Книга: Основы реальности
Назад: Глава 1. Здесь много пространства
Дальше: Глава 3. Здесь очень мало составляющих

Глава 2. Здесь много времени

ПРЕЛЮДИЯ: ИЗМЕРЕНИЕ И СМЫСЛ
Фрэнк Рамсей (1903–1930) — ярко вспыхнувшая, но быстро погасшая звезда. В 26 лет он умер от болезни печени, но до этого очень многое успел сделать в математике, экономике и философии. Несмотря на молодость, в 1920-х годах он был центральной фигурой интеллектуальной жизни Кембриджа. Рамсей сотрудничал и спорил с такими гигантами, как Джон Мейнард Кейнс и Людвиг Витгенштейн, которых многие признают величайшим экономистом и величайшим философом двадцатого столетия. «Теория Рамсея» — необычный раздел математики, выросший из его работ.
Вот небольшой классический пример, дающий представление о теории Рамсея: в любой группе из шести человек, где все либо попарно дружат, либо враждуют, найдется либо группа из трех человек, которые все между собой дружат, либо группа из трех враждующих между собой людей.
К мыслям Фрэнка Рамсея следует прислушаться. Его возражения против сверхъестественных масштабов физического мира заслуживают серьезного внимания.
Моя картина мира нарисована в перспективе. Она не похожа на модель в масштабе. У меня на переднем плане человеческие существа, а все звезды малы, как трехпенсовые монетки. По-настоящему в астрономию я не верю, считая ее сложным описанием какой-то стороны чувственного восприятия человека и, возможно, животного. Я применяю свою перспективу не только к пространству, но и ко времени. Однажды мир остынет и все умрет; но все это будет еще не скоро, и сейчас, в общем масштабе, значимость этого события практически ничтожна.
Одна из знаменитых обложек журнала New Yorker отражает ту же мысль. На ней изображена «карта мира», где фоном для Манхэттена, занимающего большую ее часть, служит нарисованная пунктиром остальная планета.
Позиция Рамсея — здравый ответ на концепцию «жалкой песчинки». Пространства равных объемов имеют равный потенциал быть заполненными материей и движением, но это не значит, что они равны по значимости. Однообразные пустые области не слишком интересны. То же касается равных интервалов времени: все они одинаково заполняются тиканьем часов, но не все одинаково важны. Большинство из нас сосредоточено в основном на ближайших событиях. Это закладывается с детства: так мы приспосабливаемся к окружающей реальности.
Однако Рамсей, отстаивая подобную точку зрения, заходит слишком далеко. Когда он говорит, что не верит в астрономию, я не верю ему. Напротив, его утверждение наводит меня на мысль, что необозримость космического пространства и времени волнует его так же глубоко, как и Паскаля. К сожалению, отрицая их значимость, он лишил себя источника вдохновения, пренебрег возможностью стать не только великим математиком, экономистом и философом, но еще и великим космологом.
Мы способны воспринять как то, сколь много всего «снаружи», так и то, сколь много всего «внутри». Одно не противоречит другому, и нам не надо выбирать что-то одно. Если оценивать нас с разных сторон, получается, что мы и малы и велики. Обе точки зрения открывают важные истины о нашем месте в мироустройстве. И, приняв их, мы научимся всесторонне и реалистично воспринимать реальность.
ИЗБЫТОК ВРЕМЕНИ
О времени можно сказать то же, что и о пространстве: его много как снаружи, так и внутри. Хотя необъятность космического времени подчеркивает нашу незначительность, бездна времени — и внутри нас.
В романе «Создатель звезд» гениальный родоначальник научной фантастики Олаф Стэплдон пишет: «И вся его [человечества] история с ее миграциями, империями, философскими теориями, гордыми науками, социальными революциями, растущим стремлением к единению была не более чем искоркой в жизни звезд». Римский философ Сенека в сочинении «О скоротечности жизни» высказывает противоположную точку зрения. «Большинство смертных жалуется… на коварство природы, — пишет он. — <…> Жизнь дана нам достаточно долгая, и ее с избытком хватит на свершение величайших дел, если распределить ее с умом».
