Книга: Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
Назад: Глава 1 Древние руины
Дальше: Глава 3 Системы внутри систем

Глава 2
Камни в потоке

– А на чем стоит тигр? – спрашивает скептик.
– Он стоит на спине гигантского слона, – отвечает верующий.
– А на чем же стоит слон?
– Ну как же, он стоит на спине гигантской черепахи.
– Хорошо, а на чем стоит черепаха?
– Не умничайте, молодой человек! Там черепахи до самого низа!
И этот знакомый анекдот, и сама идея о бесконечной прогрессии черепах напоминает погоню за бесконечностью в парадоксе Зенона: стрела никогда не сможет достигнуть цели, потому что для этого ей надо преодолеть половину пути, а чтобы преодолеть половину, ей нужно преодолеть четверть – и так до бесконечности.
Наука выросла из любопытства, желания добраться до сути вещей – не просто узнать, на чем стоит черепаха, но определить, есть ли там вообще черепаха, пусть даже метафорическая, или нам нужно полностью переформулировать вопрос. Вот что Аристотель писал по поводу всего этого: «Поскольку любое доказательство должно исходить из уже известных положений и поскольку это обратное движение должно когда-нибудь закончиться неопосредованными истинами, такие истины обязаны быть недоказуемыми».
Обратное движение должно закончиться неопосредованными истинами. Эти слова емко выражают то, что можно было бы назвать западной верой в существование сути вещей, не нуждающейся в доказательствах, самоочевидной первоосновы, из которой становятся известными или выводятся все факты, – принципов природы, которые просто есть. При таком взгляде сверху вниз, роль науки состоит в том, чтобы узнать, на чем стоят черепахи, но иногда вместо черепах до самого низа обнаруживается, что нет никакого низа.
* * *
Идея, что Земля парит в пространстве без какой-либо поддержки черепах или тигров, впервые возникла у Анаксимандра, ученика Фалеса, который жил в VI в. до н. э. Более абстрактная или более физическая идея сферической Земли, каждая точка поверхности которой направлена вниз, или, что то же самое, внутрь, появилась позднее в том же веке у Пифагора Самосского, почти мифического титана науки и математики. Пифагор много путешествовал и основал знаменитую школу, которую посещали ученые из ближних и дальних краев. Традиции глубокого знания сложились в древности и в Китае, Индии и Африке; Конфуций (Кун-цзы) тоже имел тысячи учеников, но уделял куда меньше внимания вопросу о том, что же там, под черепахой.
К 350 г. до н. э. представление о шарообразной Земле было распространено достаточно широко, и Аристотель записал несколько доводов в его пользу. Он отметил, что тень Земли во время лунного затмения видна на Луне как часть круга, следовательно, Земля – это сфера или диск, а Луна отстоит от нее на много земных диаметров. Также он заметил, что южные созвездия стоят в небе немного выше, если смотреть на них из южных стран: этот факт легко объяснить, если человечество обитает на поверхности шара.
Но насколько велик этот шар? Греки были активной нацией, которая обожала все записывать; также у них имелись широкие торговые связи, позволявшие им узнавать о том, что происходит в дальних странах, о чудесах света и прочих поразительных фактах. Одним из таких чудес был глубокий колодец в Асуане, городе в Южном Египте, на дне которого в полдень в день летнего солнцестояния не было тени, то есть Солнце находилось точно над головой. В тот же самый момент в Александрии, расположенной в дельте Нила в Северном Египте, Солнце не стояло точно над головой: высокая колонна в центре города отбрасывала тень под углом в 7°. Глубокие колодцы должны быть вертикальными до доли градуса, иначе они обрушатся; высокие каменные колонны тоже должны стоять вертикально – иначе они упадут. Так в чем же дело?
Греческий философ Эратосфен, которого иногда называют первым географом, был главным библиотекарем легендарной Александрийской библиотеки. Услышав о колодце, он рассудил, что и колонна, и колодец должны быть вертикальны, но относительно направления «прямо вниз», которое указывает в центр сферической Земли. Из времени, которое уходило у гонцов, чтобы добраться от Александрии до Асуана, он сделал вывод, что два города разделяет расстояние в 5000 стадиев (стадий – древняя мера длины, равная примерно 180–190 м; нам она известна как размер стадиона). Эти 900 км, по рассуждениям Эратосфена, соответствовали дуге в 7° на поверхности круглой Земли. Длина всей окружности соответствует 360°, то есть обхват Земли (число π, помноженное на диаметр) равен 360/7 расстояния от Александрии до Асуана. (Градус – это, кстати, изобретение вавилонян, их завораживала магия чисел 3, 20 и 60.) Эратосфен рассчитал диаметр Земли и получил (в современных единицах) 15 000 км, что достаточно неплохо согласуется с реальным значением в 12 700 км.

