Книга: Космологические коаны. Путешествие в самое сердце физической реальности
Назад: 32. Рисунок в пещере (Вблизи монастыря Ганден, Тибет, 1613 год)
Дальше: 34. При смерти (На дороге в Китае, 1615 год)

33. Диалог, имеющий отношение к бесконечному множеству вещей

(Падуя, Италия, 1608 год)

«Я полагаю, – начинает Галилео, – ты знаешь, какие числа являются квадратами, а какие нет».

«В этом я достаточно осведомлен, – отвечаешь ты. – Число является квадратом, если оно есть результат умножения другого числа само на себя. Так, числа 4, 9 и так далее получаются при умножении 2 на 2, 3 на 3… Этот ряд можно продолжить».

«А можно сказать, – интересуется Галилео, – что чисел больше, чем квадратов?»

«Конечно, – отвечаешь ты. – Их и должно быть больше. Ведь есть числа, которые не есть квадраты».

«И все же. – тут ученый призадумался. – Если начать считать квадраты, нужно будет использовать все числа. Смотри: числа 1, 2, 3, 4. превращаются в 1, 4, 9, 16. У меня есть обычное число, являющееся корнем данного квадрата, и для каждого числа есть соответствующий квадрат. Если между двумя наборами объектов есть взаимно однозначное соответствие, обычно считается, что в этих множествах число объектов равно. Не так ли?»

«Ты меня смутил, – отвечаешь ты. – Я согласен с твоими доводами, но, мне кажется, вопрос можно поставить иначе: какова доля квадратов между 1 и 10? Всего 3/10. Более того, между 1 и 100 их всего 1/10 часть. Чем дальше, тем больше: если увеличивать множество сравниваемых чисел, доля квадратов будет стремиться к нулю. Похоже, отношение числа квадратов к числу обычных чисел зависит от того, как именно ты считаешь. Да, я в замешательстве!»

Галилео кивает. «Итак, к какому выводу ты пришел? Что ты думаешь об отношении числа квадратов к числу всех чисел?» – спрашивает он.

«Кажется, можно сделать только такой вывод: поскольку совокупность всех чисел бесконечна, совокупность всех квадратов тоже бесконечна и число квадратных корней из них бесконечно, то такие понятия как „равно“, „больше“ и „меньше“ не применимы к бесконечным величинам, но только к конечным», – отвечаешь ты, немного поразмыслив.

«Это сбивает с толку, прямо-таки сводит с ума, – уныло отвечает Галилео, а затем, неожиданно вспомнив что-то, продолжает: – Помнишь, я говорил о новом устройстве, позволяющем рассматривать маленькие предметы? Сегодня я его наконец получил. Давай посмотрим. Пусть эта проблема бесконечности доводит до безумия кого-нибудь другого».

Есть несколько удивительных вещей, недоступных нашему воображению. Они должны предостеречь от серьезных ошибок тех, кто пытается говорить о бесконечности, наделяя ее теми же свойствами, которые мы используем для исследования конечного. Природа этих двух понятий не имеет ничего общего.

Галилео Галилей «Беседы и математические доказательства двух новых наук»

Концепция бесконечности одновременно и навевает трансцендентные мысли о чем-то божественном, и сводит математиков с ума. Еще во времена Аристотеля (а может, и раньше) люди пытались понять, что означают числа, которым нет конца, и как можно представить себе бесконечное множество объектов, которые пересчитывают эти числа. По сей день продолжается спор, начатый еще древними философами, где потенциальная бесконечность противопоставляется актуальной. Под потенциальной бесконечностью подразумевается понятие, кроющееся за словами «продолжаем считать»: даже считая неограниченно долго, достичь бесконечности нельзя никогда. Актуальная бесконечность – это бесконечность, реализующаяся как самостоятельное единое целое. Может быть, разумно придерживаться мнения, что бесконечные множества существуют как математические объекты (хотя некоторые математики это отрицают), тогда как в реальном физическом мире могут быть только числа, пусть сколь угодно большие, – но не актуальная бесконечность. Однако мы увидим, что некоторые физики это отрицают.



