Thompson J. T. (2010) The ultrastructure and contractile properties of a fast-acting, obliquely striated, myosin-regulated muscle: the funnel retractor of squids. Journal of Experimental Biology, 213, 2430–43.
Ros-Franch S., Márquez-Aliaga A., Damborenea S. E. (2014) Comprehensive database on Induan (Lower Triassic) to Sinemurian (Lower Jurassic) marine bivalve genera and their paleobiogeographic record. The University of Kansas Paleontological Contributions, 8, 1–219.
Runnegar B. (2011) Once again: Is Nectocaris pteryx a stem-group cephalopod? Lethaia, 44, 373.
Runnegar B., Jell P. A. (1976) Australian Middle Cambrian molluscs and their bearing on early molluscan evolution. Alcheringa, 1, 109–38.
Stanley G. D., Jr., Yancey T. E., Shepherd H. M. E. (2013) Giant Upper Triassic bivalves of Wrangellia, Vancouver Island, Canada. Canadian Journal of Earth Sciences, 50, 142–7.
Stanley S. M. (1977) Trends, rates, and patterns of evolution in the Bivalvia. In Patterns of Evolution as Illustrated by the Fossil Record. Ed. A. Hallam. Amsterdam; Oxford; New York: Elsevier. P. 209–50.
Sutton M. D., Briggs D. E. G., Siveter D. J., Siveter D. J. (2001) An exceptionally preserved vermiform mollusc from the Silurian of England. Nature, 410, 461–3.
Sutton M. D., Briggs D. E. G., Siveter D. J., Siveter D. J. (2006) Fossilized soft tissues in a Silurian platyceratid gastropod. Proceedings of the Royal Society of London B, 273, 1039–44.
Sutton M. D. et al. (2012) A Silurian armoured aplacophoran and implications for molluscan phylogeny. Nature, 490, 94–7.
Tanabe K. et al. (2000) Soft-part anatomy of the siphuncle in Permian prolecanitid ammonoids. Lethaia, 33, 83–91.
Teruzzi G. (2015) The Stoppani collection of large bivalves (Bivalvia, Megalodonta) from the Upper Triassic of Lombardy, Italy. Natural History Sciences. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano, 2 (1), 15–24.
Vendrasco M. J., Wood T. E., Runnegar B. N. (2004) Articulated Palaeozoic fossil with 17 plates greatly expands disparity of early chitons. Nature, 429, 288–91.
Vendrasco M. J. et al. (2010) New data on molluscs and their shell microstructures from the Middle Cambrian Gowers Formation, Australia. Palaeontology, 53, 97–135.
Vendrasco M. J., Checa A. G., Kouchinsky A. V. (2011) Shell microstructure of the early bivalve Pojetaia and the independent origin of nacre within the mollusca. Palaeontology, 54, 825–50.
Vendrasco M. J., Checa A., Heimbrock W. P., Baumann S. D. J. (2013) Nacre in molluscs from the Ordovician of the Midwestern United States. Geosciences, 3, 1–29.
Vinther J. (2009) The canal system in sclerites of Lower Cambrian Sinosachites (Halkieriidae: Sachitida): Significance for the molluscan affinities of the sachitids. Palaeontology, 52, 689–712.
Vinther J. (2015) The origins of molluscs. Palaeontology, 58, 19–34.
Vinther J., Sperling E. A., Briggs D. E. G., Peterson K. J. (2012) A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors. Proceedings of the Royal Society of London B: Biological Sciences, 279, 1259–68.
Vinther J., Parry L., Briggs D. E. G., Van Roy P. (2017) Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan. Nature, 542, 471–4.
Wagner P. J., Erwin D. H. (2006) Patterns of convergence in general shell form among Paleozoic gastropods. Paleobiology, 32, 316–37.
Ward P., Dooley F., Barord G. J. (2016) Nautilus: biology, systematics, and paleobiology as viewed from 2015. Swiss Journal of Palaeontology, 135, 169–85.
Yun H. et al. (2021) Biomineralization of the Cambrian chancelloriids. Geology, 49, 623–8.
Zhang Z., Smith M. R., Shu D. (2015) New reconstruction of the Wiwaxia scleritome, with data from Chengjiang juveniles. Scientific Reports, 5, 14810. DOI: 10.1038/srep14810.
Zhao F. et al. (2017) Orthrozanclus elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution. Scientific Reports, 7, 16232. DOI: 10.1038/s41598-017-16304-6.
Сысоев В. А. О систематике и систематическом положении хиолитов // Основные проблемы систематики животных / Ред. В. Н. Шиманский. — М.: ПИН АН СССР, 1976. С. 28–34.
Ушатинская Г. Т. Необычные беззамковые брахиоподы из нижнего кембрия Монголии // Палеонтологический журнал. 1987. №2. С. 62–68.
Ушатинская Г. Т. «Зубастые» беззамковые брахиоподы из среднего кембрия Сибири и Казахстана // Палеонтологический журнал. 1998. №5. С. 38–42.
Altenburger A., Wanninger A., Holmer L. E. (2013) Metamorphosis in Craniiformea revisited: Novocrania anomala shows delayed development of the ventral valve. Zoomorphology, 132, 379–87.
Baliński A., Sun Y. (2013) Preservation of soft tissue in an Ordovician linguloid brachiopod from China. Acta Palaeontologica Polonica, 58, 115–20.
Balthasar U. (2004) Shell structure, ontogeny and affinities of the Lower Cambrian bivalve problematic fossil Mickwitzia muralensis Walcott, 1913. Lethaia, 37, 381–400.
Balthasar U. (2008) Mummpikia gen. nov. and the origin of calcitic-shelled brachiopods. Palaeontology, 51, 263–79.
Balthasar U., Butterfield N. J. (2009) Early Cambrian «soft-shelled» brachiopods as possible stem-group phoronids. Acta Palaeontologica Polonica, 54, 307–14.
Balthasar U., Skovsted C. B., Holmer L. E., Brock G. A. (2009) Homologous skeletal secretion in tommotiids and brachiopods. Geology, 37, 1143–6.
Bouček B. (1964) The Tentaculites of Bohemia. Their morphology, taxonomy, ecology, phylogeny and biostratigraphy. Prague: Czechoslovak Academy of Sciences Publishing House.
Carlson S. J. (1989) The articulate brachiopod hinge mechanism: morphological and functional variation. Paleobiology, 15, 364–86.
Carlson S. J. (2016) The evolution of Brachiopoda. Annual Review of Earth and Planetary Sciences, 44, 409–38.
Ernst A. (2013) Diversity dynamics and evolutionary patterns of Devonian Bryozoa. Palaeobiodiversity and Palaeoenvironments, 93, 45–63.
Ernst A., Seuss B., Taylor P. D., Nützel A. (2016) Bryozoan fauna of the Boggy Formation (Deese Group, Pennsylvanian) of the Buckhorn Asphalt Quarry, Oklahoma, USA. Palaeobiodiversity and Palaeoenvironments, 96, 517–40.
Garbelli C. (2017) Shell microstructures in Lopingian brachiopods: Implications for fabric evolution and calcification. Rivista Italiana di Paleontologia e Stratigrafia, 123, 541–60.
Hageman S. J. (2003) Complexity generated by iteration of hierarchical modules in Bryozoa. Integrative and Comparative Biology, 43, 87–98.
Håkansson E., Zágoršek K. (2020) A radical novel design for a free-living bryozoan colony: Biselenaria placentula (Reuss, 1867). Journal of Paleontology, 94, 1059–75.
Harper D. A. T., Popov L. E., Holmer L. E. (2017) Brachiopods: Origin and early history. Palaeontology, 60, 609–31.
Herringshaw L. G., Thomas A. T., Smith M. P. (2007) Systematics, shell structure and affinities of the Palaeozoic Problematicum Cornulites. Zoological Journal of the Linnean Society, 150, 681–99.
Holmer L. E., Skovsted C. B., Williams A. (2002) A stem group brachiopod from the Lower Cambrian: support for a Micrina (halkieriid) ancestry. Palaeontology, 45, 875–82.
Holmer L. E., Popov L., Streng M. (2008) Organophosphatic stem group brachiopods: implications for the phylogeny of the subphylum Linguliformea. Fossils and Strata, №54, 3–11.
Holmer L. E. et al. (2008) The Early Cambrian tommotiid Micrina, a sessile bivalved stem group brachiopod. Biology Letters, 4, 724–8.
Holmer L. E. et al. (2011) First record of a bivalved larval shell in Early Cambrian tommotiids and its phylogenetic significance. Palaeontology, 54, 235–9.
Holmer L. E., Popov L E., Klishevich I., Ghobadi Pour M. (2016) Reassessment of the early Triassic lingulid brachiopod ‘Lingula’ borealis Bittner, 1899 and related problems of lingulid taxonomy. GFF, 138, 519–25.
Hu S. X. et al. (2010) Soft-part preservation in a linguliform brachiopod from the lower Cambrian Wulongqing Formation (Guanshan Fauna) of Yunnan, South China. Acta Palaeontologica Polonica, 55, 495–505.
Kohring R., Pint A. (2005) Fossile Süßwasserbryozoen — Vorkommen, Überlieferung, Findbedingungen. Denisia, 16, 95–102.
Kouchinsky A., Holmer L. E., Steiner M., Ushatinskaya G. T. (2015) The new stem-group brachiopod Oymurania from the lower Cambrian of Siberia. Acta Palaeontologica Polonica, 60, 963–80.
Ma J., Taylor P. D., Xia F., Zhan R. (2015) The oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central China. Palaeontology, 58, 925–34.
Martí Mus M., Bergström J. (2007) Skeletal microstructure of helens, lateral spines of hyolithids. Palaeontology, 50, 1231–43.
