6
Теория струн: Перспективы и проблемы
Итак, мы видим, что на рубеже XIX и XX веков в физике было два великих столпа: закон всемирного тяготения Ньютона и уравнения Максвелла для света. Эйнштейн понимал, что они конфликтуют друг с другом и одному из них суждено рухнуть. Падение Ньютоновой механики дало толчок великим научным революциям двадцатого столетия.
Не исключено, что сегодня история повторяется. В физике вновь существуют два столпа. С одной стороны, у нас есть теория очень большого – теория гравитации Эйнштейна, которая дает нам черные дыры, Большой взрыв и расширяющуюся Вселенную. С другой стороны, у нас есть теория очень маленького – квантовая теория, которая объясняет поведение элементарных частиц. Проблема в том, что эти теории противоречат друг другу. Они опираются на разные принципы, разную математику и разную философию.
Мы надеемся, что следующая великая революция объединит два этих столпа.
Теория струн
Все началось в 1968 г., когда два молодых физика, Габриэль Венециано и Махико Судзуки, копаясь в математических книгах, наткнулись на странную формулу, которую математик Леонард Эйлер вывел еще в XVIII веке. Эта странная формула, похоже, описывала рассеяние двух элементарных частиц! Как могла абстрактная формула из XVIII века описывать результаты, полученные на современных ускорителях? В физике так не бывает.
Позже физики, включая Йоитиро Намбу, Хольгера Нильсена и Леонарда Сасскинда, поняли, что эта формула представляет взаимодействие двух струн. Очень быстро ее удалось распространить на целую армию уравнений, представляющих рассеяние мультиструн. (Между прочим, моя докторская диссертация была посвящена расчету полного набора взаимодействий для произвольного числа струн.) Затем исследователи смогли ввести в теорию струн вращающиеся частицы.
Теория струн стала чем-то вроде нефтяной скважины, неожиданно выбросившей фонтан новых уравнений. (Лично меня это не устраивало, поскольку физика еще со времен Фарадея была представлена полями, содержавшими в сжатой форме огромное количество информации. Теория струн, напротив, представляла собой набор разрозненных уравнений. Нам с коллегой Кейдзи Киккавой тогда удалось перевести всю теорию струн на язык полей, создав то, что называют струнной теорией поля. При помощи наших уравнений можно свести теорию струн в одно уравнение теории поля длиной не больше дюйма.)
Из потока уравнений начала складываться новая картина. Почему частиц так много? Подобно Пифагору более двух тысяч лет назад, теория говорила, что каждая музыкальная нота – каждое колебание струны – описывает какую-нибудь частицу. Электроны, кварки и частицы Янга – Миллса представляют собой не что иное, как разные ноты на одной и той же колеблющейся струне.
Особенно интересно в этой теории то, что в нее с необходимостью включается гравитация. Гравитон появляется в ней без каких-либо дополнительных предположений как одна из низших вибраций струны. Мало того, даже если бы Эйнштейна не существовало, его теорию гравитации можно было бы отыскать, просто поглядев на самую низкую вибрацию все той же струны.
Как сказал однажды физик Эдвард Виттен, «теория струн необычайно привлекательна, потому что гравитацию она нам просто навязывает. Все известные непротиворечивые струнные теории включают в себя гравитацию, так что если в квантовой теории поля, какой мы ее знаем, гравитация невозможна, то в струнной теории она обязательна».
Десять измерений
Но когда теория начала развиваться, в ней стало появляться все больше и больше фантастических, совершенно неожиданных черт. Обнаружилось, например, что она может существовать только в десяти измерениях!
Это повергло физиков в настоящий шок, поскольку прежде никто ничего подобного не видел. Обычно теорию можно выразить в любой размерности, какая вам нравится. Мы просто отбрасываем все остальные варианты, потому что живем – со всей очевидностью – в трехмерном мире. (Мы можем двигаться только вперед-назад, вправо-влево и вверх-вниз. Если добавить время, то четырех измерений вполне хватит, чтобы определить местонахождение любого события во Вселенной. Если, например, мы хотим встретиться с кем-то на Манхэттене, то достаточно сказать: давай встретимся на углу 5-й авеню и 42-й улицы, на десятом этаже, в полдень. Движение в измерениях сверх этих четырех для нас невозможно, как бы мы ни старались. Мало того, наш мозг не способен даже представить зрительно, каково это – двигаться в более высоких измерениях. Поэтому исследования многомерной теории струн проводятся исключительно математически.)
Но в теории струн размерность пространства-времени имеет фиксированные десять измерений. В других размерностях теория математически рушится.
Я до сих пор помню шок, который испытали физики, когда теория струн вдруг постулировала, что мы живем в десятимерной вселенной. Большинство физиков увидели в этом доказательство ошибочности теории. Когда Джон Шварц, один из ведущих архитекторов теории струн, сталкивался в лифте Калтеха с Ричардом Фейнманом, тот частенько поддевал его, обращаясь с вопросом: «Ну, Джон, в скольких измерениях вы сегодня находитесь?»
Тем не менее с годами физики начали показывать, что все конкурирующие теории страдают фатальными недостатками. Например, многие из них можно было исключить просто потому, что в них квантовые поправки оказывались бесконечными или аномальными (то есть математически противоречивыми).
Так что со временем физики начали свыкаться с идеей, что наша Вселенная, возможно, все-таки десятимерна. Наконец в 1984 г. Джон Шварц и Майкл Грин показали, что теория струн свободна от всех тех проблем, что обрекали на неудачу прочих претендентов на роль единой теории поля.
Если теория струн верна, то вселенная, возможно, изначально была десятимерной. Но такая вселенная оказалась нестабильной, и шесть измерений из десяти каким-то образом свернулись и стали слишком маленькими, чтобы их можно было увидеть. Из этого следует, что на самом деле наша Вселенная, возможно, десятимерна, но атомы слишком велики, чтобы проникнуть в эти крохотные высшие измерения.
Гравитон
Несмотря на все безумие струнной теории, одна ее способность не дает ей сойти со сцены: она успешно «сочетает браком» две великие физические теории – общую теорию относительности и квантовую теорию – и, таким образом, дарует нам конечную теорию квантовой гравитации. Именно этим объясняется ажиотаж вокруг теории струн.
Как уже говорилось, добавляя к КЭД квантовые поправки или частицу Янга – Миллса, мы получаем поток расходимостей, которые необходимо устранять.
Но все это ни к чему не приводит, если мы пытаемся устроить вынужденный брак двух великих теорий природы – теории относительности и квантовой теории. Чтобы применить квантовый принцип к гравитации, мы разбиваем ее на энергетические пакеты, или кванты, называемые гравитонами. Затем мы рассчитываем столкновение гравитонов друг с другом и с частицами материи, такими как электрон. Но при этом весь набор фокусов, придуманных Фейнманом и 'тХоофтом, не дает результата. Квантовые поправки, вызванные взаимодействием гравитонов с другими гравитонами, расходятся и совершенно не поддаются устранению методами, найденными предыдущими поколениями физиков.
