Книга: Космологические коаны. Путешествие в самое сердце физической реальности
Назад: 28. Небесные сферы (Срингар, Кашмир, 1611 год)
Дальше: 30. Теодицея (Триполи, Ливан, 1610 год)

29. В Зазеркалье

(Падуя, Италия, 1608 год)

Таким возбужденным ты Галилео никогда прежде не видел.

«Я случайно натолкнулся на довольно необычное устройство, – говорит он тебе. – Оно напоминает лупу, но гораздо более мощное, и его можно настроить так, что удается рассмотреть не только то, что достаточно близко, но и то, что очень далеко. Я детально продумал, как сделать свой, существенно улучшенный его вариант, и намерен обратить его к небесам, которые мы так часто рассматривали невооруженным глазом». Воспользовавшись этим новым, еще не оконченным устройством всего один раз, ты понимаешь, что это настоящая революция. Хотя ты и разделяешь нетерпение Галилео, желающего поскорее повернуть прибор по направлению к небу, ты все же решаешь изложить ему свою собственную идею: в последнее время ты занимался исследованием воды и обнаружил большое число самых разных мельчайших созданий, за которыми всего интереснее было бы наблюдать под сильным увеличением!

«В самом деле, – говорит Галилео. – Надо немного изменить наш прибор, и он прекрасно подойдет и для этих целей. А если еще и линзы сделать получше, тогда вообще не будет ограничений на то, сколь малые объекты мы сможем разглядывать».

Ты обдумываешь его слова. «Как ты себе представляешь, насколько малы самые малые создания? – задаешь ты вопрос Галилео. – Есть ли такие? Возможно, если мы копнем глубже, то обнаружим еще более крошечных представителей нашего мира».

Галилео смеется: «Что ж, возможно, на каждой пылинке есть целые города и селения. Только они слишком маленькие, и мы не можем их разглядеть. И, подобно нам, живущие там существа изобретают приборы, чтобы разглядеть население совсем уж бесконечно малых цивилизаций». «Или, – добавляешь ты, поддерживая разговор, – возможно, прямо сейчас какие-то титаны наблюдают за нами через свои тщательно отполированные линзы».

«Будь осторожен, – насмешливо шепчет Галилео, – Всевышнему может не понравиться, если он услышит, что у него появился соперник. Хуже того: нам ли не знать, каковы бывают служители церкви?»

Могут ли поверх миров существовать все большие миры? Может ли быть цивилизация на пылинке? Почему размеры людей и миров именно такие, какие есть?

Представьте себе, что внезапно вы увеличились в два раза: все, из чего вы сделаны, осталось тем же, но в каждом из направлений вы стали в два раза больше. Ваш объем и (если ваша плотность не изменилась) ваша масса увеличатся в 8 раз. Однако оказывается, что при таком удвоении размеров ваша сила увеличится всего в 4 раза или около того, а это значит, что передвигаться вам будет гораздо сложнее. Именно поэтому ни одно из живущих на Земле существ не достигает высоты 100 метров, как это случается в фильмах ужасов. Такие создания, вероятно, не могли бы удержать сами себя и быстро бы рухнули наземь, превратившись в огромную лужу. Итак, люди (очень приблизительно!) велики настолько, насколько они могут быть, чтобы иметь возможность самостоятельно передвигаться по Земле.

А что можно сказать о Земле? Чтобы стать планетой, сгусток космической материи должен быть, с одной стороны, достаточно большим, чтобы его форма определялась прежде всего гравитационными (а не иными) силами, благодаря чему планета и приобретает форму шара. С другой стороны, этот сгусток должен быть достаточно маленьким, чтобы температура и давление в его центре не приводили к делению ядер, иначе получится не планета, а звезда. Чтобы скальная планета была обитаема, она не должна иметь настолько большую массу, чтобы с помощью гравитации удерживать водород и гелий (иначе она станет газовым гигантом), но при этом должна быть достаточно массивной, чтобы удерживать атмосферу, которой могли бы дышать живые существа. Эти ограничения определяют достаточно узкий интервал масс для благоприятных планет наподобие Земли.

Как для людей, так и для планет законы физики определяют приблизительные характеристики таких объектов. Физические законы, такие как закон Ньютона F = ma и всеобщий закон тяготения, – это точные, прогнозирующие соотношения, связывающие такие физические величины, как масса, расстояние и время. Некоторые законы, например, закон Ньютона F = ma, являются выражением основополагающих соотношений и фактически являются определениями. Другие, подобно закону тяготения, заключают в себе определенную информацию о физическом мире, который мог бы и отличаться от нашего. (Например, согласно закону тяготения Ньютона, гравитационные силы убывают как квадрат расстояния между телами, а не обратно пропорционально расстоянию или расстоянию в кубе.)

Такого рода соотношения по преимуществу включают в себя физические константы наподобие постоянной G в теории тяготения Ньютона, определяющей силу гравитационного взаимодействия двух заданных масс на заданном расстоянии друг от друга. То же можно сказать и о других фундаментальных константах, включая заряд электрона e (являющийся мерой напряженности электромагнитных сил), c (скорость света), постоянную Планка h (определяющую меру неопределенности, свойственную квантовым измерениям) и постоянную Больцмана, определяющую k (связывающую энергию с температурой и входящую в определение термодинамической энтропии). Если представить себе, что изменились одна или несколько таких констант, то изменился бы и окружающий нас мир. Например, если бы постоянная G была в десять раз больше (без изменения всех остальных констант), то звезды и планеты были бы в 30 раз менее массивны, а масса созданий, живущих на таких планетах, была бы примерно в пять раз меньше.