Moore J. L., Porter S. M. (2018) Plywood-like shell microstructures in hyoliths from the middle Cambrian (Drumian) Gowers Formation, Georgina Basin, Australia. Palaeontology, 61, 441–67.
Moysiuk J., Smith M. R., Caron J.-B. (2017) Hyoliths are Palaeozoic lophophorates. Nature, 541, 394–7.
Murdock D. J. E. et al. (2014) Evaluating scenarios for the evolutionary assembly of the brachiopod body plan. Evolution & Development, 16, 13–24.
Penny A. M., Wood R. A., Zhuravlev A. Yu., Curtis A., Bowyer F., Tostevin R. (2017) Intraspecific variation in an Ediacaran skeletal metazoan: Namacalathus from the Nama Group, Namibia. Geobiology, 15, 81–93.
Popov L. E., Holmer L. E., Bassett M. G. (1996) Radiation of the earliest calcareous brachiopods. In Brachiopods. Eds. P. Copper, J. Jin. Rotterdam: Balkema. P. 209–213.
Popov L. E., Bassett M. G., Holmer L. E., Ghobadi Pour M. (2009) Early ontogeny and soft tissue preservation in siphonotretide brachiopods: New data from the Cambrian-Ordovician of Iran. Gondwana Research, 16, 151–61.
Ryland J. S. (2005) Bryozoa: an introductory overview. Denisia, 16, 9–20.
Schiemann S. M. et al. (2017) Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties. Proceedings of the National Academy of Sciences of the USA, 114, E1913–22.
Shcherbakov D. E., Vinn O., Zhuravlev A. Yu. (2021) Disaster microconchids from the uppermost Permian and Lower Triassic strata of the Cis-Urals and the Tunguska and Kuznetsk basins (Russia). Geological Magazine, 158, 1335–57.
Shore A. J., Wood R. A., Butler I. B., Zhuravlev A. Yu., McMahon S., Curtis A., Bowyer F. T. (2021) Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion. Science Advances, 7, eabf2933. DOI: 10.1126/sciadv.abf2933.
Skovsted C. B. et al. (2009) The tommotiid Camenella reticulosa from the early Cambrian of South Australia: Morphology, scleritome reconstruction, and phylogeny. Acta Palaeontologica Polonica, 54, 525–40.
Skovsted C. B. et al. (2009) The scleritome of Paterimitra: an early Cambrian stem group brachiopod from South Australia. Proceedings of the Royal Society of London B: Biological Sciences, 276, 1651–6.
Skovsted C. B. et al. (2011) Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the early Cambrian of South Australia. Palaeontology, 54, 253–86.
Skovsted C. B., Betts M. J., Topper T. P., Brock G. A. (2015) The early Cambrian tommotiid genus Dailyatia from South Australia. Memoirs of the Association of Australasian Palaeontologists, 48, 1–117.
Sun H., Babcock L. E., Peng J., Zhao Y. (2016) Three-dimensionally preserved digestive systems of two Cambrian hyolithides (Hyolitha). Bulletin of Geosciences, 91, 51–6.
Sun H. et al. (2018) Hyoliths with pedicles illuminate the origin of the brachiopod body plan. Proceedings of the Royal Society of London B: Biological Sciences, 285, 20181780. DOI: 10.1098/rspb.2018.1780.
Sutton M. D., Briggs D. E. G., Siveter D. J., Siveter D. J. (2005) Silurian brachiopod with soft-tissue preservation. Nature, 436, 1013–5.
Taylor P. D., Vinn O. (2006) Convergent morphology in small spiral worm tubes (‘Spirorbis‘) and its palaeoenvironmental implications. Journal of the Geological Society of London, 163, 225–8.
Taylor P. D., Waeschenbach A. (2015) Phylogeny and diversification of bryozoans. Palaeontology, 58, 585–99.
Taylor P. D., Weedon M. J. (2000) Skeletal ultrastructure and phylogeny of cyclostome bryozoans. Zoological Journal of the Linnean Society, 128, 337–99.
Taylor P. D., Vinn O., Wilson M. A. (2010) Evolution of biomineralisation in ‘lophophorates’. Special Papers in Palaeontology, 84, 317–33.
Taylor P. D., Lombardi C., Cocito S. (2014) Biomineralization in bryozoans: present, past and future. Biological Reviews, 90, 1118–50.
Taylor P. D., Di Martino E., Martha S. O. (2019) Colony growth strategies, dormancy and repair in some Late Cretaceous encrusting bryozoans; insights into the ecology of the Chalk seabed. Palaeobiodiversity and Palaeoenvironments, 99, 425–46.
Topper T. P., Zhang Z., Gutiérrez-Marco J. C., Harper D. A. T. (2018) The down of a dynasty: life strategies of Cambrian and Ordovician brachiopods. Lethaia, 51, 254–66.
Towe K. M. (1978) Tentaculites: Evidence for a brachiopod affinity? Science, 201, 626–8.
Vinn O., Taylor P. D. (2007) Microconchid tubeworms from the Jurassic of England and France. Acta Palaeontologica Polonica, 52, 391–9.
Wei F. (2019) Conch size evolution of Silurian — Devonian tentaculitoids. Lethaia, 52, 454–63.
Williams A. et al. (1996) A supra-ordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society B: Biological Sciences, 351, 1171–93.
Williams A. et al. (2000) Treatise on Invertebrate Paleontology, Part H, Brachiopoda, Revised, Vol. 2 & 3. Ed. R. L. Kaesler. Boulder, Colorado: Geological Society of America; Lawrence, Kansas: University Kansas.
Zatoń M., Olempska E. (2017) A family-level classification of the Order Microconchida (Class Tentaculita) and the description of two new microconchid genera. Historical Biology, 29, 885–94.
Zatoń M., Vinn O., Tomescu A. M. F. (2012) Invasion of freshwater and variable marginal marine habitats by microconchid tubeworms — an evolutionary perspective. Geobios 45, 603–10.
Zhang Z. et al. (2009) Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian, South China). Geobios, 42, 649–61..
Zhang Z. et al. (2011) The exceptionally preserved Early Cambrian stem rhynchonelliform brachiopod Longtancunella and its implications. Lethaia, 44, 490–5..
Zhang Z.-F. et al. (2014) An early Cambrian agglutinated tubular lophophorate with brachiopod characters. Scientific Reports, 4, 4682. DOI: 10.1038/srep04682.
Zhang Z., Popov L. E., Holmer L. E., Zhang Z. (2018) Earliest ontogeny of early Cambrian acrotretoid brachiopods — first evidence for metamorphosis and its implications. BMC Evolutionary Biology, 18, 42. DOI: 10.1186/s12862-018-1165-6.
Zhang Z. et al. (2020) The oldest ‘Lingulellotreta’ (Lingulata, Brachiopoda) from China and its phylogenetic significance: integrating new material from the Cambrian Stage 3–4 Lagerstätten in eastern Yunnan, South China. Journal of Systematic Palaeontology, 18, 945–73.
Zhuravlev A. Yu., Wood R. A., Penny A. M. (2015) Ediacaran skeletal metazoan revealed to be complex lophophorate. Proceedings of the Royal Society of London B, 282, 20151860. DOI: 10.1098/rspb.2015.1860.
Журавлев А. Ю. Мир, которого не может быть // Природа. 1995. №12. C. 21–8.
Малахов В. В. Cephalorhyncha — новый тип животного царства, объединяющий Priapulida, Kinorhyncha, Gordiacea, и система первичнополостных червей // Зоологический журнал. 1980 Т. 59, №4. С. 485–499.
Малахов В. В., Андрианов А. В. Головохоботные (Cephalorhyncha) — новый тип животного царства. — М.: KMK Scientific Press, 1995.
Aguinaldo A. M. A. et al. (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–93.
Aldridge R. J. et al. (2007) The systematics and phylogenetic relationships of vetulicolians. Palaeontology, 50, 131–68.
Babcock L. E., Robison R. A. (1989) Preference of Palaeozoic predators. Nature, 337, 695–6.
Briggs D. E. G., Lieberman B. S., Halgedahl S. L., Jarrard R. D. (2005) A new metazoan from the Middle Cambrian of Utah and the nature of Vetulicolia. Palaeontology, 48, 681–6.
Budd G. E. (1998) Arthropod body-plan evolution in the Cambrian with an example of anomalocaridid muscle. Lethaia, 31, 197–210.
Budd G. E. (2001) Tardigrades as ‘stem-group arthropods’: The evidence from the Cambrian fauna. Zoologischer Anzeiger, 240, 265–79.
Budd G. E. (2021) The origin and evolution of the euarthropod labrum. Arthropod Structure & Development, 62, 101048. DOI: 10.1016/j.asd.2021.101048.
Cardia D. F. F. et al. (2019) Two new species of ascaridoid nematodes in Brazilian Crocodylomorpha from the Upper Cretaceous. Parasitology International, 72, 101947. DOI: 10.1016/j.parint.2019.101947.
Caron J.-B. (2006) Banffia constricta, a putative vetulicolid from the Middle Cambrian Burgess Shale. Transactions of the Royal Society of Edinburgh: Earth Sciences, 96 (for 2005), 95–111.
Caron J.-B., Smith M. R., Harvey T. H. P. (2013) Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20131613. DOI: 10.1098/rspb.2013.1613.
Chen Z., Zhou C., Yuan X., Xiao S. (2019) Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature, 573, 412–5.
Cong P. et al. (2014) Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature, 513, 538–42.
Cong P. et al. (2017) Host-specific infestation in early Cambrian worms. Nature Ecology & Evolution, 1, 1465–9.
Conway Morris S. (1977) Fossil priapulid worms. Special Papers in Palaeontology, 20, 1–155.
Daley A. C., Edgecombe G. D. (2014) Morphology of Anomalocaris canadensis from the Burgess Shale. Journal of Paleontology, 88, 68–91.