Вот здесь-то и происходит следующий акт волшебства. Теория струн в состоянии устранить эти проблематичные расходимости, донимавшие физиков на протяжении почти столетия. И это волшебство вновь реализуется через симметрию.
Рис. 11. При расчете столкновения двух гравитонов (вверху) ответ получается бесконечным, а значит, бессмысленным. Но когда сталкиваются две струны (внизу), мы получаем два слагаемых – одно от бозонов, другое от фермионов. В теории струн два этих слагаемых в точности компенсируют друг друга, помогая создать конечную теорию квантовой гравитации
Суперсимметрия
Исторически симметричность уравнений считалась положительным качеством, но рассматривалась как роскошь, в которой не было строгой необходимости. В квантовой теории симметрия становится самым важным свойством физики.
Как мы установили, при вычислении квантовых поправок к той или иной теории они нередко получаются расходящимися (то есть бесконечными) или аномальными (то есть нарушающими изначальную симметрию теории). Только в последние десятилетия физики поняли, что симметрия – это не просто приятное свойство теории, а скорее ее центральный компонент. Требование симметричности теории зачастую способно изгнать из нее расходимости и аномалии, присущие несимметричным теориям. Симметрия – меч, при помощи которого физики одолевают драконов, выпущенных на волю квантовыми поправками.
Как уже говорилось, Дирак обнаружил, что его уравнение для электрона предсказывает наличие у электрона спина (который представляет собой математическое свойство уравнений, напоминающее обычное вращение (по-английски spin), которое мы наблюдаем в повседневной жизни). Позже физики выяснили, что спином обладают все элементарные частицы. Но спин бывает двух типов.
В определенных квантовых единицах спин может быть либо целым (таким, как 0, 1 или 2), либо полуцелым (таким, как 1/2, 3/2). Частицы с целым спином описывают взаимодействия Вселенной. Они включают в себя фотон и частицу Янга – Миллса (со спином 1), а также частицу гравитации гравитон (со спином 2). Их называются бозонами (в честь индийского физика Шатьендраната Бозе). Так что можно сказать, что природные взаимодействия переносятся бозонами.
Далее, существуют частицы, из которых состоит материя Вселенной. Они обладают полуцелым спином, к ним относятся такие частицы, как электроны, нейтрино и кварки (со спином 1/2). Эти частицы называются фермионами (в честь Энрико Ферми), и из них можно построить остальные частицы атома – протоны и нейтроны. Так что атомы нашего тела представляют собой наборы фермионов.
Два типа субатомных частиц
Затем Бундзи Сакита и Жан-Лу Жерве продемонстрировали, что теория струн обладает новым типом симметрии, получившим название суперсимметрии. С той поры понятие суперсимметрии было расширено таким образом, что теперь это самая всеобъемлющая симметрия, которую когда-либо обнаруживали в физике. Мы уже подчеркивали, что красота для физика – это симметрия, которая позволяет нам найти связь между различными частицами. Суперсимметрия способна объединить все частицы Вселенной. Как уже говорилось, симметрия позволяет менять местами составные части объекта, сохраняя при этом первоначальный объект неизменным. В данном случае местами меняются частицы в уравнениях: фермионы встают на место бозонов и наоборот. То, что частицы всей Вселенной могут свободно меняться местами, превращаясь друг в друга, становится центральным свойством теории струн.
Это означает, что у каждой частицы есть суперпартнер, называемый с-частицей, или суперчастицей. Например, суперпартнера электрона называют сэлектроном. Суперпартнера кварка называют скварком. Суперпартнера лептона (такого, как электрон или нейтрино) называют слептоном.
Но в теории струн происходит нечто замечательное. При расчете квантовых поправок к теории струн мы имеем две составляющие. Есть квантовые поправки, исходящие от фермионов, а есть – исходящие от бозонов. Они чудесным образом одинаковы по величине, но противоположны по знаку. Одно из слагаемых может быть положительным, но одновременно имеется и другое слагаемое – отрицательное. При сложении они компенсируют друг друга, оставляя конечный результат.
Физикам не удавалось создать союз теории относительности и квантовой теории почти столетие, но симметрия фермионов и бозонов, называемая суперсимметрией, позволяет взаимно скомпенсировать многие бесконечности. Вскоре физики открыли и другие способы устранения бесконечностей, оставляющие конечный результат. Именно в этом кроются истоки того ажиотажа, что окружает теорию струн: она способна объединить гравитацию и квантовую теорию. Ни одна другая теория не может претендовать на то же самое. Это, возможно, позволит снять и первоначальное возражение Дирака. Он ненавидел теорию перенормировки, потому что, несмотря на ее фантастические и неоспоримые успехи, в ней предлагалось складывать и вычитать бесконечные по размеру величины. Здесь же мы видим, что теория струн конечна сама по себе, без всякой перенормировки.
Это, в свою очередь, вполне может укладываться в картину, предложенную самим Эйнштейном. Он однажды сравнил свою теорию гравитации с мрамором – она такая же гладкая, элегантная, отполированная. А материя, напротив, больше напоминает древесину. Ствол дерева коряв, хаотичен, груб и не имеет правильной геометрической структуры. Его конечной целью было создание единой теории, которая соединила бы мрамор и древесину, то есть создание теории, целиком сделанной из мрамора. Именно это было мечтой Эйнштейна.
Теория струн может завершить эту картину. Суперсимметрия способна превращать мрамор в дерево и наоборот. Мрамор и дерево в ней – две стороны одной медали. В этой картине мрамор представлен бозонами, а дерево – фермионами. Хотя экспериментальных свидетельств в пользу существования суперсимметрии в природе у нас нет, она настолько элегантна и красива, что захватила воображение физического сообщества.
Стивен Вайнберг однажды сказал: «Хотя симметрии от нас скрыты, мы можем чувствовать, что они неявно присутствуют в природе, управляя всем вокруг. Это самая захватывающая идея из всех, какие я знаю: природа намного проще, чем она выглядит. Ничто не внушает мне большей надежды на то, что наше поколение реально держит в своих руках ключ от Вселенной, что еще при нашей жизни мы сможем сказать, почему все видимое в этой огромной Вселенной с галактиками и частицами логически неизбежно».
Если обобщить сказанное, то мы теперь видим, что симметрия может быть ключом к объединению всех законов Вселенной:
● Симметрия создает порядок из хаоса. Из хаоса химических элементов и элементарных частиц периодическая система Менделеева и Стандартная модель способны создать порядок, выстроив их аккуратно и симметрично.
● Симметрия помогает заполнить пробелы. Она позволяет выделять прорехи в теориях и, таким образом, предсказывать существование новых типов элементов и элементарных частиц.
● Симметрия объединяет совершенно неожиданные и, казалось бы, никак не связанные друг с другом объекты. Она находит связи между пространством и временем, материей и энергией, электричеством и магнетизмом, фермионами и бозонами.
● Симметрия раскрывает неожиданные явления. Она предсказала существование таких новых явлений, как антивещество, спин и кварки.