 

Схематическое изображение полностью освещенного вертикального колодца в Асуане в тот же момент, когда высокая колонна в Александрии отбрасывает тень. Рисунок из Технического отчета 80–003 Военно-картографического управления США «Геодезия для неспециалистов».
USAF, 1959

 

В другом блестящем примере применения геометрии подобных треугольников Аристарх Самосский, живший в III в. до н. э., использовал длительность лунного затмения – события, которое занимает несколько часов, – чтобы высчитать диаметр Луны. Диаметр Земли уже был известен. Таким образом, предположив, что Солнце находится гораздо дальше, он узнал диаметр тени, которую Луна должна пересечь во время затмения. Чтобы пересечь земную тень, Луне требовалось в четыре раза больше времени, чем краю земной тени на пересечение диаметра Луны. Таким образом, диаметр Луны равен четверти диаметра Земли – то есть примерно 3700 км, что практически идеально совпадает с реальным значением.
Угловой размер Луны в небе равен 0,5°. Также каждый час она проходит 0,5° относительно неподвижных звезд, вращаясь вокруг Земли. Соответственно, за час она покрывает расстояние, равное своему диаметру. Из дальнейших простых измерений углов следует, что объект с угловым размером 0,5° должен находиться на расстоянии 110 собственных диаметров от наблюдателя, каким бы этот диаметр ни был. Поскольку диаметр Луны известен, мы можем вычислить расстояние от Земли до Луны (радиус лунной орбиты) – это 60 радиусов Земли. Снова потрясающая точность.
Но зачем останавливаться на этом? Греческие и китайские ученые понимали, что Луна не светит сама, как это делает Солнце, но отражает его лучи, обращаясь вокруг Земли. Тогда на каком расстоянии находится Солнце? Очевидно, на гораздо более значительном, чем Луна, но дальнейшие измерения довольно трудны. Аристарх понял, что если Солнце не бесконечно далеко, то первая и третья четверть Луны – два момента, когда она освещена ровно наполовину, – должны наблюдаться на угловом расстоянии чуть меньше 180°. И в самом деле, Луна выглядит в точности как буква D чуть раньше конца первой четверти лунного месяца и чуть позднее начала четвертой, но это едва заметное отклонение, намного меньше 1°. Аристарх переоценил его, приписав ему значение в 3°, возможно полагая, что меньше оно быть не может; из этого он сделал вывод, что Солнце расположено в 20 раз дальше Луны. В действительности оно в 400 раз дальше.
Также Аристарх рассуждал, что звезды, чем бы они ни были, намного дальше Солнца, поскольку не демонстрируют никакого параллакса (видимого движения по небу) при обращении Земли вокруг Солнца. Если бы определенная звезда находилась от нас всего лишь в несколько сотен раз дальше, чем Солнце, ее видимое положение на небе ощутимо менялось бы при смене времен года, так же как ваза, стоящая на столике неподалеку, сдвигается относительно дальней стены, когда вы закрываете то левый, то правый глаз. Поскольку он не мог заметить параллакса ни одной звезды, он решил, что они, должно быть, в тысячи раз дальше Солнца, и практически дошел до предела возможного.
Наконец, если Солнце, как считал Аристарх, в 20 раз дальше Луны, но Луна тем не менее полностью закрывает его во время затмения, то Солнце должно быть в 20 раз больше Луны. Он был прав по сути, но его оценки подкачали. Солнце на самом деле в 400 раз дальше и, таким образом, в 400 раз больше Луны. Иначе говоря, его диаметр составляет 109 диаметров Земли. Это означает, что висящее далеко над нашей головой Солнце является центром целой системы планет. Луна обращается вокруг Земли, которая обращается вокруг Солнца вместе с Юпитером и всеми остальными планетами, и все это окружено звездами, которые находятся еще в тысячи раз дальше.