Как мы увидим, правы оба — и Стэплдон, и Сенека.
ЧТО ТАКОЕ ВРЕМЯ?
Чтобы не погрязнуть в неясностях и бессмыслице, остановимся на минутку, вдохнем поглубже и зададим себе принципиальный вопрос: «Что такое время?» Как философское понятие, время представляется менее осязаемым, чем пространство. Мы не можем свободно в нем перемещаться, не можем даже вернуться в какой-либо выбранный момент. Время, которое прошло, — прошло навсегда. То самое мгновение не поймать: вот оно есть, а вот его нет — и оно никогда не повторится.
Христианский философ Аврелий Августин так сформулировал это свойственное всем чувство замешательства: «Что же такое время? Если никто меня об этом не спрашивает, я знаю, что такое время; но если бы я захотел объяснить кому-либо — нет, я не знаю, что это».
На наш вопрос есть остроумный, но несерьезный ответ: «Время — это то, что не дает всему случиться одновременно». Эти слова часто приписывают Эйнштейну, но на самом деле они принадлежат автору научно-фантастических романов Рэю Каммингсу.
Другой многозначительный ответ гласит: «Время — это то, что измеряется часами». Хотя сначала он кажется столь же несерьезным, зерно правды здесь есть. Эта мысль и станет нашей отправной точкой.
В природе много регулярно повторяющихся явлений. О циклической смене дня и ночи, фазах Луны, временах года и биении сердца знают все по собственному опыту. Например, если в состоянии покоя сравнить пульс двух человек, то (при достаточном числе биений) мы получим примерно равное соотношение. А в каждом лунном цикле — почти одинаковое количество дней.
На первый взгляд цикличность времен года в контексте капризов погоды представляется не столь четкой. Чтобы предсказывать смену сезонов точнее, некоторые цивилизации разработали методику астрономического хронометража. Люди пришли к мысли день за днем следить за движением Солнца на небосводе: где оно восходит, где садится, как высоко поднимается. Подобные изменения гораздо более предсказуемы, чем колебания погоды. Наблюдая за траекторией Солнца, люди смогли гораздо точнее определить такие понятия, как год и времена года, что оказалось очень полезно. Астрономические времена года отсчитываются от точек солнцестояний (зимнего и летнего), отмечающих экстремальные склонения Солнца к северу или югу относительно экватора Земли, и равноденствий (весеннего и осеннего), когда положение Солнца меняется наиболее быстро. В периоды солнцестояния разница между продолжительностью дня и ночи максимальная, тогда как в периоды равноденствия она практически отсутствует. Год — это интервал, проходящий между полными циклами изменений.
Наметив эти ориентиры, люди обратили внимание, что год за годом на каждый сезон приходится одно и то же количество дней или лунных месяцев. Они сконструировали календари, значительно облегчившие им жизнь. Так, календари помогали земледельцам принять решение о начале посевов и оценить сроки уборки урожая, а охотникам — понять, когда ожидать миграции животных.
Подобным образом синхронизировано множество разных циклических процессов, психологических и астрономических. Они маршируют под звуки одного и того же барабана. Любой из процессов можно использовать, чтобы измерить другой. Осознание существования общей скорости изменений, универсального темпа позволяет далеко продвинуться в понимании физического мира. Чтобы как-то описать этот темп, мы говорим, что нечто устанавливает связь между всеми циклическими процессами, указывает им, когда повторяться. По определению это нечто и есть время — барабанщик, определяющий развитие событий.
Есть еще два свидетельства реальности времени, ключевых для человека. Одно можно объяснить на примере музыки. При совместном исполнении произведения, танца или песни мы полагаемся на синхронность действий участников. Хотя это так привычно, что воспринимается как нечто само собой разумеющееся, подобная синхронность убедительно свидетельствует, что с высокой степенью точности представление о течении времени у нас общее.