● Симметрия устраняет нежелательные следствия, способные разрушить теорию. Квантовые поправки часто характеризуются катастрофическими расходимостями и аномалиями, которые можно устранить при помощи симметрии.
● Симметрия изменяет первоначальную классическую теорию. Квантовые поправки к теории струн настолько строги, что на самом деле меняют первоначальную теорию, фиксируя размерность пространства-времени.
Рис. 12. Считается, что в начале времен существовало одно-единственное супервзаимодействие, симметрия которого включала в себя все частицы Вселенной. Но ситуация была нестабильна, и симметрия начала нарушаться. Первой отделилась гравитация. Затем за ней последовали сильное и слабое ядерные взаимодействия, оставив лишь электромагнитное взаимодействие. Так что Вселенная сегодня кажется разбитой на части, а все взаимодействия сильно отличаются друг от друга. Задача физиков – заново собрать кусочки в единое взаимодействие
Теория суперструн обладает всеми необходимыми свойствами. Ее симметрия – это суперсимметрия (симметрия бозонов и фермионов). Суперсимметрия, в свою очередь, – это самая всеобъемлющая симметрия, когда-либо обнаруженная в физике и способная объединить все известные частицы Вселенной.
М-теория
Нам еще предстоит сделать завершающий шаг в создании теории струн – найти ее фундаментальные физические принципы. Дело в том, что мы до сих пор не понимаем, как вывести всю теорию из одного-единственного уравнения. В 1995 г. теория струн пережила очередную метаморфозу, и родилась так называемая M-теория. Проблема первоначальной теории струн заключалась в существовании пяти вариантов квантовой теории гравитации, каждая из которых была конечна и хорошо определена. Все пять струнных теорий выглядели очень похоже, за исключением того, что спины в них были организованы немного по-разному. Возникал вопрос: почему же их пять? Ведь, по мнению большинства физиков, Вселенная должна быть уникальной.
Физик Эдвард Виттен обнаружил, что на самом деле существует скрытая одиннадцатимерная теория, получившая название M-теории, в основе которой лежат мембраны (такие, как поверхности сфер и бубликов), а не просто струны. Он объяснял существование пяти струнных теорий тем, что превратить одиннадцатимерную мембрану в десятимерную струну можно пятью способами.
Иными словами, все пять вариантов теории струн представляли собой различные математические представления одной и той же M-теории. (Так что теория струн и M-теория на самом деле одна и та же теория, за исключением того, что теория струн есть сведение одиннадцатимерной M-теории к десяти измерениям.) Но как может одна одиннадцатимерная теория породить пять десятимерных теорий?
Представьте себе надувной пляжный мяч. Если выпустить из него воздух, мяч сдуется и станет напоминать сосиску. Если удалить из него остатки воздуха, сосиска превратится в струну. Следовательно, на самом деле струна – это замаскированная мембрана, из которой выпустили воздух.
Если взять для начала одиннадцатимерный пляжный мяч, то можно математически показать, что существуют пять способов сдуть его, превратив в десятимерную струну.
Или вспомните притчу о слепцах, впервые встретивших на своем пути слона. Один из них, ощупав ухо животного, заявил, что слон плоский и двумерный, как веер. Другой, ощупав хвост, пришел к выводу, что слон подобен веревке или одномерной струне. Третий, исследовавший ногу, заключил, что слон представляет собой трехмерный барабан или цилиндр. Но на самом деле, если отойти в сторону и подняться в третье измерение, то можно увидеть слона как трехмерное животное. Точно так же пять разных струнных теорий подобны уху, хвосту и ноге, но нам еще только предстоит увидеть слона (M-теорию) целиком.
Голографическая Вселенная
Как мы уже говорили, со временем в теории струн были открыты новые горизонты. Вскоре после того, как в 1995 г. была предложена M-теория, в 1997 г. Хуан Малдасена сделал еще одно поразительное открытие.
Он потряс физическое сообщество, показав то, что когда-то считалось невозможным: что суперсимметричная теория Янга – Миллса, описывающая поведение элементарных частиц в четырех измерениях, дуальна, то есть математически эквивалентна определенной теории струн в десяти измерениях. Это вызвало в мире физики настоящий ажиотаж. К 2015 г. вышло десять тысяч статей, в которых авторы ссылались на работу Малдасены, что сделало ее самой влиятельной работой в физике высоких энергий. (Симметрия и дуальность – родственные, но разные понятия. Симметрия возникает, когда мы переставляем местами компоненты одного уравнения, а само уравнение при этом не меняется. Дуальность возникает, когда мы показываем, что две совершенно разные теории на самом деле математически эквивалентны. Замечательно, что теория струн обладает обоими этими в высшей степени нетривиальными качествами.)
Как мы видели, в уравнениях Максвелла наблюдается дуальность между электрическим и магнитным полями: уравнения остаются неизменными, если поменять местами эти два поля, превратив электрические поля в магнитные и наоборот. (Это можно увидеть математически, потому что электромагнитные уравнения часто содержат такие члены, как E2 + B2, которые остаются неизменными, когда мы поворачиваем эти два поля, превращая их друг в друга, как в теореме Пифагора.) Аналогично существуют пять струнных теорий в десяти измерениях, которые, как можно доказать, дуальны друг другу, так как на самом деле все они представляют собой единственную одиннадцатимерную M-теорию. Дуальность показывает, что две теории на самом деле представляют собой два аспекта одной и той же теории.
Малдасена, однако, показал, что существует и другая дуальность между струнами в десяти измерениях и теорией Янга – Миллса в четырех измерениях. Такое развитие событий было совершенно неожиданным, но влекло за собой значительные последствия. Оно означало, что существуют глубокие неожиданные связи между гравитационным и ядерным взаимодействиями, определенными в совершенно разных размерностях.
Обычно дуальности обнаруживаются между струнами одинаковой размерности. Переставляя слагаемые, описывающие эти струны например, мы нередко можем заменить одну теорию струн на другую. Это создает целую паутину дуальностей между разными струнными теориями, которые определены в одинаковой размерности. Но дуальность между двумя объектами, определенными в разных размерностях, была событием неслыханным.
Это отнюдь не академический вопрос, потому что он имеет далеко идущие последствия в контексте представлений о ядерном взаимодействии. Скажем, ранее мы видели, что наилучшее описание ядерного взаимодействия дает нам калибровочная теория в четырех измерениях, представленная полем Янга – Миллса, но никому так и не удалось найти ни одного точного решения для поля Янга – Миллса. Но поскольку калибровочная теория в четырех измерениях может быть дуальна теории струн в десяти измерениях, это означает, что ключом к ядерному взаимодействию может быть теория квантовой гравитации. Это стало откровением, поскольку означало, что фундаментальные свойства ядерного взаимодействия (например, масса протона), возможно, лучше всего описываются теорией струн.