Danovaro R. et al. (2010) The first metazoan living in permanently anoxic conditions. BMC Biology, 8, 30. DOI: 10.1186/1741-7007-8-30.
Dzik J., Krumbiegel G. (1989) The oldest ‘onychophoran’ Xenusion: A link connecting phyla? Lethaia, 22, 169–81.
Eriksson B. J., Tait N. N., Budd G. E. (2003) Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. Journal of Morphology, 255, 1–23.
Fleming J. F. et al. (2018) Molecular palaeontology illuminates the evolution of ecdysozoan vision. Proceedings of the Royal Society of London B: Biological Sciences, 285, 20182180. DOI: 10.1098/rspb.2018.2180.
Fracischini H., Dentzien-Dias P., Schultz C. L. (2018) A fresh look at ancient dungs: Brazilian Triassic coprolites revisited. Lethaia, 51, 389–405.
Gámez Vintaned J. A., Liñán E., Zhuravlev A. Yu. (2011) A new early Cambrian lobopod-bearing animal (Murero, Spain) and the problem of the ecdysozoan early diversification. In Evolutionary Biology — Concepts, Biodiversity, Macroevolution and Genome Evolution. Ed. P. Pontarotti. Berlin; Heidelberg: Springer-Verlag. P. 193–219.
Harvey T. H. P., Dong X., Donoghue P. C. J. (2010) Are palaeoscolecids ancestral ecdysozoans? Evolution & Development, 12, 177–200.
Hou X.-G., Bergström J., Jie Y. (2006) Distinguishing anomalocaridids from arthropods and priapulids. Geological Journal, 41, 259–69.
Huang D., Chen J., Zhu M., Zhao F. (2014) The burrow dwelling behaviour and locomotion of palaeoscolecidan worms: New fossil evidence from the Cambrian Chengjiang fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 154–64.
Knaust D. (2020) Foraging flatworms and roundworms caught in the act: examples from a Middle Triassic mud flat in Germany. Lethaia, 54, 495–503.
Li L. et al. (2018) Molecular phylogeny and dating reveal a terrestrial origin in the Early Carboniferous for ascaridoid nematodes. Systematic Biology, 67, 888–900.
Liu J., Dunlop J. A. (2014) Cambrian lobopodians: A review of recent progress in our understanding of their morphology and evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 4–15.
Liu J., Han J., Simonetta A. M. (2006) New observations of the lobopod-like worm Facivermis from the Early Cambrian Chengjiang Lagerstätte. Chinese Science Bulletin, 51, 358–63.
Liu J. et al. (2011) An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature, 470, 526–30.
Ma X., Hou X., Bergström J. (2009) Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians. Arthropod Structure & Development, 38, 271–91.
Ma X., Hou X., Edgecombe G. D., Strausfeld N. J. (2012) Complex brain and optic lobes in an early Cambrian arthropod. Nature, 490, 258–61.
Ma X., Edgecombe G. D., Legg D. A., Hou X. (2014) The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis. Journal of Systematic Palaeontology, 12, 445–57.
Maas A., Waloszek D. (2001) Cambrian derivatives of the early arthropod stem lineage, pentastomids, tardigrades and lobopodians — An ‘Orsten’ perspective. Zoologischer Anzeiger, 240, 451–9.
Maas A., Waloszek D., Haug J. T., Müller K. J. (2007) A possible larval roundworm from the Cambrian ‘Orsten’ and its bearing on the phylogeny of Cycloneuralia. Memoirs of the Association of Australasian Palaeontologists, 34, 499–519.
Maas A., Waloszek D., Haug J. T., Müller K. J. (2009) Loricate larva (Scalidophora) from the Middle Cambrian of Australia. Memoirs of the Association of Australasian Palaeontologists, 37, 281–302.
Mayer G., Koch M. (2005) Ultrastructure and fate of nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae) — evidence for the onychophoran antennae being modified legs. Arthropod Structure & Development, 34, 471–80.
Müller K. J., Hinz-Schallreuter I. (1993) Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology, 36, 549–92.
Ou Q., Shu D., Mayer G. (2012) Cambrian lobopodians and extant onychophorans provide new insights into early cephalisation in Panarthropoda. Nature Communications, 3, 1261. DOI: 10.1038/ncomms2272.
Park T.-Y. S. et al. (2018) Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head. Nature Communications, 9, 1019. DOI: 10.1038/s41467-018-03464-w.
Paterson J. R., Edgecombe G. D., García-Bellido D. C. (2020) Disparate compound eye of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology. Science Advances, 6, eabc6721. DOI: 10.1126/sciadv.abc6721.
Peel J. S. (2010) A corset-like fossil from the Cambrian Sirius Passet Lagerstätte of North Greenland and its implications for cycloneuralian evolution. Journal of Paleontology, 84, 332–40.
Poinar G., Jr. (2017) A mermithid nematode, Cretacimermis aphidophilus sp. n. (Nematoda: Mermithidae), parasitising an aphid (Hemiptera: Burmitaphididae) in Myanmar amber: a 100 million year association. Nematology, 19, 509–13.
Poinar G., Jr., Buckley R. (2006) Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in Early Cretaceous amber. Journal of Invertebrate Pathology, 93, 36–41.
Poinar G., Jr., Kerp H., Haas H. (2008) Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants. Nematology, 10, 9–14.
Smith F. W. et al. (2016) The compact body plan of tardigrades evolved by the loss of a large body region. Current Biology, 26, 224–9.
Steiner M. et al. (2014) The developmental cycles of early Cambrian Olivooidae fam. nov. (?Cycloneuralia) from the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 97–124.
Van Roy P., Daley A. C., Briggs D. E. G. (2015) Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature, 522, 77–80.
Vinther J., Smith M. P., Harper D. A. T. (2011) Vetulicolians from the Lower Cambrian Sirius Passet Lagerstätte, North Greenland, and the polarity of morphological characters in basal deuterostomes. Palaeontology, 54, 711−9.
Wang D. et al. (2020) Cuticular reticulation replicates the pattern of epidermal cells in lowermost Cambrian scalidophoran worms. Proceedings of the Royal Society of London B, 287, 20200470. DOI: 10.1098/rspb.2020.0470.
Whittington H. B., Briggs D. E. G. (1985) The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society B: Biological Sciences, 309, 569–609.
Wolff C., Scholtz G. (2008) The clonal composition of biramous and uniramous arthropod limbs. Proceedings of the Royal Society of London B: Biological Sciences, 275, 1023–8.
Young F. J., Vinther J. (2017) Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni. Palaeontology, 60, 27−54.
Zhuravlev A. Yu., Gámez Vintaned J. A., Liñán E. (2011) The Palaeoscolecida and the evolution of the Ecdysozoa // Palaeontographica Canadiana, 31, 177–204.
Мельников О. А., Еськов К. Ю., Расницын А. П. К проморфологии хелицеровых // Известия АН СССР. Серия биологическая. 1992. №3. С. 405–416.
Шпинёв Е. С. Новые данные об эвриптеридах (Eurypterida, Chelicerata) верхнего карбона Донецкого угольного бассейна // Палеонтологический журнал. 2014. №3. С. 67–72.
Шпинёв Е. С. Новые данные о каменноугольных мечехвостах (Xiphosura, Chelicerata) Донецкого угольного бассейна // Палеонтологический журнал. 2018. №3. С. 49–62.
Шпинёв Е. С., Василенко Д. В. Первая ископаемая яйцекладка мечехвостов (Chelicerata, Xiphosura) из карбона Хакасии // Палеонтологический журнал. 2018. №4. С. 48–52.
Anderson R. P., McCoy V. E., McNamara M. E., Briggs D. E. G. (2014) What big eyes you have: the ecological role of giant pterygotid eurypterids. Biology Letters, 10, 20140412. DOI: 10.1098/rsbl.2014.0412.
Aria C., Caron J.-B. (2017) Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evolutionary Biology, 17, 261. DOI: 10.1186/s12862-017-1088-7.
Aria C., Caron J.-B. (2019) A middle Cambrian arthropod with chelicerae and proto-book gills. Nature, 573, 586–9.
Aria C., Zhao F., Zeng H., Guo J., Zhu M. (2020) Fossils from South China redefine the ancestral euarthropod body plan. BMC Evolutionary Biology, 20, 4. DOI: 10.1186/s12862-019-1560-7.
Bicknell R. D. C., Pates S. (2020) Pictorial atlas of fossil and extant horseshoe crabs, with focus on Xiphosurida. Frontiers in Earth Science, 8 (98), 1–60. DOI: 10.3389/feart.2020.00098.
Bicknell R. D. C., Paterson J. R., Caron J.-B., Skovsted C. B. (2018) The gnathobasic spine microstructure of recent and Silurian chelicerates and the Cambrian artiopodan Sidneyia: Functional and evolutionary implications. Arthropod Structure & Development, 47, 12–24.
Bicknell R. D. C. et al. (2019) On the appendicular anatomy of the xiphosurid Tachypleus syriacus and the evolution of fossil horseshoe crab appendages. The Science of Nature, 106, 38. DOI: 10.1007/s00114-019-1629-6.
Briggs D. E. G., Collins D. (1998) A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology, 31, 779–98.
Briggs D. E. G. et al. (2012) Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proceedings of the National Academy of Sciences of the USA, 109, 15702–5.
Butterfield N. J. (2002) Leanchoilia guts and interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28, 155–71.
Charbonnier S., Vannier J., Riou B. (2007) New sea spiders from the Jurassic La Voulte-sur-Rhône Lagerstätte. Proceedings of the Royal Society of London B: Biological Sciences, 274, 2555–61.
Di Z., Edgecombe G. D., Sharma P. P. (2018) Homeosis in a scorpion supports a telepodal origin of pectines and components of the book lungs. BMC Evolutionary Biology, 18, 73. DOI: 10.1186/s12862-018-1188-z.