Еще одно, возможно самое важное для нас, проявление времени относится к циклу человеческой жизни. Почти все новорожденные развиваются по одному графику: начинают ходить, говорить, проходят другие важные этапы развития по прошествии определенного числа месяцев (или дней, или недель). Рост людей увеличивается, они достигают пубертатного возраста, мужают и стареют — все происходит закономерно и тесно связано с количеством прожитых лет. Каждый из нас словно часы, хотя определить по ним точное время трудно.
Как видно из истории человечества, время контролирует нециклические процессы точно так же, как и циклические. По мере развития науки, систематического изучения движения и других изменений физического мира люди снова и снова (во всяком случае, до сих пор) обнаруживали некие общие ритмы. Изменение положения астрономических тел, изменение положения тела под действием силы, протекание химических реакций, распространение световых лучей — все это и многое другое разворачивается в темпе единого времени.
Сформулируем это по-другому: есть величина, которую обычно обозначают буквой t. Она входит в фундаментальные уравнения, описывающие изменения в физическом мире. Ее же люди имеют в виду, спрашивая: «Который час?» Вот это и есть время. Время — это то, что измеряют часы, а все, что меняется, может быть часами.
ИСТОРИЧЕСКОЕ ВРЕМЯ: ЧТО МЫ ЗНАЕМ И ОТКУДА
В , оглядываясь на Большой взрыв, мы уже измеряли космическое время. С тех пор прошло 13,8 миллиарда лет. Это и в самом деле очень много; в такой невообразимый срок вместились бы сотни миллионов человеческих жизней. Но Большой взрыв мало соотносится с нашим опытом. Чтобы почувствовать, насколько огромно это время, рассмотрим несколько более близкую к нам историю.
Есть два способа измерения больших временных интервалов: датирование с помощью радиоизотопов и звездная астрофизика — оценка по времени жизни звезд. Обсудим их по очереди.
Радиоактивное датирование основано на существовании изотопов, то есть атомов одного вещества, ядра которых содержат одинаковое число протонов, но разное число нейтронов. Атомы с такими ядрами обладают почти одинаковыми химическими свойствами, но многие из них нестабильны. Их ядра распадаются, причем каждое имеет характерное время жизни — и нередко у разных изотопов одного вещества оно различается очень существенно. Эти две характеристики — одинаковые химические свойства и разное время жизни — используют для радиоактивного датирования.
Остановимся на одном важном примере радиоактивного датирования — с использованием углерода. Наиболее распространенный изотоп углерода 12C («углерод-12») содержит шесть протонов и шесть нейтронов; его ядра очень стабильны. А вот другой важный изотоп — 14C («углерод-14») — нестабилен, или «радиоактивен».
Время полураспада изотопа 14C составляет примерно 5730 лет. Это значит, что, если образец материала содержит атомы 14C, через 5730 лет половина из них исчезнет. Распадаясь, ядра 14C испускают электроны и антинейтрино и превращаются в ядра азота (14N). Процессы такого типа — радиоактивность и слабое взаимодействие — мы обсудим подробнее ниже.
Конечно, мы не должны ждать 5730 лет, чтобы свериться с этой картиной. Даже очень маленькие органические образцы содержат много атомов углерода, и за малые интервалы времени можно зафиксировать много радиоактивных распадов. Изучая выход электронов, мы видим, что за равные промежутки времени распадается равная доля имеющихся в образце ядер 14C.
Поскольку возраст Вселенной гораздо больше 5730 лет, возникает вопрос: почему этот изотоп вообще еще существует? Ответ таков: под действием космических лучей в атмосфере образуются новые ядра 14C. Так компенсируется его распад и поддерживается определенный баланс между изотопами 14C и 12C.
Живые существа поглощают углерод либо непосредственно из атмосферы, либо вскоре после того, как он растворился в воде. Усвоенный ими углерод отражает текущее соотношение 14C/12C в атмосфере. Но после того как углерод встраивается в тела живых существ, количество распадающегося изотопа 14C больше не пополняется, и со временем его доля предсказуемо уменьшается. Таким образом, измеряя в биологическом образце соотношение 14C и 12C, можно определить, когда существо, «поставившее» данный образец, было живым и могло усваивать углерод.