Это породило среди физиков своеобразный кризис идентичности. Те, кто работает исключительно в области ядерного взаимодействия, все свое время посвящают исследованию трехмерных объектов, таких как протоны и нейтроны, и нередко посмеиваются над физиками, которые занимаются теоретическими рассуждениями в более высоких размерностях. Но с учетом новой дуальности между теорией гравитации и калибровочной теорией они вдруг обнаружили, что пытаются разузнать все, что можно, о десятимерной теории струн, в которой, возможно, кроется ключ к пониманию ядерного взаимодействия в четырех измерениях.
Эта странная дуальность привела еще к одному неожиданному открытию, получившему название голографического принципа. Голограмма – это двумерный лист пластика, содержащий особым образом зашифрованное изображение трехмерных объектов. Если направить на такой плоский экран лазерный луч, то над ним возникает трехмерный образ. Иными словами, вся информация, необходимая для создания трехмерного образа, закодирована и нанесена на плоский двумерный экран при помощи лазеров. Примерно так R2-D2 из «Звездных войн» проецировал образ принцессы Леи, и так же создаются дома с привидениями в Диснейленде, где вокруг вас скользят трехмерные призраки.
Этот принцип справедлив и для черных дыр. Как мы видели ранее, если бросить в черную дыру энциклопедию, то, согласно квантовой механике, содержащаяся в книге информация не может исчезнуть. Так куда же она девается? Одна теория постулирует, что она распределяется по поверхности горизонта событий черной дыры. Так что двумерная поверхность черной дыры содержит полную информацию обо всех трехмерных объектах, которые попали внутрь.
Из этого тоже вытекают далеко идущие выводы для нашей концепции реальности. Мы уверены, что представляем собой трехмерные объекты, способные передвигаться в пространстве и описываемые тремя числами – длиной, шириной и высотой. Но это, возможно, иллюзия. Возможно, все мы живем в голограмме.
Может быть, тот трехмерный мир, который мы воспринимаем, – всего лишь тень реального мира, который на самом деле является десяти- или одиннадцатимерным. Перемещаясь в трех пространственных измерениях, мы воспринимаем таким образом движение нашего реального «я» в десяти или одиннадцати измерениях. Когда мы идем по улице, наша тень следует за нами и движется подобно нам, за исключением того, что она существует в двух измерениях. Аналогично и мы сами, возможно, представляем тени, движущиеся в трех измерениях, но наши настоящие «я» при этом двигаются в десяти или одиннадцати измерениях.
Короче говоря, мы видим, что со временем теория струн приносит новые, совершенно неожиданные результаты. Это означает, что мы до сих пор по-настоящему не понимаем фундаментальные принципы, которые за ней стоят. Вполне возможно, что надо говорить вовсе не о струнах, поскольку при формулировании теории в одиннадцати измерениях струны могут быть описаны как мембраны.
Вот почему пока рано тестировать теорию струн экспериментально. Когда нам удастся раскрыть истинные принципы, стоящие за ней, мы, возможно, найдем способ ее проверить. Тогда мы сможем сказать определенно раз и навсегда, что такое теория струн – теория всего или теория ничего.
Проверка теории
Несмотря на теоретические успехи теории струн, в ней по-прежнему хватает слабых мест. Любая теория с такими грандиозными заявками, как у теории струн, естественным образом привлекает внимание целой армии критиков. Приходится постоянно напоминать себе слова Карла Сагана, который сказал, что «чрезвычайные заявления требуют чрезвычайных доказательств».
(Мне вспоминаются также слова Вольфганга Паули, который умел мастерски осадить человека. Слушая чье-нибудь выступление, он мог запросто сказать: «То, что вы рассказали, было настолько путано, что невозможно понять, чепуха это или нет». Он также любил говорить: «Я не против того, что вы медленно думаете, но меня совершенно не устраивает то, что вы публикуетесь быстрее, чем думаете». Если бы он был жив, то вполне мог бы адресовать эти слова и теории струн.)
Идет настолько жаркий спор, что лучшие умы физики разделились надвое по этому вопросу. Подобного раскола наука не видела со времен Шестого Сольвеевского конгресса 1930 года, на котором Эйнштейн и Бор сцепились друг с другом по вопросу квантовой теории.
Нобелевские лауреаты тоже заняли противоположные позиции. Шелдон Глэшоу написал: «За годы напряженной работы десятков лучших и умнейших не получено ни одного проверяемого предсказания, да и в ближайшее время вряд ли стоит их ожидать». Герард 'тХоофт пошел еще дальше, заявив, что интерес, окружающий теорию струн, можно сравнить с «американскими телесериалами», то есть сплошная реклама и шумиха и ничего по существу.
Другие, наоборот, превозносят достоинства теории струн. Дэвид Гросс написал: «Эйнштейн был бы доволен, по крайней мере, целью, если не реализацией… Ему бы понравился тот факт, что в основе здесь лежит геометрический принцип, который мы, увы, по-настоящему пока не понимаем».
Стивен Вайнберг сравнил историю развития теории струн с историей поиска Северного полюса. На древних картах Земли в том месте, где должен был находиться Северный полюс, изображалась громадная бездонная дыра, но никто и никогда на самом деле ее не видел. В любой точке Земли компасы указывали на это мифическое место. Но все попытки отыскать пресловутый Северный полюс заканчивались неудачей. В глубине души древние моряки понимали, что какой-то Северный полюс должен существовать, но доказать это никто не мог. Некоторые сомневались даже в его существовании. Однако в 1909 г., после многих столетий догадок и домыслов, Роберт Пири добрался наконец до настоящего Северного полюса.
Критик теории струн Глэшоу признал, что в этом споре он находится в меньшинстве. Однажды он заметил: «Я кажусь самому себе динозавром в мире выскочек-млекопитающих».
Критика теории струн
Против теории струн выдвигаются несколько основных возражений. Ее критики утверждают, что эта теория – сплошной хайп, что красота сама по себе – ненадежный проводник в физике, что теория предсказывает слишком много вселенных и, самое главное, что она непроверяема.
Великого астронома Кеплера однажды подкупила сила красоты. Он влюбился в теорию, согласно которой Солнечная система напоминала коллекцию правильных многогранников, вставленных один в другой. Столетия назад греки насчитывали пять таких многогранников (это куб, пирамида и т. п.). Кеплер заметил, что, вставляя последовательно эти многогранники один в другой, наподобие матрешки, можно воспроизвести некоторые детали Солнечной системы. Идея была красивая, но оказалась совершенно неверной.
Не так давно ряд физиков раскритиковали теорию струн на том основании, что красота – обманчивый критерий в физике. То, что теория струн обладает блестящими математическими свойствами, не означает само по себе, что она содержит хотя бы крупицу истины. Они справедливо указывали, что красивые теории иногда заводят в тупик.
Однако поэты часто цитируют стихотворение «Ода греческой вазе» Джона Китса:
В прекрасном – правда, в правде – красота.
Вот знания земного смысл и суть.
Поль Дирак, безусловно, следовал этому принципу, когда писал: «Научный работник в своих попытках выразить фундаментальные законы Природы в математической форме должен стремиться главным образом к математической красоте». Мало того, по его словам, он открыл свою знаменитую теорию электрона, не копаясь в данных, а играя с математическими формулами.