Dunlop J. A. (1994) Filtration mechanisms in the mouthparts of tetrapulmonate arachnids (Trigonotarbida, Araneae, Amblypygi, Uropygi, Schizomida). Bulletin of the British Arachnological Society, 9, 267–73.
Dunlop J. A., Barov V. (2005) A new fossil whip spider (Arachnida: Amblypygi) from the Crato Formation of Brazil. Revista Ibérica de Arachnología, 12, 53–62.
Dunlop J. A., Garwood R. J. (2017) Terrestrial invertebrates in the Rhynie chert ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160493. DOI: 10.1098/rstb.2016.0493.
Dunlop J. A., Anderson L. I., Kerp H., Hass H. (2004) A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94 (for 2003), 341–54.
Dunlop J. A., Tetlie O. E., Prendini L. (2008) Reinterpretation of the Silurian scorpion Proscorpius osborni (Whitefield): Integrating data from Palaeozoic and Recent scorpions. Palaeontology, 51, 303–20.
Dunlop J. A., Kamenz C., Talarico G. (2009) A fossil trigonotarbid arachnid with a ricinuleied-like pedipalpal claws. Zoomorphology, 128, 305–13.
Dunlop J. A., Bird T. L., Brookhart J. O., Bechly G. (2015) A camel spider from Cretaceous Burmese amber. Cretaceous Research, 56, 265–73.
Dunlop J. A., Frahnert K., Mąkol, J. (2018) A giant mite in Cretaceous Burmese amber. Fossil Record, 21, 285–90.
Engel M. S., Grimaldi D. A. (2014) Whipspiders (Arachnida: Amblypygi) in amber from the Early Eocene and mid-Cretaceous, including maternal care. Novitates Paleoentomologicae, 9, 1–17.
Eskov K. (1984) A new fossil spider family from the Jurassic of Transbaikalia (Araneae: Chelicerata). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1984, 645–53.
Eskov K. Yu., Selden P. A. (2005) First record of spiders from the Permian period (Araneae: Mesothelae). Bulletin of the British Arachnological Society, 13, 111–6.
Feng Z., Schneider J. W., Labandeira C. C., Kretzschmar R., Rößler R. (2014) A specialized feeding habit of Early Permian oribatid mites. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 121–5.
Fet V., Shcherbakov D. E., Soleglad M. E. (2011) The first record of Upper Permian and Lower Triassic scorpions from Russia (Chelicerata: Scorpiones). Euscorpius, 121, 1–16.
Garwood R., Dunlop J. A. (2014) The walking dead: Blender as a tool for paleontologists with a case study on extinct arachnids. Journal of Paleontology, 88, 735–46.
Garwood R. J., Sharma P. P., Dunlop J. A., Giribet G. (2016) A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Current Biology, 24, 1017–23.
Garwood R. J. et al. (2016) Almost a spider: a 305-million-year-old fossil arachnid and spider origins. Proceedings of the Royal Society of London B: Biological Sciences, 283, 20160125. DOI: 10.1098/rspb.2016.0125.
Garwood R. J., Dunlop J. A., Knecht B. J., Hegna T. A. (2017) The phylogeny of fossil whip spiders. BMC Evolutionary Biology, 17, 105. DOI: 10.1186/s12862-017-0931-1.
Haug C. (2020) The evolution of feeding within Euchelicerata: data from the fossil groups Eurypterida and Trigonotarbida illustrate possible evolutionary pathways. PeerJ, 8, e9696. DOI: 10.7717/peerj.9696.
Haug J. T., Waloszek D., Maas A., Liu Y., Haug C. (2012) Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology, 55, 369–99.
Haug J. T., Caron J.-B., Haug C. (2013) Demecology in the Cambrian: synchronized molting in arthropods from the Burgess Shale. BMC Biology, 11, 64. DOI: 10.1186/1741-7007-11-64.
Hirst S. (1923) XLVI. On some arachnid remains from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire). Annals and Magazine of Natural History, Series 9, 12:70, 455–74.
Howard R. J. et al. (2019) Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks. Organisms Diversity & Evolution, 19, 71–86.
Kamenz C., Dunlop J. A., Scholtz G., Kerp H., Hass H. (2008) Microanatomy of Early Devonian book lungs. Biology Letters, 4, 212–5.
Kamenz C., Staude A., Dunlop J. A. (2011) Sperm carries in Silurian sea scorpions. Naturwissenschaften, 98, 889–96.
Kühl G. et al. (2012) Redescription and palaeobiology of Palaeoscorpius devonicus Lehmann, 1944 from the Lower Devonian Hunsrück Slate of Germany. Palaeontology, 55, 775–87.
Lamsdell J. C. (2011) The eurypterid Stoermeropterus conicus from the lower Silurian of the Pentland Hills, Scotland. Monographs of the Palaeontographical Society, 165 (636), 1–84.
Lamsdell J. C. (2020) The phylogeny and systematics of Xiphosura. PeerJ, 8, e10431. DOI: 10.7717/peerj.10431.
Lamsdell J. C. et al. (2015) A new Ordovician arthropod from the Winneshiek Lagerstätte of Iowa (USA) reveals the ground plan of eurypterids and chasmataspidids. The Science of Nature, 102, 63. DOI: 10.1007/s00114-015-1312-5.
Lamsdell J. C., Gunderson G. O., Meyer R. C. (2019) A common arthropod from the Late Ordovician Big Hill Lagerstätte (Michigan) reveals an unexpected ecological diversity within Chasmataspidida. BMC Evolutionary Biology, 19, 8. DOI: 10.1186/s12862-018-1329-4.
Lamsdell J. C. et al. (2020) Air breathing in an exceptionally preserved 340-million-year-old sea scorpio. Current Biology, 30, 1–6. DOI: 10.1016/j.cub.2020.08.034.
Legg D. A., Garwood R. J., Dunlop J. A., Sutton M. D. (2012) A taxonomic revision of orthosternous scorpions from the English Coal Measures aided by x-ray micro-tomography (XMT). Palaeontologia Electronica, 15, 2 (14A), 1–16. .
Lozano-Fernandez J. et al. (2019) Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nature Communications, 10, 2295. DOI: 10.1038/s41467-019-10244-7.
Marshall D. J., Lamsdell J. C., Shpinev E., Braddy S. J. (2014) A diverse chasmataspidid (Arthropoda: Chelicerata) fauna from the Early Devonian (Lochkovian) of Siberia. Palaeontology, 57, 631–55.
McCoy V. E. et al. (2015) All the better to see you with: eyes and claws reveal the evolution of divergent ecological roles in giant pterygotid eurypterids. Biology Letters, 11, 20150564. DOI: 10.1098/rsbl.2015.0564.
Miether S. T., Dunlop J. A. (2016) Lateral eye evolution in arachnids. Arachnology, 17, 103–19.
Poinar G., Jr. (2017) Fossilized mammalian erythrocytes associated with a tick reveal ancient piroplasms. Journal of Medical Entomology, 54, 895–900.
Pollitt J. R., Braddy S. J., Dunlop J. A. (2004) The phylogenetic position of the extinct arachnid order Phalangiotarbida Haase, 1890, with reference to the fauna from the Writhlington Geological Nature Reserve (Somerset, UK). Transactions of the Royal Society of Edinburgh: Earth Sciences, 94 (for 2003), 243–59.
Poschmann M., Dunlop J. A. (2006) A new sea spider (Arthropoda: Pycnogonida) with a flagelliform telson from the Lower Devonian Hunsrück Slate, Germany. Palaeontology, 49, 983–9.
Robin N. et al. (2016) A Carboniferous mite on an insect reveals the antiquity of an inconspicuous interaction. Current Biology, 26, 1376–1382.
Rubin M., Lamsdell J. C., Prendini L., Hopkins M. J. (2017) Exocuticular hyaline layer of sea scorpions and horseshoe crabs suggests cuticular fluorescence is plesiomorphic in chelicerates. Journal of Zoology, 303, 245–53.
Sabroux R. et al. (2019) 150-million-year-old sea spiders (Pycnogonida: Pantopoda) of Solnhofen. Journal of Systematic Palaeontology, 17, 1927–38.
Schoenemann B., Poschmann M., Clarkson E. N. K. (2019) Insights into the 400-million-year-old eye of giant sea scorpions (Eurypterida) suggest the structure of Palaeozoic compound eyes. Scientific Reports, 9, 17797. DOI: 10.1038/s41598-019-53590-8.
Selden P. A. (1984) Autecology of Silurian eurypterids. Special Papers in Palaeontology, 32, 39–54.
Selden P. A., Corronca J. A., Hünicken M. A. (2005) The true identity of the supposed giant fossil spider Megarachne. Biology Letters, 1, 44–8.
Selden P. A., Shear W. A., Sutton M. D. (2008) Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proceedings of the National Academy of Sciences of the USA, 105, 20781–5.
Selden P. A., Shcherbakov D. E., Dunlop J. A., Eskov K. Yu. (2014) Arachnids from the Carboniferous of Russia and Ukraine and the Permian of Kazakhstan. Paläontologische Zeitschrift, 88, 297–307.
Shear W. A., Palmer J. M., Coddington J. A., Bonamo P. M. (1989) A Devonian spinneret: Early evidence of spiders and silk use. Science, 246, 479–81.
Sidorchuk E. A. (2018) Mites as fossils: forever small? International Journal of Arachnology, 44, 349–59.
Sidorchuk E. A. et al. (2014) Plant-feeding mite diversity in Triassic amber (Acari: Tetrapodili). Journal of Systematic Palaeontology, 13, 129–51.
Tanaka G. et al. (2013) Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature, 502, 364–7.