Есть два способа измерить это соотношение на практике. Поскольку изотопа 12C всегда гораздо больше, чем 14C, хорошую оценку количества 12C можно получить, просто взвесив весь углерод. Чтобы оценить имеющееся количество 14C, можно измерить радиоактивность, то есть скорость испускания электронов. Поскольку относительное количество распадов ядер 14C за конкретный интервал времени известно, это измерение позволяет сделать вывод о содержании изотопа 14C.
Более современный метод — поместить образец в ускоритель, где, используя разницу в движении изотопов 14C и 12C в сильных электрических и магнитных полях, их можно разделить механически. Оба метода дают согласующиеся результаты.
Датирование с использованием углерода широко применяется в археологии и палеобиологии. Так удалось определить возраст египетских и неандертальских артефактов, в том числе мумий. Время создания некоторых египетских памятников можно проверить по историческим источникам, и такая проверка согласуется с датировкой углеродным методом. Неандертальцы не оставили исторических документов, но благодаря углеродному методу датирования мы знаем, что они населяли Европу в течение нескольких сотен тысяч лет и жили там еще совсем недавно, всего около сорока тысяч лет назад.
Мы также можем датировать кости и артефакты, оставленные нашими далекими предками — Homo sapiens. По ним мы узнаём, что человек разумный существует уже около трехсот тысяч лет. Самые ранние свидетельства очень редки, что указывает на малочисленность Homo sapiens: поначалу наш вид был не слишком успешным.
Есть много способов проверить такую датировку. Можно построить лестницу времени, сходную с лестницей расстояний, о которой речь шла выше. Простой, классический и очень красивый пример — старые деревья. Поскольку в разные сезоны клетки непосредственно вблизи коры функционируют по-разному, у деревьев каждый год образуются новые, хорошо заметные кольца. По ним можно убедиться, что с помощью углеродного метода мы правильно определяем как относительный возраст каждого кольца, так и возраст дерева.
Кроме углерода 14C и 12C есть много других пар изотопов с сильно различающимся временем полураспада — и они позволяют измерять гораздо большие периоды. Например, изотопы урана и свинца помогли определить возраст минерала (гнейса) в образцах из Западной Гренландии. Оба изотопа показали, что возраст этих образцов порядка 3,6 миллиарда лет. Отсюда вывод, что горная порода образовалась около 3,6 миллиарда лет назад и с тех пор ее химический состав практически не менялся. Так мы узнали, что возраст Земли как твердой планеты составляет значительную часть — более четверти — возраста Вселенной.
В астрофизической теории есть метод, позволяющий определять возраст звезд. При сжигании ядерного топлива звезды генерируют энергию. По мере расходования топлива они меняют размер, форму и цвет. Например, приблизительно через пять миллиардов лет наше Солнце должно превратиться в красного гиганта. Оно захватит Меркурий и Венеру, и жить на Земле станет довольно неприятно. Еще примерно через миллиард лет Солнце сбросит внешнюю оболочку и превратится в горячий, размером с Землю белый карлик. Затем белый карлик начнет медленно остывать и постепенно, за несколько миллиардов лет, погаснет.
Есть много способов проверить теорию эволюции звезд. Рассмотрим, например, какое-нибудь их плотное скопление. Разумно предположить, что многие из этих звезд образовались примерно в одно время (в космическом масштабе). Если так, их возраст должен быть одинаков. Старея, звезды предсказуемо меняют цвет и яркость. С помощью теории эволюции звезд можно рассчитать отдельно возраст каждой. Астрономы показали, что во многих случаях рассчитанные возрасты звезд действительно согласуются, одновременно и подтверждая теорию, и датируя образование того или иного скопления.
Так, выяснилось, что возраст самых старых звезд почти совпадает с возрастом видимой Вселенной. Иными словами, звезды начали рождаться через один или два миллиарда лет после Большого взрыва. С другой стороны, некоторые звезды довольно молоды и мы также видим области, где они все еще образуются.
