Книга: Космологические коаны. Путешествие в самое сердце физической реальности
Назад: 4. Башня (Пиза, 1608 год)
Дальше: 6. Космическое «сейчас» (Сейчас)

5. Идеальная карта

(Шэньян, Китай, 1617 год)

Довольно длинный путь вниз по довольно извилистой тропинке… Весь замысел сначала казался хотя и дерзким, но довольно простым. Картография входила в число многих других увлечений Кундулун-хана, планы по расширению собственной империи были весьма амбициозны, и потому его бесила неточность существующих карт. Однажды, собрав картографов, он объявил: «Ученейшие из ученых! Я желаю составить карту непревзойденной точности. Она должна быть высечена на гладком каменном полу здания Военного совета и быть столь совершенной, чтобы я и мои генералы могли с абсолютной точностью найти расстояния между пунктами моей растущей империи, просто измерив расстояние между соответствующими точками на карте».

Следуя придуманному им самим плану, хан собрал огромную армию всадников, снабдил их инструментами, позволяющими рассчитывать местоположение, астрономическими приборами и бумагой для записи наблюдений. Хан разместил всадников на одинаковых расстояниях друг от друга вдоль линии, берущей свое начало на самой западной границе империи и простирающейся на восток. Каждый всадник получил команду ехать на север и в каждом месте, где был какой-то ориентир, отмечать расстояние, пройденное от предыдущей отметки. А какая же роль отводилась тебе? Ценя твои математические познания, хан поручил тебе помочь его картографам проверять, сопоставлять и осмысливать данные.

Сначала все казалось простым, и, использовав собранный материал, ты с учеными хана смог составить для него отличные карты. Но идеальную карту нарисовать не получалось: чем тщательнее вы вырисовывали детали, тем запутаннее и противоречивее становилась общая картина. Проходила неделя за неделей – и наконец вы признались хану в своем фиаско.

Однажды поздним вечером, созерцая полную луну, ты неожиданно понимаешь, что ваши проблемы были вызваны тем, что Земля не плоская, а круглая! Однако хан, выслушав тебя, презрительно воскликнул: «Естественно, Земля круглая, но если бы я хотел получить глобус, я бы пригласил специалистов по изготовлению глобусов. Остальные картографы понимающе кивнули. А хан продолжил: „Я хочу иметь плоскую карту и думал, что твоего интеллекта хватит, чтобы изготовить ее для меня. Разве важно, что Земля круглая? Везде, где я побывал, она выглядела достаточно плоской! Уходи и возвращайся, когда будет готово что-то, чем я смогу воспользоваться!“»

Ты кланяешься и уходишь, чувствуя себя наказанным. Китай обошелся с тобой не слишком дружелюбно, и ты затосковал по времени, проведенному в горах. Тебе показалось, что оно прошло слишком быстро. Ты представил, как Трипа Драгпа говорит что-нибудь мудрое и ободряющее, например: «Двигайся постепенно, шаг за шагом. Скоро хан оценит тебя по-настоящему».

А потом, после долгих раздумий, до тебя наконец доходит! И ты направляешься прямо к хану.

Минуточку, насколько прямо?

Нам всем хорошо знакомы карты и то, как ими пользоваться, а современная картография столь совершенна, что мы редко думаем о точности карт или о том, как именно они изготовлены. Но (что вовсе не редкость) за этой привычностью скрываются некие очень любопытные тонкости. Стоит лишь начать тщательно и глубоко разбираться в том, что есть карта и как ею пользоваться, – и нюансы оказываются весьма важны. Некоторые из этих вопросов, напрямую связанных именно с нашими усилиями понять, что такое пространство, время и движение, и мучили Кундулун-хана и его ученых. Так что же такое карта?

На самом базовом уровне карта – это представление (обычно в графическом виде) территории, которую она отображает, причем соотношение между элементами отображаемой территории должно быть правильным. Это значит, что хорошая карта «похожа» на отображаемую территорию и по ней можно понять, как выглядит эта территория и как на ней ориентироваться. Но для хана этого было недостаточно: на своей карте он хотел математически точного отображения территории – такого, чтобы по ней можно было точно измерить расстояние между городами или же найти точные размеры разных регионов его империи. Чтобы понять, чего хан добивался от картографов и почему огорчился, не получив этого, мы должны задуматься о том, что делает карту точной.