Vrazo M. B, Ciurca S. J., Jr. (2018) New trace fossil evidence for eurypterid swimming behaviour. Palaeontology, 61, 235–52.
Waddington J., Rudkin D. M., Dunlop J. A. (2015) A new mid-Silurian aquatic scorpion — one step closer to land? Biology Letters, 11, 20140815. DOI: 10.1098/rsbl.2014.0815.
Waloszek D., Dunlop J. A. (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology, 45, 421–46.
Wang B. et al. (2018) Cretaceous arachnid Chimerarachne yingi gen. et sp. nov. illuminates spider origins. Nature Ecology & Evolution, 2, 614–22.
Wendruff A. J. et al. (2020) A Silurian ancestral scorpion with fossilized internal anatomy illustrating a pathway to arachnid terrestrialisation. Scientific Reports, 10, 14. DOI: 10.1038/s41598-019-56010-z.
Yang J., Ortega-Hernández J., Butterfield N. J., Zhang X.-g. (2013) Specialized appendages in fuxianhuiids and the head organization of early euarthropods. Nature, 494, 468–71.
Иванцов A. Ю., Журавлев A. Ю., Kрaсилoв В. A., Легутa A. В., Meльникoвa Л. M., Урбанек А., Ушaтинскaя Г. T., Малаховская Я. Е. Уникальные синские местонахождения раннекембрийских организмов. Сибирская платформа. — М.: Наука, 2005. (Тр. ПИН РАН. Т. 284.)
Котов А. А. Морфология и филогения Anomopoda (Crustacea: Cladocera). — М.: КМК, 2013.
Котов А. А. и др. Жаброногие ракообразные (Crustacea, Branchiopoda) // Зоологический журнал. 2018. 97, 1300–14.
Мельникова Л. М. Ордовикские остракоды Верхнекаларского грабена Северного Забайкалья (Удоканский район) // Палеонтологический журнал. 2017. №3. С. 50–56.
Форти Р. Трилобиты. Свидетели эволюции. — М.: Альпина нон-фикшн, 2021.
Almond J. E. (1985) The Silurian-Devonian fossil record of the Myriapoda. Philosophical Transactions of the Royal Society B: Biological Sciences, 309, 227–37.
Anderson L. I., Trewin N. H. (2003) An Early Devonian arthropod fauna from the Windyfield cherts, Aberdeenshire, Scotland. Palaeontology, 46, 467–509.
Anderson L. I., Crighton W. R. B., Hass H. (2004) A new univalve crustacean from the Early Devonian Rhynie chert hot-spring complex. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94 (for 2003), 355–69.
Bentov S. et al. (2016) Calcium phosphate mineralization is widely applied in crustacean mandibles. Scientific Reports, 6, 22118. DOI: 10.1038/srep221118.
Bicknell R. D. C., Paterson J. R., Hopkins M. J. (2019) A trilobite cluster from the Silurian Rochester Shale of New York: predation patterns and possible defensive behavior. American Museum Novitates, 3937, 1–16.
Bicknell R. D. C. et al. (2021) Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy. Proceedings of the Royal Society of London B: Biological Sciences, 288, 20202075. DOI: 10.1098/rspb.2020.2075.
Bracken-Grissom H. D. et al. (2014) The emergence of lobsters: Phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). Systematic Biology, 63, 457–79.
Brauckmann C., Brauckmann B., Gröning E. (1996) The stratigraphical position of the oldest known Pterygota (Insecta. Carboniferous, Namurian). Annales de la Société géologique de Belgique, 117, 47–56.
Briggs D. E. G., Clark N. D. L., Clarkson E. N. K. (1991) The Granton ‘shrimp-bed’, Edinburgh — a Lower Carboniferous Konservat-Lagerstätte. Transactions of the Royal Society of Edinburgh: Earth Sciences, 82, 65–85.
Briggs D. E. G., Bartels C. (2001) New arthropods from the Lower Devonian Hunsrück Slate (lower Emsian, Rhenish Massif, western Germany). Palaeontology, 44, 275–303.
Briggs D. E. G., Sutton M. D., Siveter D. J., Siveter D. J. (2005) Metamorphosis in a Silurian barnacle. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2365–9.
Broly P., Serrano-Sánchez M. d. L., Vega F. J. (2018) Diversity of the Crinocheta (Crustacea, Isopoda, Oniscidea) from Early Miocene Chiapas amber, Mexico. Revista Mexicana de Ciencias Geologícas, 35, 203–14.
Chablais J., Feldmann, R. M., Schweitzer C. E. (2011) A new Triassic decapod, Platykotta akaina, from the Arabian shelf of the northern United Arab Emirates: earliest occurrence of the Anomura. Paläontologische Zeitschrift, 85, 93–102.
Chan B. K. K. et al. (2021) The evolutionary diversity of barnacles, with updated classification of fossil and living forms. Zoological Journal of the Linnean Society. DOI: 10.1093/zoolinnean/zlaa160.
Charbonnier S., Garassino A. (2012) The marine arthropods from the Solnhofen Lithographic Limestones (Late Jurassic, Germany) in the collections of the Muséum national d’Histoire naturelle, Paris. Geodiversitas, 34, 857–71.
Clark N. D. L., Feldmann R. M., Schram F. R., Schweitzer C. E. (2020) Redescription of Americlus rankini (Woodward, 1868) (Pancrustacea: Cyclida: Americlidae) and interpretation of its systematic placement, morphology, and paleoecology. Journal of Crustacean Biology, 40, 181–93.
Clark-Hachtel C. M., Tomoyasu Y. (2020) Two sets of candidate crustacean wing homologies and their implication for the origin of insect wings. Nature Ecology & Evolution, 4, 1694–702.
Clarkson E. N. K., Levi-Setti R. (1975) Trilobite eyes and the optics of Des Cartes and Huygens. Nature, 254, 663–7.
Daley A. C., Drage H. B. (2016) The fossil record of ecdysis, and trends in the moulting behaviour of trilobites. Arthropod Structure & Development, 45, 71–96.
De Grave S. et al. (2009) A classification of living and fossil genera of decapod crustaceans. Raffles Bulletin of Zoology, suppl. no. 21, 1–109.
Dvořák T., Pecharová M., Krzemiński W., Prokop J. (2019) New archaeorthopteran insects from the Carboniferous of Poland: Insights into tangled taxonomy. Acta Palaeontologica Polonica, 64, 787–96.
Du B.-J. et al. (2019) The first amber caridean shrimp from Mexico reveals the ancient adaptation of the Palaemon to the mangrove estuary environment. Scientific Reports, 9, 14782. DOI: 10.1038/s41598-019-51218-5.
Duan Y. et al. (2014) Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerstätte, South China. Gondwana Research, 25, 983–90.
Dudley R. (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. Journal of Experimental Biology, 201, 1043–50.
Duffy J. E. (1996) Eusociality in a coral-reef shrimp. Nature, 381, 512–4.
Dzik J., Ivantsov A. Yu., Deulin Yu. V. (2004) Oldest shrimp and associated phyllocarid from the Lower Devonian of northern Russia. Zoological Journal of the Linnean Society, 142, 83–90.
Edgecombe G. D. et al. (2020) Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record. Proceedings of the National Academy of Sciences of the USA, 117, 8966–72.
Eriksson M. E., Terfelt F., Elofsson R., Marone F. (2012) Internal soft-tissue anatomy of Cambrian ‘Orsten’ arthropods as revealed by synchronous X-ray tomographic microscopy. PLoS ONE, 7 (8), e42582. DOI: 10.1371/journal.pone.0042582.
Eriksson M. E., Horn E. (2017) Agnostus pisiformis — a half a billion-year old pea-shaped enigma. Earth-Science Reviews, 173, 65–76.
Esteve J., Hughes N. C., Zamora S. (2011) Purujosa trilobite assemblage and the evolution of trilobite enrollment. Geology, 39, 575–8.
Esteve J., Yuan J.-L. (2017) Palaeoecology and evolutionary implications of enrolled trilobites from the Kushan Formation, Guzhangian of North China. Historical Biology, 3, 328–40.
Etter W. (2014) Well-preserved isopod from the Middle Jurassic of southern Germany and implications for the isopod fossil record. Palaeontology, 57, 931–49.
Fayers S. R., Trewin N. H. (2005) A hexapod from the Early Devonian Windyfield chert, Rhynie, Scotland. Palaeontology, 48, 1117–30.
Feldmann R. M., Schweitzer C. E., Phillips G. E. (2019) Oligocene pagurized gastropods from the River Bend Formation, North Carolina, USA. Bulletin of the Mizunami Fossil Museum, 45, 7–13.
Fisher C. R., Wegrzyn J. L., Jockusch E. L. (2020) Co-option of wing-patterning genes underlies the evolution of the treehopper helmet. Nature Ecology & Evolution, 4, 250–60.
Fraaije R. H. B. et al. (2019) Paguroid anomurans from the Tithonian Ernstbrunn Limestone, Austria — the most diverse extinct paguroid assemblage on record. Annalen des Naturhistorischen Museums in Wien, Serie A, 121, 257–90.
Fu D. et al. (2018) Anamorphic development and extended parental care in a 520-million-year-old stem-group euarthropod from China. BMC Evolutionary Biology, 18, 147. DOI: 10.1186/s12862-018-1262-6.
Gale A. C. (2019) Stalked barnacles (Crustacea, Thoracica) from the Upper Jurassic (Tithonian) Kimmeridge Clay of Dorset, UK: palaeoecology and bearing on the evolution of living forms. Proceedings of the Geologists’ Association, 130, 355–65.
Gale A. C., Sørensen A. M. (2015) Origin of the balanomorph barnacles (Crustacea, Cirripedia, Thoracica): new evidence from the Late Cretaceous (Campanian) of Sweden. Journal of Systematic Palaeontology, 13, 791–824.