Подводя итог, можно сказать, что:
• формирование звезд и планет началось на ранней стадии истории Вселенной, примерно тринадцать миллиардов лет назад; новые звезды продолжают рождаться, хотя и медленнее;
• Солнце и Земля существуют в состоянии, близком к сегодняшнему, около пяти миллиардов лет;
• время существования людей, похожих на нас, гораздо короче — около трехсот тысяч лет. Это соответствует примерно десяти тысячам поколений или пяти тысячам человеческих жизней.
ВНУТРЕННЕЕ ВРЕМЯ: ЧТО МЫ ЗНАЕМ И ОТКУДА
Изобилие внутреннего времени можно осознать, сравнивая продолжительность жизни человека со скоростью основных электрических и химических процессов, позволяющих ему мыслить. Такое сравнение показывает, что за время жизни человек накапливает огромный опыт и невероятное количество представлений и идей.

 

Скорость мысли
Вольфганг Амадей Моцарт умер, когда ему было тридцать пять лет, Франц Шуберт — в возрасте тридцати одного года, великий математик Эварист Галуа — в двадцать лет, а физик Джеймс Клерк Максвелл — в сорок восемь. Их достижения говорят о том, что за время жизни человек может оставить миру много гениальных идей и творений. Сколько же?
Вопрос поставлен не слишком четко: нет меры скорости, применимой к нашим невероятно разнообразным мыслительным процессам. И все же, я думаю, на него можно дать приблизительный ответ.
Один из фундаментальных факторов, ограничивающих нашу способность обрабатывать сигналы, — время задержки (латентность) импульсов электрической активности (потенциалов действия), с помощью которых нейроны связываются друг с другом. Этот восстановительный период ограничивает число импульсов до нескольких десятков или сотен за секунду. Не случайно частота кадров, при которой мы замечаем, что на самом деле фильм — просто последовательность фотографий, — порядка сорока за секунду. Такова объективная скорость, с которой мы можем обрабатывать визуальные сигналы, превращая их в образы, воспринимаемые мозгом. За жизнь мы обрабатываем около ста миллиардов образов.
Вероятно, число осознанных мыслей, посещающих нас, значительно меньше, но все еще чрезвычайно велико. Например, средняя скорость речи — порядка двух слов в секунду. Если значимую мысль оценить в пять слов, то за всю жизнь мы можем передумать около миллиарда мыслей.
Эти оценки показывают, что для исследования мира нам предоставляется около миллиарда возможностей. В этом смысле внутреннего времени у нас предостаточно. Даже такая оценка может оказаться слишком консервативной, поскольку в мозгу возможна параллельная обработка данных. Иногда, главным образом бессознательно, мы обдумываем несколько вещей одновременно.
В «Песни любви Дж. Альфреда Пруфрока» Томас Элиот говорит о том же с иронией: «Мгновенье на сомненья — и мгновенье / Решимости на мнимую решимость».
Благодаря достижениям предыдущих поколений мы можем значительно увеличить наши мыслительные ресурсы. Нам не надо с нуля искать способы удовлетворить базовые потребности в еде, питье или тепле. Не надо опять открывать математический анализ, основы современной науки, технологии. Изобретение компьютера и интернета избавило нас от необходимости производить кропотливые вычисления и запоминать большие массивы информации. Мы можем передать часть мыслительного процесса «на аутсорсинг» и освободить больше нашего внутреннего времени для других целей.
Природа не ограничена быстротой человеческой мысли. События могут происходить с гораздо большей скоростью, чем наша скорость обработки образов — сорок за секунду, даже если зрительно воспринимать их мы не можем. А вот «тактовая частота» современного информационного процессора, такого как у высокоскоростного ноутбука, — примерно 10 гигагерц. Это соответствует 10 миллиардам операций в секунду. Транзисторы компьютеров используют движение электронов под действием электрического поля вместо гораздо более медленных процессов диффузии и химических реакций, управляющих нашими нейронами. Именно поэтому искусственный интеллект «соображает» примерно в миллиард раз быстрее, чем естественный.