С чего начинается процесс составления карты? С собирания необработанных данных о местоположении всех чем-то примечательных физико-географических точек территории. Всадники хана как раз и составляли списки таких данных, когда скакали в северном направлении, отправившись в путь из своих исходных пунктов, расположенных вдоль протянувшейся с запада на восток линии (рис. на стр. 59). Каждый из них отмечал расстояние от исходной линии до всех встречающихся по пути заметных объектов, давая ученым возможность составить таблицу, в которой каждому такому объекту соответствовало две координаты, определяющие его положение: расстояние в восточном направлении (свое для каждого всадника) и расстояние в северном направлении (измеренное всадником). Эти координаты очень похожи на долготу и широту, которые используются в современных картах.

Но этот список еще не похож на отображаемую территорию. Сходство возникнет, когда на карту нанесут каждую отметку, а также сетку из линий, в которой длина стороны каждой ячейки-клетки соответствует определенному расстоянию на местности. В примере с картой Кундулун-хана мы можем изобразить сетку, вертикальные линии которой будут соответствовать пути каждого всадника и пересекаться с горизонтальными линиями, расположенными на одинаковых расстояниях друг от друга по ходу движения каждого всадника (рис. чуть ниже). Соотношение между реальными физическими расстояниями и расстояниями на карте определяет масштаб карты (например, 1 см на бумаге может соответствовать расстоянию 10 км на местности). В точности как хан и надеялся, большие расстояния на местности можно было бы получать, просто измерив маленькие расстояния на бумаге, а потом умножив их на масштаб.



Попытка составления карты способом, придуманным ханом.





Такая система великолепно знакома всем, кто пользовался картами, и предполагает, что составление действительно точных карт – процедура незамысловатая. Но это не так. И мы убедимся в этом, если отправим еще одного всадника далеко на север – в самый конец карты, которую мы только что составляли. Мы можем измерить расстояние между двумя горами по карте и определить, что оно составляет 10 см, что соответствует, по нашим представлениям, 100 км на местности. Однако всадник может измерить реальное расстояние, и расстояние между горами окажется равным 96 км! Значит, что-то здесь не так! Масштаб зависит от места: измеренный в одной части карты, он меняется при переходе к другой части. И, что еще хуже, при тщательном исследовании обнаруживается, что не только общий масштаб меняется от точки к точке, но и масштаб на линии север-юг часто отличается от масштаба по линии восток-запад. Вот это как раз и расстроило хана, а расстроенный хан всегда опасен.

Но почему эта сложность обязательно должна возникать? Не существует ли другого способа сделать «идеальную» карту? Нет, не существует. Сложность в том, что мы проецируем сферическую поверхность земли на плоскую карту, а при этом нельзя добиться идеальности. Вы можете проверить, что дело именно в этом, вообразив, будто вы отодрали бумагу, которой обклеен глобус (рис. ниже) и на которой изображена карта, и попытались как-то наклеить ее на ровную поверхность, не вытягивая карту и не делая на ней складок (что изменило бы масштаб). У вас это не получится, и именно по той причине, по которой возникали искажения, портившие карту хана.

Существует множество способов составления карт мира, и во всех них используются разные варианты переноса тех или иных деталей земной поверхности на карту. Например, вы можете поставить условие, чтобы площади объектов на карте были пропорциональны соответствующим площадям на земле. Это один способ. Или вы зададитесь целью сделать так, чтобы форма объектов на карте была такой же, как на земле. Но вам не удастся сделать так, чтобы и площади объектов были пропорциональны, и их очертания были подобны.