Сопоставление целых чисел и квадратов целых чисел, о котором идет речь в «Диалогах» Галилея, – прекрасная отправная точка. Эта одна из самых ранних аргументированных интерпретаций парадоксов бесконечности демонстрирует две вещи.

Во-первых, счет становится неоднозначным. Если вы сравниваете два конечных множества объектов, чтобы узнать, где их больше, порядок, в котором вы пересчитываете объекты, значения не имеет. Но в случае бесконечных множеств, при некоторой сноровке в выборе метода счета, можно получить много разных ответов. Например, квадратов целых чисел столько же, сколько самих целых чисел, или четных чисел в шесть раз больше, чем нечетных. Таким образом, о большом числе множеств, которые, как кажется, содержат разное число элементов, на самом деле можно только сказать, что одно «столь же велико», как другое, но эти слова значат совсем не то, что в случае множества любого конечного (неважно, сколь большого) размера.

Во-вторых, как следует из приведенного выше диалога, можно измерять относительные частоты повторения разного типа элементов множества при условии, что элементы множества определенным образом упорядочены. То есть если выстроить все целые числа, скажем, по порядку, можно вычислить относительное количество четных и нечетных целых чисел вплоть до некоторого числа N, после которого счет прекращается. Если затем неограниченно увеличивать N, то мы увидим, что четные и нечетные целые числа распределены в отношении один к одному. Аналогично можно показать, что отношение квадратов целых чисел к самим этим числам будет стремиться к нулю. Конечно, если бы в этих примерах мы упорядочили целые числа как-то иначе, результаты могли бы быть другими, но представляется, что есть некое «естественное» упорядочение, при использовании которого полученные отношения будут в некотором смысле выделенными.



Теперь вернемся к космологии. Если действительно происходит вечная инфляция, то Вселенная, а вернее, мультивселенная, длится вечно, порождая бесконечное число постинфляционных областей. Но если это так, у нас есть причины для беспокойства. Если мы спрашиваем: «Какие свойства мы, обитатели этой мультивселенной, будем вероятнее всего наблюдать?» – то на самом деле нас интересует примерно следующее: «Если есть области с самыми разными свойствами, то какого типа области будут самыми распространенными?» Или иначе: «Пусть я нахожусь в некоторой произвольно выбранной области. Как она скорее всего будет выглядеть?» Точно так же, как с «четностью» и «нечетностью» целых чисел, с «квадратами» и «самими» целыми числами, эти вопросы относятся к относительным частотам проявления тех или иных свойств в бесконечном множестве. И возникают точно те же проблемы. Однако к неопределенности, обусловленной пересчетом, инфляция добавляет еще дополнительную неопределенность (правда, в некоторых случаях они взаимозаменяемы). Это неопределенность времени в общей теории относительности. ОСВОБОЖДАЯ ДЖИННА, мы видели, что в заданном пространстве-времени поверхности одновременности можно провести большим числом разных способов. В принципе, каждая из них ничем не лучше других, даже если на практике некоторые поверхности существенно предпочтительнее. Эта неопределенность в том, что именно считать заданным временем, в совокупности с бесконечной протяженностью вечно инфлирующего пространства-времени сбивает с толку и ставит ряд трудных вопросов. Предположим, что во Вселенной есть области двух типов: области просвещенные и непросвещенные. Изначально области являются непросвещенными, но то тут, то там в космосе появляется учитель, и те области, которые затрагивает его педагогическая деятельность, становятся просвещенными. Предположим для простоты, что обучение распространяется со скоростью света (скажем, с помощью некоей просвещающей радиостанции). Тогда в условиях постоянной инфляции вся Вселенная, ничем не отличаясь от озера Дал с его островками лотосов и чистой воды, будет напоминать разнокалиберный набор просвещенных и непросвещенных областей.

