1
В прошлом многие гиганты физики пытались создать свою единую теорию поля, но потерпели неудачу. Сегодня мы понимаем, что единая теория поля должна удовлетворять трем критериям:
она должна полностью включать в себя общую теорию относительности Эйнштейна;
она должна включать в себя Стандартную модель элементарных частиц;
она должна давать конечные результаты.
Эрвин Шрёдингер, один из основателей квантовой теории, предложил в свое время вариант единой теории поля, который фактически до этого рассматривал Эйнштейн. Этот вариант не прошел, поскольку не сводился корректно к теории Эйнштейна и был не в состоянии объяснить уравнения Максвелла. (Кроме того, в нем отсутствовало какое бы то ни было описание электронов или атомов.)
Вольфганг Паули и Вернер Гейзенберг тоже предлагали единую теорию поля, содержавшую поля фермионной материи, но она не поддавалась перенормировке и не включала в себя кварковую модель, которая появилась лишь несколько десятилетий спустя.
Сам Эйнштейн исследовал целый ряд теорий, которые в итоге не оправдали надежд. По существу, он попробовал включить теорию Максвелла в свою теорию, обобщить метрический тензор на гравитацию и сделать так, чтобы символы Кристоффеля включали в себя антисимметричные тензоры. Но эта попытка не удалась. Чтобы объяснить уравнения Максвелла, оказалось недостаточно просто расширить номенклатуру полей в оригинальной теории Эйнштейна. Кроме того, в этом подходе вовсе не упоминалась материя.
За многие годы было сделано немало попыток просто добавить к уравнениям Эйнштейна материальные поля, но все они, как было показано, расходятся на однопетлевом квантовом уровне. Мало того, при помощи компьютеров было рассчитано рассеяние гравитонов на однопетлевом квантовом уровне и показано, что оно несомненно ведет к бесконечным результатам. До сих пор единственный известный способ устранения этих бесконечностей на самом низком однопетлевом уровне заключается в использовании суперсимметрии.
Более радикальную идею предложил еще в 1919 г. Теодор Калуца, который представил уравнения Эйнштейна в пяти измерениях. Примечательно, что при сворачивании одного измерения в крохотное колечко поле Максвелла оказывается сопряженным с гравитационным полем Эйнштейна. Этот подход Эйнштейн тоже изучал, но потом оставил, потому что никто не понимал, как свернуть измерение. В более близкое к нам время этот подход был включен в теорию струн, которая сворачивает десять измерений до четырех и в процессе этого генерирует поле Янга – Миллса. Так что из множества подходов к созданию единой теории поля единственный уцелевший до сего дня путь – это многомерный подход Калуцы, причем обобщенный так, чтобы включать суперсимметрию, суперструны и супермембраны.
Не так давно появилась еще одна теория, получившая название теории петлевой квантовой гравитации. Она предлагает новый путь к исследованию первоначальной четырехмерной теории Эйнштейна. Однако это теория чистой гравитации, без электронов и элементарных частиц, поэтому ее нельзя квалифицировать как единую теорию поля. В ней не упоминается Стандартная модель, потому что нет материальных полей. Кроме того, неясно, является ли рассеяние мультипетель в этой модели по-настоящему конечным. Есть предположение, что столкновение двух петель дает расходящиеся результаты.