ИЗМЕРЕНИЕ ВРЕМЕНИ
История часов и измерений времени внесла большой вклад в физику. Сначала часы представляли собой довольно простые приборы: солнечные измеряли время по положению солнца, песочные основывались на пересыпании песка, а в сходных с ними устройствах использовались перетекание воды, горение свечей и многое другое. Такие легендарные ученые, как Галилей и Христиан Гюйгенс, изобрели механические часы с маятником, которые затем совершенствовались в течение многих десятилетий и вплоть до двадцатого века были эталоном точности.
В двадцатом веке появились более надежные часы, основанные на совершенно других принципах. Маятники и раскручивающиеся пружинки уступили место сначала колеблющимся кристаллам, а затем колеблющимся атомам. Эти крохотные осцилляторы меньше подвержены грубому воздействию извне, а трение в них очень мало. В результате сегодня самые точные атомные часы невероятно стабильны: их стабильность лучше, чем 10-18. Это значит, что время, которое покажут двое таких часов, работающих в течение всей жизни Вселенной, будет различаться примерно на секунду. Современные, относительно дешевые компактные (размером с микрочип) атомные часы могут верно показывать время с точностью до 10-13. Это значит, что они отстанут или уйдут вперед на одну секунду за миллион лет.
Такая невероятная точность может показаться излишней, но на самом деле она очень полезна. В случае спутниковой навигационной системы именно этим обеспечивается точность измерения расстояния. Обратите внимание, что когда речь идет о скорости света, то даже крошечная ошибка при измерении времени приводит к заметной ошибке при вычислении расстояния.
Создание еще более точных часов — сложное и перспективное направление современной физики. Один из недавних результатов в этой области мне особенно дорог: нашлась возможность создать из большого числа взаимодействующих атомов физическую систему, которая увеличит точность одноатомных часов. Идею существования такой системы — темпорального или квантового «кристалла времени» — выдвинул я, а затем ее реализовали физики-экспериментаторы.

 

Измерение коротких промежутков времени
Как и в контексте пространства, если нас интересуют чрезвычайно короткие временные промежутки, измерения надо проводить другими, не столь прямыми методами. Мы видели, что при измерении расстояния рентгеновская дифракция и рассеяние атомов дают информацию, которую можно конвертировать в карты (то есть в изображения) атомного и субатомного мира. Эти методы связаны с изучением того, как мишени — объекты, которые мы хотим отобразить, — изменяют движение падающих рентгеновских лучей или частиц, бомбардирующих образец.
Чтобы определить временную структуру быстрых событий, используются сходные методы, но теперь существенны изменения энергии, а не направления движения. Мир быстрых событий полон чудес и сюрпризов. Я остановлюсь на нескольких основных моментах и сделаю это настолько кратко, насколько позволяет суть вопроса.
Благодаря мощным лазерам можно изучить последовательность событий, происходящих во многих химических процессах. Фемтохимия создает временные шкалы с шагом, достигающим 10-15 секунды (одна фемтосекунда). Ведь чем лучше что-то понимаешь, тем лучше можешь это контролировать. Лазерная коррекция зрения использует фемтосекундные лазерные импульсы для операций на роговой оболочке.
Еще большее временное разрешение удается получить, используя ускорители высоких энергий. Позднее мы более подробно займемся этим вопросом. Бозон Хиггса, открытие которого стало триумфом физики двадцать первого столетия, крайне нестабилен. Его время жизни — всего 10-22 секунды. Это значит, что для получения свидетельств его существования физикам потребовалось реконструировать события такого временного масштаба.
БУДУЩЕЕ ВРЕМЕНИ
Прикладное физическое время
Общая теория относительности Эйнштейна двигалась от триумфа к триумфу, как теория гравитации. Она учит нас, что пространство-время может изгибаться и деформироваться. Это подогревает мечты о путешествиях в прошлое и будущее, порталах, кротовых норах и варп-двигателях. Могут ли эти фантазии стать инженерной реальностью?