В этом смысле составление карт открывает нам нечто очень важное о местности, карту которой мы составляем: не только расположение объектов, но и кривизну «подложки» – собственно, Земли. Невозможность отобразить на плоской карте земную поверхность в едином масштабе говорит о том, что поверхность искривленная. Человечеству потребовалось довольно много времени, чтобы преодолеть интуитивное представление о том, что Земля плоская. Мы пришли к тому же выводу путем тщательного анализа и логических рассуждений. Какие еще скрытые структуры и кривизны могли бы мы обнаружить в нашем мире?





Процесс составления карты сферической поверхности по методу хана. При движении на север реальные расстояния при отображении на плоской карте растягиваются.





Продолжим совершенствовать наш инструментарий. Если мы не можем составить карту территории, как хотели бы, то есть выдерживая постоянный масштаб, так не можем ли мы пожелать, чтобы измерения были проведены с нужной нам точностью? Да, можем, хотя это потребует дополнительной работы и смекалки. Нам на помощь придет вот какое обстоятельство: если мы рассмотрим первый маленький кусочек территории – скажем, тот, который был исследован несколькими соседними всадниками, – то наша карта с фиксированным масштабом будет чрезвычайно точной. Отклонения в масштабе проявятся, только когда мы будем сравнивать между собой отдаленные участки нашей карты.

Из этого следует, что можно учесть изменения в масштабе, разбив территорию на маленькие области. При движении с севера на юг и с запада на восток при переходе от одного фрагмента карты к другому масштаб может меняться, но внутри фрагмента он будет фактически постоянным – причем чем фрагмент меньше, тем с большей точностью это будет выполняться. Теперь вообразим кривую, представляющую собой возможный путь по территории от одной точки на карте к другой (рис. выше). Мы бы хотели узнать реальную физическую длину этого пути, и мы уже знаем, что из-за вариаций масштаба ее невозможно получить, просто умножив длину кривой на масштаб. Однако мы можем разбить путь на маленькие отрезки – будем продвигаться постепенно – шаг за шагом. Теперь нам надо измерить длину каждого отрезка как в горизонтальном, так и в вертикальном направлении (рис. ниже). По этим отрезкам на карте мы уже сможем определить соответствующие им реальные расстояния, используя почти постоянные масштабы в направлении север-юг и запад-восток. Из этих двух реальных физических расстояний можно получить реальную длину пути, соответствующего этому маленькому сегменту, который представляет собой гипотенузу треугольника. Суммируя длины всех этих сегментов, мы получаем полную реальную длину выбранного пути между двумя точками.





Движение по пути бесконечно малыми шагами.





Такой метод можно использовать для вычисления точных расстояний (о чем и мечтал хан), только он гораздо более сложный. (Фактически именно это проделывают современные программы по обработке карт, когда вы запрашиваете расстояние между двумя пунктами при езде на автомобиле.) Мы также видим, что сферическая геометрия земного шара для тех, кто интересуется только ближайшей к себе окрестностью, скрыта от глаз: картина мира вокруг них всегда локально плоская – и масштаб не меняется. Но когда приходится состыковывать эти локальные фрагменты друг с другом, необходимость изменения масштабов обнаруживает геометрию всего нашего мира как целого.





Итак, теперь мы понимаем, как – шаг за шагом – организовать наше путешествие, чтобы узнать, какое реальное расстояние мы проехали. Но если мы, вооруженные этим пониманием, хотим направиться прямиком к хану, то какой путь мы должны избрать? Тот, что выглядит прямым на карте, может выглядеть прямым и на сферической поверхности земли, но – может и не выглядеть.

Если объекты действительно стремятся двигаться по прямой в пространстве-времени, о чем поведали нам работы Эйнштейна и коан «БАШНЯ», то нам нужно знать, какой путь на самом деле является прямым.

Назад: 4. Башня (Пиза, 1608 год)
Дальше: 6. Космическое «сейчас» (Сейчас)

eskadron schabrak dressyr
Pretty nice post. I simply stumbled upon your weblog and wished to say that I have truly loved browsing your weblog posts. After all I will be subscribing for your feed and I hope you write again very soon! eskadron schabrak dressyr prosri.teswomango.com/map5.php