Gand G., Garric J., Lapeyrie J. (1997) Biocénoses à triopsidés (Crustacea, Branchiopoda) du Permien du basin de Lodève (France). Geobios, 30, 673–700.
Garwood R. et al. (2012) Tomographic reconstruction of neopterous Carboniferous insect nymphs. PLoS ONE, 7 (9), e42779. DOI: 10.1371/journal.pone.0045779.
Giribet G., Edgecombe G. D. (2019) The phylogeny and evolutionary history of arthropods. Current Biology, 29, R592–602.
Gueriau P. et al. (2016) A 365-million-year-old freshwater community reveals morphological and ecological stasis in branchiopod crustaceans. Current Biology, 26, 383–90.
Harvey T. H. P., Vélez M. I., Butterfield N. J. (2012) Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. Proceedings of the National Academy of Sciences of the USA, 109, 1589–94.
Haug С. et al. (2014) The implications of a Silurian and other thylacocephalan crustaceans for the functional morphology and systematic affinities of the group. BMC Evolutionary Biology, 14, 159. DOI: 10.1186/s12862-014-0159-2.
Haug С., Haug J. T. (2017) The presumed oldest flying insect: more likely a myriapod? PeerJ, 5, e3402. DOI: 10.7717/peerj.3402.
Haug J. T., Waloszek D., Haug C., Maas A. (2010) High-level phylogenetic analysis developmental sequences: The Cambrian †Martinssonia elongata, †Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Structure & Development, 39, 154–73.
Haug J. T. et al. (2010) Evolution of mantis shrimps (Stomatopoda, Malacostraca) in the light of new Mesozoic fossils. BMC Evolutionary Biology, 10, 290. DOI: 10.1186/1471-2148-10-290.
Haug J. T. et al. (2015) Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. BMC Evolutionary Biology, 15, 208. DOI: 10.1186/s12862-015-0428-8.
Haug J. T., Haug C., Garwood R. J. (2016) Evolution of insect wing and development — new details from Palaeozoic nymphs. Biological Reviews, 91, 53–69.
Hegna T. A., Martin M. J., Darroch S. A. F. (2017) Pyritized in situ trilobite eggs from the Ordovician of New York (Lorraine Group): Implications for trilobite reproductive biology. Geology, 45, 199–202.
Hethke M. et al. (2019) Ecological stasis in Spinicaudata (Crustacea, Branchiopoda)? Early Cretaceous clam shrimp of the Yixian Formation of north-east China occupied a broader realized ecological niche than extant members of the group. Palaeontology, 62, 483–513.
Horne D. J., Martens K. (1988) An assessment of the importance of resting eggs for the evolutionary success of Mesozoic non-marine cypridoidean Ostracoda (Crustacea). Advances in Limnology, 52, 549–61.
Hughes N. C. (2007) The evolution of trilobite body patterning. Annual Review of Earth and Planetary Sciences, 35, 401–34.
Hyžny M., Müller P. (2012) The fossil record of Glypturus Stimpson, 1866 (Crustacea, Decapoda, Axiidea, Callianassidae) revisited with notes on palaeoecology and palaeobiogegraphy. Palaeontology, 55, 967–93.
Hyžny M. et al. (2017) Comprehensive analysis and reinterpretation of Cenozoic mesofossils reveals ancient origin of the snapping claw of alpheid shrimps. Scientific Reports, 7, 4076. DOI: 10.1038/s41598-017-02603-5.
Jagt J. W. M. et al. (2015) Fossil Brachyura. Treatise on Zoology — Anatomy, Taxonomy, Biology. V. 9. Pt C–II: Decapoda: Brachyura (Pt 2). Eds. P. Castro et al. Leiden; Boston: Brill, 2015. P. 847–920.
Jauvion C. et al. 2020. A new polychelidan lobster preserved with its eggs in a 165 Ma nodule. Scientific Reports, 10, 3574. DOI: 10.1038/s41598-020-60282-1.
Jenner R. A., Hof C. H. J., Schram F. R. (1998) Palaeo- and archaeostomatopods (Hoplocarida, Crustacea) from the Bear Gulch Limestone, Mississippian (Namurian), of central Montana. Contributions to Zoology, 67, 155–85.
Jensen S. (1997) Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42, 1–110.
Jones W. T. et al. (2016) The proof is in the pouch: Tealliocaris is a peracarid. Palaeodiversity, 9, 75–88.
Karasawa H., Schweitzer C. E., Feldmann R. M. (2013) Phylogeny and systematics of extant and extinct lobsters. Journal of Crustacean Biology, 33, 78–123.
Karim T., Westrop S. R. (2002) Taphonomy and paleoecology of Ordovician trilobite clusters, Bromide Formation, south-central Oklahoma. Palaios, 17, 394–403.
Khramov A. V., Shear W. A., Mercurio R., Kopylov D. (2018) The first Permian centipeds from Russia. Acta Palaeontologica Polonica, 63, 549–55.
Klompmaker A. A., Schweitzer C. E., Feldman R. M., Kowalewski M. (2013) The influence of reefs on the rise of Mesozoic marine crustaceans. Geology, 41, 1179–82.
Klompmaker A. A. et al. (2019) Muscles and muscle scars in fossil malacostracan crustaceans. Earth-Science Reviews, 194, 306–26.
Kukalová-Peck J. (1986) New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground plan. And the role of thoracic side lobes in the origin of wings (Insecta). Canadian Journal of Zoology, 65, 2327–45.
Lagebro L. et al. (2015) The oldest notostracan (Upper Devonian Strud locality, Belgium). Palaeontology, 58, 497–509.
Legg D. A., Sutton M. D., Edgecombe G. D. (2013) Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications, 4, 2485. DOI: 10.1038/ncomms3485.
Lerosey-Aubril R., Peel J. S. (2018) Gut evolution in early Cambrian trilobites and the origin of predation on infaunal macroinvertebrates: Evidence from muscle scars in Mesolenellus. Palaeontology, 61, 747–60.
Lima D. et al. (2020) First evidence of fossil snapping shrimps (Alpheidae) in the Neotropical region, with a checklist of the fossil caridean shrimps from the Cenozoic. Journal of South American Earth Sciences, 103, 102795. DOI: 10.1016/j.jsames.2020.102795.
Luque J. et al. (2019) Exceptional preservation of mid-Cretaceous marine arthropods and the evolution of novel forms via heterochrony. Science Advances, 5, eaav3875. DOI: 10.1126/sciadv.aax3875.
Ma X., Edgecombe G. D., Hou X., Goral T., Strausfeld N. J. (2015) Preservational pathways of corresponding brains of a Cambrian euarthropod. Current Biology, 25, 1–7. DOI: 10.1016/j.cub.2015.09.063.
Maas A., Waloszek D., Müller K. (2003) Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian “Orsten” of Sweden. Fossils and Strata, 49, 1–238.
Martin J. W., Crandall K. A., Felder D. L., eds. (2009) Decapod Crustacean Phylogenetics. Boca Raton; London; New York: CRS Press.
Martín-Vega D., Simonsen T. J., Hall M. J. R. (2017) Looking into the puparium: Micro-CT visualization of the internal morphological changes during metamorphosis of the blow fly, Calliphora vicina, with the first quantitative analysis of organ development in cyclorrhaphous dipterans. Journal of Morphology, 278, 629–51.
Mironenko A. (2020) A hermit crab preserved inside an ammonite shell from the Upper Jurassic of Central Russia: implications for ammonoid palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 537, 109398. DOI: 10.1016/j.palaeo.2019.109397.
Müller K. J. (1979) Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of Sweden. Lethaia, 12, 1–27.
Müller K. J., Walossek D. (1987) Morphology, ontogeny and life-habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils and Strata, 19, 1–124.
Nagler C., Hyžny M., Haug J. T. (2017) 168 million years old «marine lice» and the evolution of parasitism within isopods. BMC Evolutionary Biology, 17, 76. DOI: 10.1186/s12862-017-0915-1.
Nieber M. T. et al. (2011) Global biodiversity and phylogenetic evaluation of Remipedia (Crustacea). PLoS ONE, 6 (5), e19627. DOI: 10.1371/journal.pone.0019627.
Olesen J. (2009) Phylogeny of Branchiopoda (Crustacea) — Character evolution and contribution of uniquely preserved fossils. Arthropod Systematics & Phylogeny, 67, 3–39.
Ortega-Hernández J., Legg D. A., Tremewan J., Braddy S. J. (2010) Euthycarcinoids. Geology Today, 26, 195–8.
Pasini J. et al. (2020) In situ hermit crab (Anomura, Paguroidea) from the Oligocene Pysht Formation, Washington, USA. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 295, 17–22.
Patek S. N. (2015) The most powerful movements in biology. American Scientist, September — October, 330–7.
Pazinato P. G. et al. (2021) After 100 years: a detailed view of an eumalacostracan crustacean from the Upper Jurassic Solnhofen Lagerstätte with raptorial appendages unique in Euarthropoda. Lethaia, 54, 55–72.
Poinar G., Jr. (2014) Evolutionary history of terrestrial pathogens and endoparasites as revealed in fossils and subfossils. Advances in Biology, 2014, 181353. DOI: 10.1155/2014/181353.
Prokop J. et al. (2017) Paleozoic nymphal wing pads support dual model of insect wing origins. Current Biology, 27, 263–9.
Racheboeuf P. R., Schram F. R., Vidal M. (2009) New malacostracan crustacea from the Carboniferous (Stephanian) Lagerstätte of Montceau-les-Mines, France. Journal of Paleontology, 83, 624–9.
Rasnitsyn A. P., Quicke D. L. J., eds. (2002) History of Insects. Dordrecht: Kluwer Academic Publishers.