Но, каким бы мощным фактором в физике ни была красота, она, безусловно, может увести с истинного пути. Как писала физик Сабина Хоссенфельдер, «красивые теории опровергались сотнями – теории о единых взаимодействиях, о новых частицах, о дополнительных симметриях и других вселенных. Все эти теории были неверны, неверны, неверны. Ясно, что полагаться на красоту – не лучшая стратегия».
Критики утверждают, что теория струн красива математически, но это, возможно, не имеет никакого отношения к физической реальности.
В подобном замечании есть своя правда, но следует понимать, что отдельные аспекты теории струн, такие как суперсимметрия, нельзя назвать бесполезными для физики. Хотя доказательств существования суперсимметрии до сих пор не найдено, доказано, что она необходима для устранения многих дефектов в рамках квантовой теории. Взаимно компенсируя бозоны и фермионы, суперсимметрия позволяет нам решить давнюю проблему – устранить расходимости, которыми грешит теория квантовой гравитации.
Не каждая красивая теория применима в физике, но все без исключения существующие фундаментальные физические теории обладают какой-нибудь встроенной красотой или симметрией.
Можно ли ее проверить?
Главная претензия к теории струн заключается в том, что она не поддается проверке. Энергия, которой обладают гравитоны, называется планковской энергией, и она в квадриллион раз больше энергии, которую можно получить в Большом адронном коллайдере. Представьте себе попытку построить БАК в квадриллион раз больше нынешнего! Для непосредственной проверки теории нам, вероятно, потребовался бы ускоритель частиц размером с галактику.
Более того, каждое решение струнной теории – это целая вселенная. А решений, судя по всему, существует бесконечное множество. Для непосредственной проверки нашей теории потребовалось бы создавать в лаборатории новые вселенные! Иными словами, только Бог может проверить эту теорию непосредственно, поскольку в основе ее лежат вселенные, а не просто атомы или молекулы.
Так что поначалу кажется, что теория струн не обладает обязательным для любой теории качеством – проверяемостью. Но ее сторонников это не смущает. Как мы установили, наука в большинстве случаев пользуется косвенными методами: она идет путем изучения эха от Солнца, от Большого взрыва и т. п.
Мы, например, ищем эхо десятого и одиннадцатого измерений. Возможно, скрытые доказательства теории струн есть повсюду вокруг нас, но нам следует прислушиваться к ее эху, а не пытаться наблюдать непосредственно.
Один из возможных сигналов из гиперпространства – существование темной материи. До недавнего времени считалось, что наша Вселенная состоит в основном из атомов. Астрономы были поражены, когда обнаружилось, что атомы, такие как водород и гелий, составляют всего 4,9 % массы Вселенной. На самом деле подавляющая часть Вселенной скрыта от нас и существует в виде темной материи и темной энергии. (Напоминаю, что темная материя и темная энергия – это не одно и то же. Во Вселенной 26,8 % массы приходится на темную материю – невидимое вещество, которое окружает галактики и не дает им разлететься на кусочки. А 68,3 % Вселенной составляет темная энергия, которая еще более загадочна, – это энергия пустого пространства, которая расталкивает галактики и заставляет их разбегаться.) Возможно, доказательство теории всего скрыто именно в этой невидимой вселенной.
В поисках темной материи
Темная материя странна и невидима, но именно она удерживает галактику Млечный Путь в целости и не дает составляющим ее звездам разлететься в разные стороны. Поскольку темная материя обладает массой, но не имеет заряда, если бы вы попытались взять ее в руку, она бы прошла сквозь пальцы, будто их не существует, упала бы вниз, прямо сквозь пол, сквозь Землю и вышла бы с другой стороны, где гравитация постепенно заставила бы ее сменить направление движения и вернуться обратно туда, где вы находитесь. Так она и летала бы от вас к другой стороне Земли и обратно, не замечая при этом, собственно, самой Земли.
Какой бы странной ни была темная материя, мы знаем, что она должна существовать. Если проанализировать вращение галактики Млечный Путь и применить законы Ньютона, то выяснится, что в ней недостаточно массы, чтобы противостоять центробежной силе. При тех массах, которые мы наблюдаем, галактики во Вселенной должны быть нестабильными и, по идее, рассыпаться, однако они не распадаются уже миллиарды лет. Так что у нас два варианта: либо уравнения Ньютона неверны в применении к галактикам, либо существует невидимый объект, который позволяет галактикам сохранять целостность. (Вспомним, что планета Нептун была обнаружена именно таким способом: существование новой планеты было постулировано для объяснения отклонений орбиты Урана от теоретических предсказаний.)
В настоящее время в качестве одного из ведущих кандидатов на роль темной материи выступают так называемые слабовзаимодействующие массивные частицы. Вероятным примером такой частицы является фотино – суперсимметричный партнер фотона. Фотино стабилен, обладает массой, невидимо и не имеет заряда, что точно соответствует характеристикам темной материи. Физики считают, что Земля движется в невидимом потоке темной материи, который, вероятно, пронизывает в данный момент ваше тело. При столкновении с протоном фотино способен вызвать распад протона на ливень элементарных частиц, которые можно зарегистрировать. Уже сегодня существуют громадные детекторы размером с бассейн (с огромным количеством жидкостей, содержащих ксенон и аргон), которые однажды, может быть, поймают вспышку, порожденную столкновением с участием фотино. Около двадцати групп занимаются активным поиском темной материи, часто глубоко под землей, в шахтах, подальше от мешающих столкновений с космическими лучами. Не исключено, что столкновение с участием темной материи удастся зарегистрировать нашими инструментами. Как только такое произойдет, физики начнут изучать свойства частиц темной материи, а затем сравнивать их с предсказанными свойствами фотино. Если окажется, что предсказания теории струн соответствуют экспериментальным результатам по темной материи, это станет серьезным аргументом в пользу того, что физики на верном пути.
Другая возможность – это получение фотино на ускорителях частиц следующего поколения, строительство которых сейчас обсуждается.
После БАКа
Японцы рассматривают возможность финансирования Международного линейного коллайдера, в котором пучок электронов будет выстреливаться вдоль прямой трубки и сталкиваться со встречным пучком антиэлектронов. При положительном решении установка должна быть построена за двенадцать лет. Преимущество подобного коллайдера в том, что в нем используются электроны, а не протоны. Протоны состоят из трех кварков, удерживаемых вместе глюонами, поэтому столкновения протонов всегда получаются очень «грязными» и порождают настоящий ливень лишних частиц. Электрон, напротив, представляет собой действительно элементарную частицу, так что столкновение его с антиэлектроном получается намного чище и требует намного меньше энергии. В результате при энергии всего лишь в 250 млрд эВ такие столкновения должны порождать бозоны Хиггса.