Теперь мы можем спросить: «Какая часть Вселенной является просвещенной именно сейчас?» Однако не трудно показать, что в этих обстоятельствах, в зависимости от того, как определить сейчас, ответ может звучать следующим образом: как почти вся Вселенная является просвещенной, так и почти вся Вселенная остается непросвещенной! Определение времени очень похоже на «упорядочение» целых чисел. Как целые числа можно упорядочить так, что при пересчете нечетных чисел будет гораздо больше, чем четных (или наоборот), так и «сейчас» можно определить так, чтобы то же самое происходило с просвещенными и непросвещенными областями.

Может показаться, что нам удастся выкрутиться, поставив вопрос о том, какая часть Вселенной к настоящему моменту состоит из просвещенных областей. К сожалению, и это не слишком поможет. Отличительной чертой экспоненциального роста во времени является то, что в самой последней эпохе разных областей столько же, сколько во всех более ранних эпохах. А это значит, что в общем отношении просвещенного объема к непросвещенному преобладает «сейчас», как бы мы ни определяли, что это значит.

Вероятно, перед лицом этих проблем и неопределенностей нам в панике захочется поскорее укрыться за известными представлениями о конечном. Возможно ли это? Давайте, например, предположим, что мы ограничились только нашей вселенной. Она конечна? Скажем так: доступная наблюдению вселенная вплоть до космического времени большого взрыва в прошлом действительно конечна. Но что можно сказать обо всей области пространства в тот же момент времени, свойства которой такие же, как постинфляционные свойства нашей вселенной? Она конечна?



Просвещенные (светлые) и непросвещенные (темные) области в инфлирующем пространстве-времени, когда слово учителя распространяется со скоростью света.





Вовсе нет! Рассмотрим одну просвещенную область пространства-времени (см. рисунок выше). Поскольку мы предположили, что просвещение распространяется со скоростью света, эта область заполняет световой конус будущего, вершина которого находится в той точке, где учитель начал обучение. Далее, поскольку у нас есть свобода выбора определения «сейчас», сделаем нечто совсем удивительное. Рассмотрим кривую на рисунке, целиком лежащую в просвещенной области. Поскольку эта кривая всегда ближе к горизонтальной оси, чем к вертикальной, ее можно считать «пространством» в отдельно взятый момент времени. И поскольку световой конус продолжается вверх страницы до бесконечности, то же происходит с определенным нами пространством. Итак, это бесконечное пространство. И оно разместилось внутри той области, которая выглядела как растущая, конечная область. В этом смысле теория относительности допускает, что один учитель может быть ответствен за просвещение сразу всего бесконечного объема!

Структура нашей вселенной, если она находится внутри какого-то постинфляционного пузыря, оказывается почти идентичной. Снаружи такой пузырь выглядит конечным и расширяющимся, но изнутри он бесконечен в пространстве! Оказывается, при вечной инфляции такое поведение характерно для поверхностей закончившейся инфляции. Это – вполне универсальное свойство вечной инфляции, порождающей бесконечно много постинфляционных вселенных, каждую из которых внутри можно считать пространственно однородной.

Простого выхода нет: избавиться от бесконечности не так просто. Иногда она может просто сводить с ума.





Если мы – обитатели мультивселенной, именно такой, какой ее описывает теория вечной инфляции, то как можно объяснить те свойства окружающего мира, которые мы видим вокруг себя? Эти свойства универсальны? Они необычны? Они обычны для всех самых возможных миров? Лучшие среди всех обычных миров? И вообще – кто такие «мы»?





Никто не знает.

Назад: 32. Рисунок в пещере (Вблизи монастыря Ганден, Тибет, 1613 год)
Дальше: 34. При смерти (На дороге в Китае, 1615 год)

eskadron schabrak dressyr
Pretty nice post. I simply stumbled upon your weblog and wished to say that I have truly loved browsing your weblog posts. After all I will be subscribing for your feed and I hope you write again very soon! eskadron schabrak dressyr prosri.teswomango.com/map5.php