Riquelme F. et al. (2014) Two flat-backed polydesmidan millipedes from the Miocene Chiapas-amber Lagerstätte, Mexico. PLoS ONE 9 (8), e105877. DOI: 10.1371/journal.pone.0105877.
Robalino J. et al. (2016) The origin of large-bodied shrimp that dominate modern global agriculture. PLoS ONE 11 (7), e0158840. DOI: 10.1371/journal.pone.0158840.
Rolf W. D. I., Dzik J. (2006) Angustidontus, a Late Devonian pelagic predatory crustacean. Transactions of the Royal Society of Edinburgh: Earth Sciences, 97, 75–96.
Ross A. J. et al. (2018) A new terrestrial millipede fauna of earliest Carboniferous (Tournaisian) age from southeastern Scotland helps fill ‘Romer’s Gap’. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 108, 99–110.
Rossi V. et al. (2004) Low genetic variability in the ancient asexual ostracod Darwinula stevensoni. Italian Journal of Zoology, 71, 135–42.
Schádel M. et al. (2020) Triassic Isopoda — three new species from Central Europe shed light on the early diversity of the group. Bulletin of Geosciences, 95, 145–66.
Schoenemann B., Clarkson E. N. K. (2021) Points of view in understanding trilobite eyes. Nature Communications, 12, 2081. DOI: 10.1038/s41467-021-22227-8.
Schoenemann B., Clarkson E. N. K., Horváth G. (2015) Why did the UV-A-induced photoluminescent blue-green glow in trilobite eyes and exoskeletons not cause problems for trilobites? PeerJ, 3, e1492. DOI: 10.7717/peerj.1492.
Schoenemann B., Clarkson E. N. K., Høyberget M. (2017) Traces of an ancient immune system — how an injured arthropod survived 465 million years ago. Scientific Reports, 7, 40330. DOI: 10.1038/srep40330.
Scholtz G. (2020) Eocarcinus praecursor Withers, 1932 (Malacostraca, Decapoda, Meiura) is a stem group brachyuran. Arthropod Structure & Development, 59, 100991. DOI: 10.1016/j.asd.2020.100991.
Scholtze F., Schneider J. W. (2015) Improved methodology of ‘conchostracan’ (Crustacea, Branchiopoda) classification for biostratigraphy. Newsletters on Stratigraphy, 48, 287–98.
Schram F. R. (1970) Isopod from the Pennsylvanian of Illinois. Science, 169, 854–5.
Schram F. R. (1975) A Pennsylvanian lepadomorph barnacle from the Mazon Creek area, Illinois. Journal of Paleontology, 49, 928–30.
Schram F. R. (1980) Miscellaneous Late Paleozoic Malacostraca of the Soviet Union. Journal of Paleontology, 54, 542–7.
Schroeder T. B. H., Houghtaling J., Wilts B. D., Mayer M. (2018) It’s not a bug, it’s a feature: functional materials in insects. Advanced Materials, 1705322, 1–48. DOI: 10.1002/adma.201705322.
Scourfield D. J. (1926) V. On a new type of crustacean from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire) — Lepidocaris rhyniensis, gen. et sp. nov. Philosophical Transactions of the Royal Society B: Biological Sciences, 214, 153–87.
Shcherbakov D. E. (2017) Insects are flying shrimps, myriapods are arthropod snakes — towards a new synthesis. Invertebrate Zoology, 14, 197–204.
Shear W. A., Bonamo P. M. (1988) Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phylogeny of centipede orders. American Museum Novitates, 2927, 1–75.
Siveter D. J. et al. (2014) Exceptionally-preserved 450-millon-year-old Ordovician ostracods with brood care. Current Biology, 24, 801–6.
Siveter D. J., Briggs D. E. G., Siveter D. J., Sutton M. D. (2015) A 425-millon-year-old Silurian pentastomid parasitic on ostracods. Current Biology, 25, 1632–7.
Siveter D. J., Briggs D. E. G., Siveter D. J., Sutton M. D. (2018) A well-preserved respiratory system in a Silurian ostracod. Biology Letters, 14, 20180464. DOI: 10.1098/rsbl.2018.0464.
Song H. et al. (2021) Computational fluid dynamics confirms drag reduction associated with trilobite queuing behaviour. Palaeontology. DOI: 10.1111/pala.12562.
Strausfeld N. J. et al. (2016) Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems. Arthropod Structure & Development, 45, 152–72.
Strausfeld N. G., Wolff G. H., Sayre M. E. (2020) Mushroom body evolution demonstrates homology and divergence across Pancrustacea. eLife, 9, e52411. DOI: 10.7554/eLife.52411.
Stürmer W., Bergström J. (1973) New discoveries on trilobites by X-rays. Paläontologische Zeitschrift, 47, 104–41.
Sun X.-Y., Xia X., Yang Q. (2016) Dating the origin of the major lineages of Branchiopoda. Palaeoworld, 25, 303–17.
Tan M. H. et al. (2019) Comparative metagenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Scientific Reports, 9, 10756. DOI: 10.1038/s41598-019-47145-0.
Van Damme K., Kotov A. A. (2016) The fossil record of the Cladocera (Crustacea: Branchiopoda): Evidence and hypotheses. Earth-Science Reviews, 163, 162–89.
Vannier J., Thiéry A., Racheboeuf P. R. (2003) Spinicaudatans and ostracods (Crustacea) from the Montceau Lagerstätte (Late Carboniferous, France): Morphology and palaeoenvironmental significance. Palaeontology, 46, 999–1030.
Vannier J. et al. (2016) Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nature Communications, 7, 10320. DOI: 10.1038/ncomms10320.
Vannier J. et al. (2019) Collective behaviour in 480-million-year-old trilobite arthropod from Morocco. Scientific Reports, 9, 14941. DOI: 10.1038/s41598-019-51012-3.
Walossek D. (1993) The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata, 32, 1–202.
Waloszek D., Repetski J. E., Maas A. (2006) A new Late Cambrian pentastomid and a review of the relationships of this parasitic group. Transactions of the Royal Society of Edinburgh: Earth Sciences, 96, 163–76.
Wang H. et al. (2020) Exceptional preservation of reproductive organs and giant sperm in Cretaceous ostracods. Proceedings of the Royal Society of London B: Biological Sciences, 287, 20201661. DOI: 10.1098/rspb.2020.1661.
Whittington H. B. et al. (1997) Treatise on Invertebrate Paleontology. Part O, Trilobita, Revised, Vol. 1. Boulder, Colorado: Geol. Soc. Amer.; Lawrence, Kansas: University Kansas.
Wilson H. M., Anderson L. I. (2004) Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. Journal of Paleontology, 78, 169–84.
Yang J. et al. (2016) Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proceedings of the National Academy of Sciences of the USA, 113, 2988–93.
Yang J. et al. (2018) Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nature Communications, 9, 470. DOI: 10.1038/s41467-017-02754-z.
Yang J. et al. (2019) Ecdysis in a stem-group euarthropod from the early Cambrian of China. Scientific Reports, 9, 5709. DOI: 10.1038/s41598-019-41911-w.
Zeng H., Zhao F., Yin Z., Zhu M. (2017) Appendages of an early Cambrian metadoxidid trilobite from Yunnan, SW China support mandibulate affinities of trilobites and artiopods. Geological Magazine, 154, 1306–28.
Zhai D. et al. (2019) Variation in appendages in early Cambrian bradoriids reveals a wide range of body plans in stem-euarthropods. Communications Biology, 2, 329. DOI: 10.1038/s42003-019-0573-5.
Геккер Р. Ф. Новый представитель класса Ophiocistia Sollas (Volchovia n. g.) из нижнего силура Ленинградской области и изменение диагноза этого класса // Доклады АН СССР. 1938. Т. 19. №5. С. 426–428.
Гинсбург Т. Э., Рожнов С. В. Необычная эдриоастероидея из верхов среднего кембрия Ирана, ее филогенетическое значение и палеоэкология // Палеонтологический журнал. 2014. №4. С. 60–65.
Ежова О. В., Малахов В. В. О саккоглоссусе, зоологах и перевернутых хордовых // Природа. 2013. №2. С. 49–56.
Рожнов С. В. Переднезадняя ось иглокожих и перемещение рта в их историческом развитии // Известия РАН. Серия биологическая. 2012. №2. С. 203–212.
Рожнов С. В., Кушлина В. Б. Новая интерпретация больбопоритов (Echinodermata,†Eocrinoidea) // Палеонтологический журнал. 1994. №2. С. 59–66.
Френд Д., Журавлев A. Ю., Соловьев И. A. Среднекембрийская Eldonia.
Сибирской платформы // Палеонтологический журнал. 2002. №1. C. 22–26.
Aizenberg J., Tkachenko A., Weiner S., Addadi L., Hendler G. (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature, 412, 819–22.
Bates D. E. B., Kozłowska A., Loydell D., Urbanek A., Wade S. (2009) Ultrastructural observations on some dendroid and graptoloid graptolites and on Mastigograptus. Bulletin of Geosciences, 84, 21–6.
Baumiller T. K., Ausich W. I. (1996) Crinoid stalk flexibility: theoretical predictions and fossil stalk posture. Lethaia, 29, 47–59.
Baumiller T. K. et al. (2010) Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proceedings of the National Academy of Sciences of the USA, 107, 5893–6.
Briggs D. E. G. et al. (1995) Decay and composition of the hemichordate Rhabdopleura: implications for taphonomy of graptolites. Lethaia, 28, 15−23.
Briggs D. E. G. et al. (2017) An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm. Proceedings of the Royal Society B: Biological Sciences, 284, 20171189. DOI: 10.1098/rspb.2017.1189.
Cameron C. B. (2016) Saccoglossus testa from the Mazon Creek fauna (Pennsylvanian of Illinois) and the evolution of acorn worms (Enteropneusta: Hemichordata). Palaeontology, 59, 329–36.