Китайцы выразили интерес к строительству Кругового электрон-позитронного коллайдера. Работы по его созданию должны начаться ориентировочно в 2022 г. и завершиться около 2030 г.; обойдется такой коллайдер в $5–6 млрд. В этом устройстве окружностью 100 км можно будет достичь энергии в 240 млрд эВ.
Физики в ЦЕРНе, стремясь не отстать от коллег, планируют создание преемника БАКа под названием Круговой коллайдер будущего. Со временем на нем предполагается получить энергию 100 трлн эВ. Его окружность составит тоже около 100 км.
Пока неясно, будут ли эти ускорители когда-нибудь построены, но все это означает, что есть надежда обнаружить темную материю на ускорителях следующего поколения после Большого адронного коллайдера. В случае обнаружения частиц темной материи их характеристики можно будет сравнить с предсказаниями теории струн.
Еще одно предсказание теории струн, которое, возможно, удастся проверить при помощи этих ускорителей, – это существование миниатюрных черных дыр. Поскольку теория струн – это теория всего, она включает в себя как гравитацию, так и элементарные частицы, так что физики ожидают найти в ускорителе крохотные черные дыры. (Эти миниатюрные черные дыры, в отличие от звездных, безобидны и обладают энергией крохотных элементарных частиц, а не умирающих звезд. В действительности Земля постоянно подвергается бомбардировке космическими лучами, гораздо более мощными, чем все, что способны выдать эти ускорители, причем без всякого вредного эффекта.)
Большой взрыв как ускоритель ядерных частиц
Еще есть надежда, что нам удастся использовать в исследованиях величайший ускоритель всех времен – сам Большой взрыв. Излучение Большого взрыва может дать ключ к разгадке тайны темной материи и темной энергии. Прежде всего эхо, или остаточное свечение Большого взрыва, легко детектируется. Наши спутники умеют регистрировать это излучение с огромной точностью.
Фотографии показывают, что фоновое микроволновое излучение замечательно гладкое и нарушается лишь мелкой рябью. Эта рябь, в свою очередь, отражает крохотные квантовые флуктуации, существовавшие в момент Большого взрыва и затем усиленные им.
Вопросы, однако, вызывает то, что в этом реликтовом излучении присутствуют неправильности, или пятна, которые мы не в состоянии объяснить. Высказываются предположения, что это следы столкновений с другими вселенными. В частности, существует Холодное пятно – необычно холодная отметина на однородном в остальном фоновом излучении, которая, по предположениям некоторых физиков, может оказаться остатком какой-то связи или столкновения нашей Вселенной с какой-то другой параллельной вселенной, произошедшего в начале времен. Если выяснится, что эти странные отметины действительно являются следами взаимодействия нашей Вселенной с параллельными вселенными, то теория мультивселенной, возможно, покажется скептикам более правдоподобной.
Уже существуют планы разместить детекторы гравитационных волн в космосе, что позволит уточнить расчеты.
LISA
Еще в 1916 г. Эйнштейн показал, что гравитация распространяется в виде волн. Подобно тому как расходятся концентрические круги от брошенного в пруд камня, пучности гравитации должны расходиться в пространстве со скоростью света. Однако они, по предположению Эйнштейна, настолько слабы, что обнаружить их вряд ли удастся в обозримом будущем.
Он оказался прав. Только в 2016 г., через сто лет после его предсказания, ученым впервые удалось зарегистрировать гравитационные волны. Громадные детекторы уловили сигналы от двух черных дыр, столкнувшихся в пространстве около миллиарда лет назад. Каждый из этих детекторов, построенных в штатах Луизиана и Вашингтон, занимает территорию площадью в несколько квадратных километров. По форме они напоминают букву L, вдоль каждого плеча которой направлены лазерные лучи. Встречаясь в основании буквы, два луча образуют интерференционную картину, которая настолько чувствительна к вибрациям, что смогла уловить следы столкновения черных дыр.
За свою новаторскую работу трое физиков – Райнер Вайсс, Кип Торн и Барри Бариш – получили в 2017 г. Нобелевскую премию.
Чтобы добиться еще большей чувствительности, есть планы отправить детекторы гравитационных волн в открытый космос. Новая система, известная как Космическая антенна для лазерной интерферометрии (LISA, Laser interferometry space antenna), сумеет, возможно, уловить вибрации, возникшие в момент самого Большого взрыва. Один из вариантов LISA состоит из трех спутников в космосе, связанных друг с другом сетью лазерных лучей. Каждая сторона треугольника составит около 2,5 млн км. Когда гравитационная волна Большого взрыва попадет на детектор, она вызовет небольшие колебания лазерных лучей, которые можно будет измерить при помощи чувствительных приборов.
Конечная цель этой программы – записать ударные волны Большого взрыва, а затем «прогнать пленку» задом наперед, чтобы получить наилучшее возможное представление об излучении до Большого взрыва. Волны, существовавшие до Большого взрыва, затем нужно будет сравнить с тем, что предсказывают разные варианты теории струн. Это, возможно, позволит получить численные данные о мультивселенной до Большого взрыва.
Не исключено, что при помощи еще более совершенных устройств, чем LISA, ученые смогут получить «детские фото» нашей Вселенной и даже найти свидетельства той пуповины, что связывала нашу новорожденную Вселенную с материнской вселенной.
Проверка обратно-квадратичной зависимости
Еще один распространенный аргумент против теории струн связан с тем, что в соответствии с ней мы фактически живем в десяти или одиннадцати измерениях, однако экспериментальных подтверждений этому нет.
Но этот аспект на самом деле, возможно, удастся проверить при помощи уже имеющихся инструментов. Если наша Вселенная трехмерна, то сила тяготения объектов снижается обратно пропорционально квадрату разделяющего их расстояния. Этот знаменитый закон Ньютона ведет наши космические зонды сквозь пространство на миллиарды километров с захватывающей дух точностью, так что мы, если бы захотели, вполне могли бы провести аппараты через кольца Сатурна. Но знаменитый закон обратных квадратов Ньютона проверяется только на астрономических расстояниях, а не в лаборатории. Тот факт, что сила тяготения на малых расстояниях не подчиняется обратно-квадратичному закону, может свидетельствовать о наличии высших измерений. Например, если бы Вселенная имела четыре пространственных измерения, то гравитация должна была бы убывать пропорционально кубу расстояния. (Если бы Вселенная имела N пространственных измерений, то гравитация должна была бы убывать пропорционально (N – 1)-й степени расстояния между объектами.)
Однако в лаборатории сила тяготения между двумя объектами измеряется чрезвычайно редко. Такие эксперименты сложны, поскольку гравитационные силы в лаборатории очень малы, но в Колорадо уже проведены первые измерения и получены отрицательные результаты, то есть обратно-квадратичная зависимость Ньютона по-прежнему выполняется. (Но это означает лишь, что дополнительных измерений нет в Колорадо.)