Все это было не домыслами, но реальностью, поскольку геометрия реальна, а исходные данные достаточно просты, чтобы их могли воспроизвести другие. Открытие, что Земля – гигантский шар, хотя и не слишком большой по сравнению с непостижимо далеким и гигантским Солнцем, могло бы разрушить картину мира культуры, которая – пусть даже и формально – придерживалась представления о богах, живущих на горе Олимп в нескольких сотнях километрах к северу, и о Гелиосе, который везет Солнце в своей колеснице. Для большинства людей Земля оставалась плоской, небо было сверху, а внизу находился загробный мир пещер, подземных рек и лавы. Солнце и Луна всходили и заходили, Луна меняла форму – и все тут. Как к сегодняшним теориям струн и темной материи, к этой новой физической космологии, если о ней вообще было известно, не нужно было немедленно формулировать отношение – за исключением, возможно, тех моментов, когда в небесах появлялась комета или полное солнечное затмение вызывало жуткую тьму. Тогда всем становилось не все равно.
* * *
Еще одним средиземноморским корифеем был Архимед из Сиракуз, живший в III в. до н. э., математик, физик и инженер, который много размышлял о бесконечности. Он знаменит изобретением устройства, названным впоследствии «архимедов винт», где огромный штопор вращается внутри цилиндра так, что благодаря его вращению вода поднимается вверх. (Архимед мог заимствовать идею этого приспособления у египтян; подобные устройства широко применялись в аграрных обществах.) Верный себе, он думал не об орошении полей; ученый решал проблему откачки воды из трюма построенного им роскошного военного корабля гигантского размера. Из-за своих не имевших аналогов в прошлом массы и водоизмещения «Сиракузия» дала течь, как только вышла в море.
Возможно на спор, Архимед однажды вызвался доказать, что число песчинок в мире не бесконечно. В восьмистраничном письме царю Сиракуз Гелону ученый приводит краткое описание своего более подробного труда, ныне утраченного, в котором он нашел верхнюю границу количества песчинок, доказав, что их точно меньше этого предела. Это часто упоминаемое письмо получило название «Исчисление песчинок в пространстве, равном шару неподвижных звезд». Какой бы большой ни была Земля, она должна помещаться внутри Вселенной. Для определения размера Вселенной Архимед воспользовался работами Аристарха и пришел к выводу, что звезды находятся примерно в 10 млрд стадиев. Теперь он мог установить верхний предел количества песчинок, но существовала одна проблема – система исчисления для таких больших чисел еще не была изобретена!
Самым большим известным числом в те времена была мириада (10 000). В одном ведре песка уже содержится мириада мириад песчинок. Поэтому Архимеду пришлось придумать новый вид счета и изобрести экспоненциальное представление чисел, известное также и ученым доведической Древней Индии. Всегда найдется число, которое сколь угодно больше предыдущего: 100, 1000, 10 000… Экспоненциальная запись позволяет нам обозреть бесконечное, ограничить исчисляемое и охарактеризовать бесконечно малое.
Применение этого метода требует высокого уровня абстрактного мышления. Существа, неспособные на абстрактное мышление, воспринимают Вселенную в линейной последовательности – 1, 2, 3, 4, 5… Так мы считаем вещи и перемещаем свои тела сквозь пространство и время. Два километра, три километра. Восемь яблок. Девять яблок. Тиканье часов. (Хотя мы и измеряем время в экспоненциальных величинах – в секундах, минутах и часах, – однако свое движение сквозь него мы ощущаем, как линейное.)
Экспоненциальность порождает последовательности, которые неоднородны в пространстве и времени: два соседних числа в них разделяет постоянное соотношение, а не постоянная разница. В последовательности 1, 10, 100, 1000 каждый член – это десять в степени 0, 1, 2, 3 (количество нулей). Экспоненциальность – это революционное понятие, без которого не могла бы существовать современная количественная наука. Вы можете охватить самое маленькое квантовое расстояние (планковская длина, 1,6 × 10–35 м) и диаметр Вселенной (около 100 млрд световых лет, то есть 1027 м) всего 62 степенями десяти. Любой может сосчитать до 62.
Вооружившись этим новым способом работы с большими числами, Архимед приступил к своим расчетам. Насколько я могу судить, он возвел в куб свою оценку диаметра Вселенной, чтобы получить ее объем, и разделил его на объем песчинки, чтобы получить абсолютный верхний предел количества песчинок – 1063. Заметьте, Архимед не считал песчинки, а просто показал, что они исчислимы. Он признавал, что это не значит, что их можно сосчитать: это совсем другое. Всех песчинок на всех пляжах мира всего лишь несколько квинтиллионов, то есть порядка 1018. В одном году 32 млн секунд, так что, если пересчитывать по 10 песчинок в секунду, потребуется 10 млрд лет. Земля и Солнце к тому времени исчезнут. Вам понадобятся миллиарды высокоскоростных пескосчетных машин, чтобы закончить работу до вашей смерти. Песчинки, как звезды в небе, исчислимы только в принципе, но это не делает их число бесконечным. Является ли это различие чисто философским – или же оно имеет решающее значение?