Когда имеешь дело с фундаментальными постоянными природы, удобно пользоваться их безразмерными комбинациями. Например, постоянные c, h и e имеют размерность. В одной системе единиц скорость света c порядка 3 × 108 метров в секунду (м/сек). В другой системе единиц она будет иметь другое значение, например, 186000 миль в секунду. Но эти цифры в какой-то мере произвольны, и мы не обязаны держать их в голове. С другой стороны, определенная комбинация этих постоянных α = 2πe2/hc не зависит от выбранной системы единиц: размерности всех трех входящих сюда постоянных взаимно сокращаются. Это – так называемая постоянная тонкой структуры, численное значение которой равно α ≈ 1/137 и не зависит от выбора системы единиц. Можно построить большое количество подобных безразмерных комбинаций. Например, отношение массы протона к массе электрона β = mproton / melectron ≈ 1836, или гравитационная постоянная тонкой структуры αG = Gmproton2/hc = 6 × 10-39, и так далее. Оказывается, что все постоянные, входящие в известные на данный момент законы физики, можно свести к 26 такого типа безразмерным постоянным. Космология использует порядка 6-10 таких чисел.

В этих числах заключен реальный физический смысл. Если бы завтра постоянная а удвоилась, т. е. стала бы равна 2/137, мы бы проснулись в совершенно ином физическом мире. Хотя многие из перечисленных величин относятся к физическим явлениям, изучать которые можно только в лабораториях путем сложных прецизионных экспериментов, некоторые из них, включая α, αG и β, затрагивают удивительно широкий класс важных явлений. Бернард Карр и Мартин Рис выделили наиболее важные комбинации фундаментальных постоянных. В своей прекрасной работе они пишут: «Масштаб масс и длин объектов, начиная от вселенной и кончая атомами, определяется электромагнитной постоянной тонкой структуры, гравитационной постоянной тонкой структуры и отношением масс электрона и протона».

Мы обсудили связь фундаментальных постоянных со структурой нашего мира, но те же соображения можно использовать, чтобы теоретически оценить более невероятные ситуации. Например, даже если живые существа на планетах не могут быть гигантами, то что можно сказать о совсем других формах жизни огромных размеров? И в этом случае ограничения накладывают те же законы физики и фундаментальные постоянные! Так, сигналы, передаваемые нервами и нейронами, распространяются со скоростью 10-100 м/сек, и за время жизни эти сигналы могут пересечь мозг живого существа примерно триллион или даже больше раз. Теперь предположим, что размер мозга живого существа – порядка размера галактики. Поскольку ни один сигнал не может распространяться со скоростью, превышающей скорость света, одному сигналу потребуется около 100000 лет, чтобы пройти через мозг такого существа. Это означает, что за все время существования вселенной через его мозг смогут пройти только 100000 таких сигналов, что сопоставимо с минутами в жизни человека. Жизнь такого колосса будет очень коротка – всего 14 миллиардов лет.

А что можно сказать о том, насколько малыми могут быть живые существа? В этом случае нижний предел определяется тем, что обычная материя состоит из частиц: если твой размер гораздо меньше размера бактерии, сложности не хватает даже для размножения, не говоря уже о создании высокотехнологичной цивилизации. В свою очередь число атомов, помещающихся в заданном объеме пространства, определяется квантовой механикой и фундаментальными постоянными. Вместе они определяют размер атома – порядка 10-10 метра.



На шкале размеров мы выбрали благоприятное место где-то посередине: мы малы в сравнении с галактиками или наблюдаемой вселенной, но очень велики по сравнению с составляющими нас частицами. Такая серединная позиция на физической шкале существует в силу абсурдно малого – 10-39 – значения αG. Если сравнить безразмерные выражения (наподобие тех, которые составили Карр и Рис), определяющие размеры протона, человека, планеты и звезды, становится видно: большое различие размеров обусловлено малым значением αG. Эта малость обеспечивает несколько иерархических уровней размеров физических систем. Каждый уровень состоит из образований, которые в свою очередь состоят из очень большого, огромного числа составных частей и поэтому могут обладать очень сложными и разнообразными свойствами и разной динамикой. Мы, люди, находимся как раз посередине этой иерархической лестницы, там, где сложные создания могут вести сложную жизнь. Если уменьшить масштаб до размера пылинки, то там тоже можно будет наблюдать интересные создания, но – не цивилизацию. А если масштаб увеличить, то вы увидите прекрасную вселенную, – но в ней не будет разумных галактик.

Если бы αG было, скажем, 10-65, возможностей было бы гораздо больше: в таком мире в пылинке содержалось бы такое же число частиц, как в планете нашего мира. С другой стороны, если бы αG равнялось, скажем, 1/10, массы планет, звезд, людей и протонов были бы одного порядка и свойства вселенной были бы гораздо менее многообразны.

Итак, существование нашего уютного местечка на физической шкале связано с базисными числами, лежащими в основании вселенной, и с этим нам повезло.

Очень повезло.

Назад: 28. Небесные сферы (Срингар, Кашмир, 1611 год)
Дальше: 30. Теодицея (Триполи, Ливан, 1610 год)

eskadron schabrak dressyr
Pretty nice post. I simply stumbled upon your weblog and wished to say that I have truly loved browsing your weblog posts. After all I will be subscribing for your feed and I hope you write again very soon! eskadron schabrak dressyr prosri.teswomango.com/map5.php