У меня мало надежды, что в обозримом будущем мы сможем манипулировать физическим временем. По иронии судьбы обнаружение LIGO гравитационных волн — возможно, наиболее убедительное подтверждение общей теории относительности — также подкрепляет мое мнение.
Лазерно-интерферометрическая гравитационно-волновая обсерватория (LIGO) — превосходный прибор, разработанный специально для того, чтобы фиксировать малейшие искривления пространства-времени. Он реагирует на изменения относительного положения разнесенных на четыре километра зеркал, которые в тысячу раз меньше ядра атома. Однако даже при такой чувствительности ему едва удалось обнаружить искажения, возникшие при коллапсе двух черных дыр, каждая из которых в несколько раз массивнее Солнца. Вывод прост: деформировать пространство-время можно, но работа эта очень трудная.

 

Прикладное психологическое время: прыжки и развороты
Физическое время нельзя изогнуть: оно непрерывно течет в одном направлении и одинаково для всего сущего. Психологическое время — это совсем другое. Оно может извиваться, ветвиться и довольно резво скакать. С помощью памяти можно возвращаться в прошлое и двигаться по нему быстро или медленно, перепрыгивать с события на событие, менять их, представляя себе, как все могло бы сложиться. Мы запросто придумываем различные варианты будущего и планируем свои действия так, чтобы реализовать желаемый. Возможно, это и есть основная задача наших лобных долей — массивных извилистых выступов мозга, которые значительно отличают нас от животных.
Кстати, компьютеры, по сути, неподвластны времени. Они могут возвращаться в прежние состояния и выполнять параллельно несколько программ. Искусственный интеллект, основанный на таких технологиях, сможет конструировать свое психологическое время с большой точностью и вариативностью. Вероятно, у него даже будет возможность «проживать» доставляющие удовольствие моменты вновь и вновь, причем так же остро, как и в первый раз.

 

Прикладное психологическое время: скорость
Как мы уже говорили, существует огромная пропасть между скоростью нашего мышления и скоростью «мышления» современного компьютера — эти скорости различаются в миллиарды раз. Фундаментальные фемтосекундные атомные процессы происходят еще во много тысяч раз быстрее. Таким образом, есть временное пространство, куда в каждый момент может поместиться гораздо больше событий.
Перед умело объединенными разумами человека и машины или полностью искусственным интеллектом открываются значительные возможности увеличить стандартную скорость мышления. Если не случатся катастрофическая ядерная война или потепление климата, именно это вскоре и произойдет — по моим оценкам, за несколько десятилетий.
Возможна и более фантастическая картина. Представьте себе сверхбыстродействующий интеллект на основе субатомных процессов. Эта тема обыгрывается в романе «Яйцо дракона» Роберта Лалла Форварда, написанном в жанре «твердой» научной фантастики. Форвард придумал разумную цивилизацию, чила, живущую на поверхности нейтронной звезды. Здесь царствует ядерная, а не атомная химия. При ядерных реакциях выделяется гораздо больше энергии, и потому они протекают быстрее. Эпохи истории чила меняются в мгновение ока. Прилетевшие с Земли астронавты сталкиваются с дикой, отсталой в научном отношении формой жизни, но через полчаса обнаруживают, что чила, получив доступ к библиотекам землян, намного их опередили.

 

Прикладное психологическое время: срок жизни
В «Путешествии Гулливера» Джонатан Свифт знакомит нас с расой бессмертных — струльдбругов. Вот только эти бессмертные все равно стареют и становятся немощными, жалкими созданиями — обузой для общества. Несчастье или зло бессмертия — лейтмотив многих мифов и литературных произведений. Нас предостерегают: говоря о долголетии, будьте осторожны в своих желаниях.
Честно говоря, я думаю, что это притворство — близок локоть, да не укусишь. Когда смерть разрушает память и накопленное знание, это ужасно и расточительно. Увеличение продолжительности жизни здорового человека должно стать одной из приоритетных задач науки.
Назад: Глава 1. Здесь много пространства
Дальше: Глава 3. Здесь очень мало составляющих