В духе соображения, что микроскоп – это телескоп, развернутый задом наперед, Архимед обратил свои рассуждения в обратную сторону, чтобы поразмыслить о бесконечно малых. Он решил парадокс Зенона, выяснив, что только то, что среди слагаемых есть бесконечно малые величины, не означает, что их нельзя сложить. Ученый доказал, что 1/2 + 1/4 + 1/8 + … + 1/2n + … = 1, поэтому Ахиллес догонит черепаху, а стрела попадет в дерево. Доказательства Архимеда были простыми и подкупали своей геометрической формой. Разделив квадрат на более маленькие квадраты, он доказал, что 1/4 + 1/16 + 1/64 + … + 1/4n + … = 1/3. Архимед вывел бесконечные ряды, которые дали лучшие на тот момент оценки числа π и кубического корня из 3 – оценки, лежащие в основе великих достижений техники, картографии и естественных наук. Только в эпоху Просвещения будут открыты более глубокие нюансы бесконечности, и в результате появится математический анализ, который значит для современной физики то же, что геометрия – для древних греков.
* * *
Геометрическая прогрессия продолжается до бесконечности в обе стороны: … 1/64, 1/32, 1/16, 1/8, 1/8, 1/2, 1, 2, 4, 8, 16, 32 … Если вы движетесь влево, вы имеете дело со все меньшими числами, которые, однако, никогда не становятся нулем, а если вправо, то со все более огромными, которые никогда не становятся бесконечностью. Этот ряд называется степенями двойки; количество атомов во Вселенной составляет примерно 276, то есть число в 76 шагах вправо. Поскольку двоичные цифры («биты») могут быть представлены простыми двухпозиционными переключателями и все равно несут огромное количество информации, бинарная арифметика стала основой для современной электроники.
Геологи, пекари, строители и земледельцы также используют двоичные ряды, поскольку для нас естественно увеличивать вещи вдвое и делить их напополам, на четвертинки и так далее. Есть доски 2 × 4 и фанера 4 × 8. Галлон – это четыре кварты, кварта – это две пинты, пинта – это две полпинты, а полпинты– восемь унций. Чейн – это четыре рода; миля – восемь фурлонгов. Булыжник – это фрагмент горной породы диаметром от 64 до 256 мм, галька – от 4 до 64 мм, а валун – от 256 мм и больше. Диаметр частиц песка – от 4 мм до 1/16 мм, а все что меньше – это пыль.
Просеивая песок с пляжа, вы получите немного мелкой гальки, сколько-то крупных и много-много мелких песчинок. До сих пор у нас наблюдается геометрическая прогрессия – но пыли там будет немного. В целом мы имеем постоянное соотношение числа песчинок, гальки и булыжников – скажем, каждое в 100 раз меньше предыдущего, – так почему же прогрессия обрывается? Отклонения от постоянного соотношения рассказывают нам геологическую историю. На пляже частицы самого мелкого песка и пыли уносятся водой, оставляя крупный песок, в который мы так любим закапывать пальцы ног; ил уплывает в море и оседает на самой глубине.
На лунной поверхности песка очень мало (хотя, когда вы просеиваете образцы, чтобы избавиться от всего, кроме частиц размером с песчинку, они оказываются невероятно интересными!) Верхние 10 м составляет вездесущий реголит – по большей части это тонкая пудра, магматическая силикатная пыль с диаметром частиц от 20 до 70 микрометров (примерно в десять раз меньше песчинки) плюс небольшая доля более крупных фрагментов и немного гравия. На Луне геометрическая прогрессия продолжается, пока материал не превращается в основном в пыль; в отличие от земного пляжа пыль образуется здесь гораздо быстрее, чем уносится прочь. Это происходит потому, что на Луне нет дождей и океанов, а ветер только солнечный, который и долбит песчинку за песчинкой. Поскольку там нет атмосферы, уничтожающей мелкие, очень многочисленные метеороиды, верхние несколько метров поверхности представляют собой в основном пыль.