Проблема ландшафта
Для теоретика все эти критические замечания неприятны, но не фатальны. Что действительно создает проблемы для теоретика, так это предсказание существования мультивселенной из параллельных вселенных, многие из которых куда более безумны, чем все, что может предложить воображение какого-нибудь голливудского сценариста. Теория струн имеет бесконечное множество решений, каждое из которых описывает конечную теорию гравитации, совершенно не похожую на то, что есть в нашей Вселенной. Во многих из этих параллельных вселенных протон нестабилен, так что вся материя распадается, превращаясь в огромное облако электронов и нейтрино. В таких вселенных сложная материя, такая, какой мы ее знаем (атомы и молекулы), не может существовать. Они содержат только газ из элементарных частиц. (Кто-то может возразить, что эти альтернативные вселенные представляют собой всего лишь математическую возможность, что они не реальны. Но проблема в том, что наша теория не имеет предсказательной силы, поскольку она не может сказать, которая из этих альтернативных вселенных реальна.)
На самом деле эта проблема присуща не только теории струн. Например, сколько существует решений для уравнений Ньютона или Максвелла? Их число бесконечно и зависит от того, что вы изучаете. Если начать с лампочки или лазера и решить уравнения Максвелла, то для каждого из этих приборов найдется единственное решение. Но в целом теории Максвелла и Ньютона тоже имеют бесконечное число решений в зависимости от начальных условий, то есть мы возвращаемся к той же ситуации, с которой начали.
Скорее всего, эта проблема характерна для любой теории всего. Любая теория всего будет иметь бесконечное число решений, зависящих от начальных условий. Но как определить начальные условия всей Вселенной? Это означает, что придется вводить условия Большого взрыва извне, вручную.
Многим физикам это представляется каким-то жульничеством. В идеале хотелось бы, чтобы теория сама сообщила нам условия, приведшие к Большому взрыву, включая температуру, плотность и состав в начале Большого взрыва. Теория всего должна сама по себе содержать свои начальные условия.
Иными словами, мы хотели бы получить однозначное и точное предсказание для начала Вселенной. А теория струн предлагает ошеломляющее богатство выбора. Может ли она предсказать нашу Вселенную? Да, может. Это сильное утверждение и цель физиков на протяжении уже почти столетия. Но может ли она предсказать всего одну вселенную? Вероятно, нет. Это и называется проблемой ландшафта.
У этой проблемы существует несколько возможных решений, ни одно из которых не находит широкого признания. Первое – это антропный принцип, который гласит, что наша Вселенная особенная, поскольку в ней есть мы – существа, обладающие сознанием и способные обсуждать этот вопрос. Иными словами, вселенных может существовать сколько угодно, но наша Вселенная – та, условия в которой делают разумную жизнь возможной. Начальные условия Большого взрыва зафиксированы в начале времен таким образом, чтобы разумная жизнь могла сегодня существовать. Другие вселенные, возможно, не имеют самосознающей жизни.
Я ясно помню свое первое знакомство с этой концепцией во втором классе школы. Учитель сказал нам, что Бог так любил Землю, что поместил ее на «правильном» расстоянии от Солнца. Не слишком близко, чтобы океаны не вскипели. И не слишком далеко, чтобы океаны не замерзли. Даже тогда, ребенком, я был ошеломлен этими рассуждениями, потому что в них при помощи чистой логики определялась природа Вселенной. Но сегодня спутники открыли уже четыре тысячи планет, обращающихся вокруг других звезд. Как ни печально, большинство из них располагается либо слишком близко, либо слишком далеко от своей звезды, чтобы поддерживать жизнь. Так что рассуждения моего учителя можно рассматривать двояко. Возможно, действительно существует любящий Бог, а возможно, существуют тысячи мертвых планет, расположенных слишком близко или слишком далеко, а мы с вами живем на той, что в самый раз подходит для поддержания разумной жизни, представители которой могут спорить о подобных вопросах. Аналогично можно допустить, что мы существуем в океане мертвых вселенных, а наша Вселенная – особая только потому, что мы в ней есть и можем обсуждать этот вопрос.
Помимо прочего, антропный принцип позволяет объяснить еще один любопытный экспериментально подтвержденный факт о нашей Вселенной – то, что фундаментальные физические константы в ней точно настроены на создание условий существования жизни. Как писал физик Фримен Дайсон, Вселенная, похоже, знала, что мы должны в ней появиться. Так, если бы ядерное взаимодействие было чуть слабее, Солнце никогда не вспыхнуло бы, и Солнечная система осталась бы темной. Если бы сильное ядерное взаимодействие было чуть сильнее, Солнце выгорело бы миллиарды лет назад. Так что ядерное взаимодействие настроено очень точно.
Аналогично будь гравитация чуть слабее, Большой взрыв, возможно, завершился бы Большим замерзанием – появлением мертвой, холодной расширяющейся вселенной. Будь она чуть сильнее, мы, возможно, кончили бы Большим сжатием, и вся жизнь выгорела бы. Однако наша гравитация ровно такая, какой должна быть, чтобы позволить звездам и планетам сформироваться и просуществовать достаточно долго для появления жизни.
Можно составить целый список этих случайностей, которые делают жизнь возможной, и каждый раз мы оказываемся в центре так называемой зоны Златовласки, или зоны обитаемости. Так что Вселенная – это гигантская лотерея, и мы выиграли джекпот. Но, согласно теории мультивселенной, это означает, что мы сосуществуем с громадным количеством мертвых вселенных.
Не исключено, что антропный принцип действительно может выделить нашу Вселенную из миллионов существующих в ландшафте вселенных, поскольку в ней имеется разумная жизнь.
Мой собственный взгляд на теорию струн
Я работаю над теорией струн с 1968 г., так что у меня имеется на ее счет собственное мнение. Как ни крути, эту теорию в окончательном виде еще только предстоит сформулировать. Так что сравнивать теорию струн и нынешнюю Вселенную пока рано.
Одна из особенностей теории струн состоит в том, что она развивается задом наперед, открывая по пути новую математику и новые концепции. Примерно каждое десятилетие в теории струн случается откровение, меняющее наши представления о ее природе. Я был свидетелем трех таких революций, но тем не менее нам только предстоит представить теорию струн в ее полном виде. Мы пока не знаем ее окончательных фундаментальных принципов. Только после их появления можно сравнивать теорию с результатами эксперимента.
Открытие пирамиды
Мне нравится сравнивать исследование теории струн с поисками сокровищ в египетской пустыне. Представьте, что в один прекрасный день вы спотыкаетесь о маленький камешек, торчащий из песка в пустыне. Вы сметаете с камня песок и начинаете понимать, что на самом деле это верхушка гигантской пирамиды. После многолетних раскопок вы находите в ней странные помещения и предметы искусства. На каждом этаже обнаруживаются новые сюрпризы. Наконец, раскопав множество этажей, вы добираетесь до последней двери и уже готовы открыть ее, чтобы выяснить, кто построил эту пирамиду.
Лично я считаю, что мы еще не добрались до нижнего этажа, поскольку всякий раз при анализе теории в ней открываются все новые математические слои. Нам предстоит раскопать еще не один слой, прежде чем мы сможем сформулировать теорию струн в ее окончательном виде. Иными словами, теория умнее нас.