Caron J.-B., Conway Morris S., Cameron C. B. (2013) Tubicolous enteropneusts from the Cambrian period. Nature, 495, 503–6.
Caron J.-B., Conway Morris S., Shu D. (2010) Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS ONE, 5 (3), e9586. DOI: 10.1371/journal.pone.009586.
Clark E. G., Bhullar B.-A. S., Darroch S. A. F., Briggs D. E. G. (2017) Water vascular system architecture in an Ordovician ophiuroid. Biology Letters, 13, 20170635. DOI: 10.1098/rsbl.2017.0635.
Clark E. G., Hutchinson J. R., Briggs D. E. G. (2020) Three-dimensional visualization as a tool for interpreting locomotion strategies in ophiuroids from the Devonian Hunsrück Slate. Royal Society Open Science, 7, 201380. DOI: 10.1098/rsos.201380.
Cooper R. A., Rigby S., Loydell D. K., Bates D. E. B. (2012) Palaeoecology of the Graptoloidea. Earth-Science Reviews, 112, 23–41.
Daley P. E. J. (1995) Anatomy, locomotion and ontogeny of the solute Castericystis vali from the Middle Cambrian of Utah. Geobios, 28, 585–615.
Dean Shackleton J. (2005) Skeletal homologies, phylogeny and classification of the earliest asterozoan echinoderms. Journal of Systematic Palaeontology, 3, 29–114.
Deline B. et al. (2020) Evolution and development at the origin of a phylum. Current Biology, 30, 1672–9.
Dickson J. A. D. (2002) Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science, 298, 1222–4.
Dominguez P., Jacobson A. G., Jefferies R. P. S. (2002) Paired gill slits in a fossil with a calcite skeleton. Nature, 417, 841–4.
Domke K. L., Dornbos S. Q. (2010) Paleoecology of the middle Cambrian edrioasteroid echinoderm Totiglobus: Implications for unusual Cambrian morphologies. Palaios, 25, 209–14.
Durham J. W. (1993) Observations on the Early Cambrian helicoplacoid echinoderms. Journal of Paleontology, 67, 590–604.
Durman P. N., Sennikov N. V. (1993) A new rhabdopleurid hemichordate from the Middle Cambrian of Siberia. Palaeontology, 36, 283–296.
Glass A., Blake D. B. (2004) Preservation of tube feet in an ophiuroid (Echinodermata) from the Lower Devonian Hunsrück Slate of Germany and a redescription of Bundenbachia beneckei and Palaeophiomyxa grandis. Paläontologische Zeitschrift, 78, 73–95.
Guensburg T. E., Blake D. B., Sprinkle J., Mooi R. (2016) Crinoid ancestry without blastozoans. Acta Palaeontologica Polonica, 61, 253–66.
Haude R., Langenstrassen F. (1976) Rotasaccus dentifer n. g. n. sp., ein devonischer Ophiocistioide (Echinodermata) mit «holothuroiden» Wandskleriten und «echinoidem» Kauapparat. Paläontologische Zeitschrift, 50, 130–50.
Hess H., Messing C. G., Ausich W. I. (2011) Treatise on Invertebrate Paleontology. Part T, Echinodermata 2, Revised, Crinoidea, Vol. 3. Lawrence, Kansas: University Kansas.
Khor J. M., Ettensohn C. A. (2020) Transcription factors of the alx family: Evolutionary conserved regulators of deuterostome skeletogenesis. Frontiers in Genetics, 11, 569314. DOI: 10.3389/fgene.2020.569314.
Koop D. et al. (2017) Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan. BMC Developmental Biology, 17, 4. DOI: 10.1186/s12861-017-0145-4.
Lefebvre B., Derstler K., Sumrall C. D. (2012) A reinterpretation of the solutan Plasiacystis mobilis (Echinodermata) from the Middle Ordovician of Bohemia. Zoosymposia, 7, 287–306.
Lefebvre B. et al. (2019) Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios, 52, 27–36.
Li Y. et al. (2020) Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Communications Biology, 3, 371. DOI: 10.1038/s42003-020-1091-1.
Maletz J. (2017) Graptolite Paleobiology. Chichester: Wiley-Blackwell.
Maletz J. (2019) Dictyonema Hall and its importance for evolutionary history of the Graptoloidea. Palaeontology, 62, 151–61.
Maletz J., Steiner M. (2015) Graptolite (Hemichordata, Pterobranchia) preservation and identification in the Cambrian Series 3. Palaeontology, 58, 1073–1107.
Melchin M. J., Doucet K. M. (1996) Modelling flow patterns in conical dendroid graptolites. Lethaia, 29, 39–46.
Miller A. K. et al. (2017) Molecular phylogeny of extant Holothuroidea (Echinodermata). Molecular Phylogenetics and Evolution, 111, 110–31.
Nanglu K., Caron J.-B., Conway Morris S., Cameron C. B. (2016) Cambrian suspension-feeding tubicolous hemichordates. BMC Biology, 14, 56. DOI: 10.1186/s12915-016-0271-4.
Nardin E. et al. (2017) Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic. Journal of Paleontology, 91, 672–84.
Rahman I. A., Clausen S. (2009) Re-evaluating the palaeobiology and affinities of the Ctenocystoidea (Echinodermata). Journal of Systematic Palaeontology, 7, 413–26.
Rahman I. A., Zamora S. (2012) The oldest cinctan caproid (stem-group Echinodermata) and the evolution of the water vascular system. Zoological Journal of the Linnean Society, 157, 420–32.
Rahman I. A., Stewart S. E., Zamora S. (2015) The youngest ctenocystoids from the Upper Ordovician of the United Kingdom and the evolution of the bilateral body plan in echinoderms. Acta Palaeontologica Polonica, 60, 39–48.
Rahman I. A., Zamora S., Falkingham P. L., Phillips J. C. (2015) Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proceedings of the Royal Society B: Biological Sciences, 282, 20151964. DOI: 10.1098/rspb.2015.1964.
Rahman I. A. et al. (2019) A new ophicistioid with soft-tissue preservation from the Silurian Herefordshire Lagerstätte, and the evolution of the holothurian body plan. Proceedings of the Royal Society B: Biological Sciences, 286, 20182792. DOI: 10.1098/rspb.2018.2792.
Rahman I. A. et al. (2020) Potential evolutionary trade-off between feeding and stability in Cambrian cinctan echinoderms. Palaeontology, 63, 689–701.
Reich M. (1999) Origins and biomechanical evolution of teeth in echinoids and their relatives. Palaeontology, 52, 1149–68.
Reich M., Smith A. B. (2009) Origins and biomechanical evolution of teeth in echinoids and their relatives. Palaeontology, 52, 1149–68.
Rozhnov S. V. (2012) Development of symmetry and asymmetry in the early evolution of the echinoderms. Paleontological Journal, 46, 780–92.
Sheffield S. L., Sumrall C. D. (2019) A re-interpretation of the ambulocral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids. Palaeontology, 62, 163–173.
Smith A. B. (1985) Cambrian eleutherozoan echinoderms and the early diversification of edrioasteroids. Palaeontology, 52, 1149–68.
Smith A. B., Reich M. (2013) Tracing the evolution of holothurian body plan through stem-group fossils. Biological Journal of the Linnean Society, 109, 670–81.
Smith A. B., Savill J. J. (2001) Bromidechinus, a new Ordovician echinozoan (Echinodermata), and its bearing on the early history of echinoids. Transactions of the Royal Society of Edinburgh: Earth Sciences, 92, 137–47.
Smith A. B., Zamora S. (2013) Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proceedings of the Royal Society B: Biological Sciences, 280, 20131197. DOI: 10.1098/rspb.2013.1197.
Sollas W. J. (1899) Fossils in the University Museum, Oxford: I. On Silurian Echinoidea and Ophiuroidea. The Quarterly Journal of the Geological Society of London, 55, 692–715.
Spencer W. K. (1951) Early Palaeozoic starfish. Proceedings of the Royal Society of London, Series B: Biological Sciences, 235, 87–129.
Sutton M. D. et al. (2005) A starfish with three-dimensionally preserved soft parts from the Silurian of England. Proceedings of the Royal Society B: Biological Sciences, 272, 1001–6.
Underwood C. J. (1993) The position of the graptolites within Lower Palaeozoic planktic ecosystems. Lethaia, 26, 189–202.
Urbanek A. (1986) The enigma of graptolite ancestry: Lessons from a phylogenetic debate. Problematic Fossil Taxa. Eds. A. Hoffman, M. H. Nitecki. New York: Oxford University Press; Oxford: Clarendon Press. P. 184–226.
Wright D. F. et al. (2017) Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata). Journal of Paleontology, 91, 829–46.
Zamora S. (2011) Equinodermos del Cámbrico de España: situación actual de las investigaciones y perspectivas futuras. Estudios Geológicos, 67, 59–81.
Zamora S., Rahman I. A. (2014) Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology, 57, 1105–19.
Zamora S., Smith A. B. (2012) Cambrian stalked echinoderms show unexpected plasticity of arm construction. Proceedings of the Royal Society B: Biological Sciences, 279, 20110777. DOI: 10.1098/rspb.2011.0777.
Zamora S., Rahman I. A., Smith A. B. (2012) Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE, 7 (6), e38296. DOI: 10.1371/journal.pone.0038296.
Zamora S., Deline, B., Álvaro J. J., Rahman I. A. (2017) The Cambrian Substrate Revolution and the early evolution of attachment in suspension-feeding echinoderms. Earth-Science Reviews, 171, 478–91.
Zamora S., Sumrall C. D., Vizcaïno D. (2013) Morphology and ontogeny of the Cambrian edrioasteroid echinoderm Cambraster cannati from western Gondwana. Acta Palaeontologica Polonica, 58, 545–59.