Теорию струн можно выразить с помощью струнной теории поля одним уравнением длиной около дюйма. Но в десяти измерениях нам потребуется уже пять таких уравнений.
Если теорию струн можно выразить в виде теории поля, то для M-теории это по-прежнему невозможно. Впрочем, все же есть надежда, что когда-нибудь физики найдут одно-единственное уравнение, которое выразит M-теорию. Широко известно, что мембрану (которая способна колебаться множеством способов) очень трудно выразить в форме теории поля. Как следствие, M-теория состоит из десятков разрозненных уравнений, которые волшебным образом описывают одну и ту же теорию. Если мы сумеем записать M-теорию в виде теории поля, то, по идее, она полностью должна выводиться из одного-единственного уравнения.
Никто не в состоянии предсказать, когда это произойдет и произойдет ли вообще. Но публика, которая видит хайп и суету вокруг теории струн и отсутствие понятного результата, начинает проявлять нетерпение.
Даже в кругу физиков – специалистов по теории струн заметен пессимизм в отношении ее перспектив. Как выразился однажды нобелевский лауреат Дэвид Гросс, теория струн подобна вершине горы. Когда альпинисты восходят на гору, ее вершина все время хорошо видна, но, кажется, отступает, по мере приближения к ней. Цель дразняще близка, но неизменно ускользает от вас.
На мой взгляд, это естественно, поскольку никто не знает, когда суперсимметрию удастся обнаружить в лаборатории и удастся ли вообще, но на ситуацию нужно смотреть под определенным углом. Суждение о верности или неверности теории должно опираться на конкретные результаты, а не на субъективные желания физиков. Конечно, хотелось бы надеяться, что наши любимые теории найдут подтверждение еще при нашей жизни. Это глубоко человеческое желание. Но иногда природа придерживается собственного расписания.
Атомистическая теория, например, нашла реальное подтверждение через две тысячи лет, и лишь недавно у ученых появилась возможность получать реалистичные изображения отдельных атомов. Даже великим теориям Ньютона и Эйнштейна потребовались десятилетия на то, чтобы многие их предсказания были полностью проверены и подтверждены. Существование черных дыр Джон Мичелл предсказал в 1783 г., но только в 2019 г. астрономы получили первые убедительные изображения их горизонта событий.
Лично я убежден, что пессимизм многих ученых может оказаться ошибочным, и доказательства нашей теории будут найдены не в каких-то гигантских ускорителях частиц, а тогда, когда кто-то сумеет найти для теории окончательную математическую формулировку.
Дело в том, что нам, возможно, вовсе не нужны экспериментальные доказательства теории струн. Теория всего – это ведь теория обычных вещей в том числе. Если мы сможем вывести массу кварков и других известных элементарных частиц из фундаментальных принципов теории, это может стать убедительным доказательством того, что она и есть окончательная теория всего.
Проблема вовсе не в экспериментальных успехах. В Стандартной модели, как известно, имеется порядка двадцати свободных параметров, которые вводятся вручную (такие, как масса кварков и сила их взаимодействий). У нас много экспериментальных данных о массах и взаимодействиях элементарных частиц. Если теория струн позволит точно рассчитать эти фундаментальные константы на базе основных принципов, без всяких предварительных предположений, то это, на мой взгляд, докажет ее корректность. Это стало бы поистине историческим событием, если бы известные параметры Вселенной удалось получить из одного-единственного уравнения.
Но после получения этого уравнения длиной в один дюйм что мы будем с ним делать? Как нам уйти от проблемы ландшафта?
Один из вариантов предполагает, что многие из этих вселенных нестабильны и, распадаясь, сходятся к нашей знакомой Вселенной. Вспомним, что вакуум – это не скучная невыразительная пустота, что на самом деле он постоянно кипит пузырями-вселенными, которые возникают и исчезают, как пузырьки в пенной ванне. Хокинг называл это пространственно-временной пеной. Большая часть этих крохотных пузырьков-вселенных нестабильна, они внезапно рождаются из вакуума и столь же внезапно исчезают.
Когда окончательная формулировка теории будет наконец найдена, возможно, удастся показать, что большинство альтернативных вселенных нестабильны и распадаются до нашей Вселенной. Например, естественный масштаб времени для этих пузырьковых вселенных – это планковское время, равное 10–43 секунд, невероятно короткий промежуток. Большинство вселенных живет только этот краткий миг. Возраст же нашей Вселенной составляет 13,8 млрд лет, что чудовищно больше времени жизни большинства вселенных в этом описании. Иными словами, возможно, наша Вселенная особая и выделяется в бесконечном множестве вселенных, составляющих ландшафт. Она пережила их все, именно поэтому мы с вами сегодня здесь и можем обсуждать этот вопрос.
Но что делать, если окончательное уравнение окажется настолько сложным, что его не удастся решить вручную? Тогда невозможно будет показать, что наша Вселенная особая и выделяется среди вселенных, присутствующих в ландшафте. В данный момент, мне кажется, нам нужно будет прибегнуть к помощи компьютера. Именно такой путь был выбран в случае теории кварка. Вспомним, что частица Янга – Миллса действует как клей, связывающий кварки в протон. Но за полвека никто не смог строго доказать это математически. Мало того, многие физики практически оставили надежду на то, что эта задача будет когда-нибудь решена. Однако с уравнениями Янга – Миллса справился компьютер.
Это удалось сделать путем аппроксимации пространства-времени как последовательности узлов решетки. В нормальных условиях мы представляем себе пространство-время в виде гладкой поверхности с бесконечным числом точек. При движении объекты проходят через эту бесконечную последовательность. Но мы можем аппроксимировать эту гладкую поверхность решеткой или сеткой вроде неплотной ткани. Если делать расстояние между узлами решетки все меньше и меньше, решетка превратится в обычное пространство-время, и начнет проявляться окончательная теория. Как только будет получено окончательное уравнение для M-теории, мы сможем наложить ее на решетку и провести вычисления на компьютере.
При таком сценарии на выходе суперкомпьютера мы увидим нашу Вселенную.
(Однако мне вспоминается фантастический роман Дугласа Адамса «Автостопом по галактике», где строится гигантский суперкомпьютер, задача которого – найти смысл жизни. После целой вечности вычислений этот компьютер приходит к выводу, что смысл Вселенной – «сорок два».)
Так что не исключено, что следующее поколение ускорителей частиц, или детектор частиц глубоко в шахте, или детектор гравитационных волн в дальнем космосе найдет экспериментальное доказательство теории струн. А если этого не случится, то, возможно, какому-нибудь изобретательному физику хватит упорства и проницательности, чтобы найти окончательную математическую формулировку теории всего. Только тогда мы сможем сравнить ее с экспериментом.
По всей видимости, физиков ожидает еще немало неожиданных поворотов. Однако я уверен, что со временем мы сумеем найти теорию всего.
Но следующий вопрос таков: откуда взялась теория струн? Если в ней есть великий замысел, то был ли у нее творец? Если да, то имеет ли Вселенная цель и смысл?