 

Фотография автоматического космического аппарата «Сервейер-3», совершившего посадку в Океане Бурь, сделанная Аланом Бином двумя годами позже. Обратите внимание на оставшийся после отскока отпечаток опоры и особенно на узор, сохранившийся в похожем на мелкую муку материале с высокой слипаемостью.
NASA/LPI

 

Почти все наши знания о лунной поверхности почерпнуты из размеров и особенностей строения частиц грунта. Так как на Луне нет атмосферы, мелкий космический гравий врезается в поверхность на полной скорости, оставляя ямки размером с коробку для обуви; повторите это триллион раз – и вы получите размягченный грунт. И хотя маловероятно, что такой метеорит попадет в какого-нибудь конкретного астронавта, будущие колонисты явно должны будут учитывать эту беспорядочную стрельбу из космоса.
Термическое растрескивание под действием суровой смены дня и ночи также разрушает породу на поверхности Луны. Луна – пустыня, которая получает то же количество солнечного света, что и Земля. В отсутствие атмосферы и при двухнедельной продолжительности дня и ночи температура поверхности в некоторых регионах скачет туда-обратно на 300 ℃: грунт то поджаривается, то замерзает. Нагреваясь, камни расширяются, а при охлаждении сжимаются, что вызывает тепловую усталость, из-за которой трескаются целые валуны. Одновременно метеориты размером с пылинку непрерывно дробят все в микроскопическом масштабе, сглаживая любые края и создавая тонкую лунную пудру. А солнечный ветер, в основном состоящий из оторвавшихся от Солнца ядер водорода и гелия, постоянно внедряется в этот порошок, меняя его физические и химические свойства: у ученых даже возникла идея собирать из него в будущем водород для лунных термоядерных реакторов.
* * *
До появления телескопов, в отсутствие каких-либо доказательств того, что ситуация обстоит иначе, некоторые философы представляли Луну как землеподобную планету с океанами и даже людьми. Темные, покрытые пятнами детали рельефа, едва видимые невооруженным глазом, провозгласили морями (на латинском mare) и дали им соответствующие названия, такие как Море Спокойствия или Океан Бурь. К тому времени, когда был изобретен телескоп, стало ясно, что эти моря являются равнинами, а никак не океанами. Это не подразумевало, что равнины должны быть мертвыми – некоторые наблюдатели продолжали объяснять их темный цвет растительностью.
В 1610 г. Галилей впервые представил географию Луны в своем «Звездном вестнике» (Sidereus Nuncius). Но о лунной геологии первым нам рассказал английский ученый Роберт Гук. Каждый должен прочитать его книгу «Микрография» (Micrographia, 1665) или по крайней мере пролистать ее и зачитать вслух некоторые абзацы: это ставшая возможной после изобретения микроскопа и телескопа восхитительная чехарда всего, что удалось разглядеть благодаря этим чудесным приспособлениям. Она завораживает не только в том смысле, в каком этого можно ожидать от работы, написанной почти 400 лет назад. Гук описывает изготовление и применение своих самых совершенных на тот момент научных инструментов. Для работы с микроскопом ему требовалось выходящее на юг окно и большой сферический сосуд с водой для фокусирования лучей. Все это могло использоваться только в самые солнечные дни, когда на препараты падало достаточно света. Далее Гук с поистине мальчишеской радостью сообщает, что кончик швейной иглы в действительности довольно тупой! Он прилагает детальный рисунок вроде того, что современный третьеклассник мог бы сделать для выставки естественно-научного кружка. Гук подробно описывает анатомию водомерок и блох, снова сопровождая свои описания великолепными рисунками. Он объясняет, почему уголь черный, и это не то, о чем вы подумали.

 

Некоторые из первых зарисовок Луны, сделанные Галилеем.
Galileo, Sidereus Nuncius (1610)

 

«Микрография» в основном посвящена открытиям, сделанным Гуком с помощью микроскопа, например «бесконечному разнообразию любопытных форм снежинок», а также некоторым размышлениям о физике («Эластичные свойства воздуха»). Но на нескольких заключительных страницах он рассказывает о своих недавних наблюдениях Луны с использованием «тридцатишестифутовой зрительной трубы, ширина которой составляла где-то три с половиной дюйма», – то есть очень длиннофокусного телескопа с линзовым объективом диаметром с пивную банку. Гук описывает лунные возвышенности как «скалистые, меловые или каменистые горы», вздымающиеся высоко над равнинами. Он отмечает, что эти горы распределены по всей поверхности Луны, подчиняясь собственному определению «низа». Как пишет ученый, создается впечатление, что Луна покрыта незакрепленным материалом, который притягивается к ее центру независимо от того, где находится Земля. Без лишних фанфар Гук сообщает потрясающую новость: «На Луне действует тот же принцип тяготения, что и на Земле» – основополагающее правило, что материя притягивает материю.
Исследовательский подход Гука состоял в том, что разум должен быть дисциплинирован, но открыт всему новому. На Луне он замечает «очень обширную долину», которая «кажется… полностью покрытой каким-то видом растительной субстанции». Это было бы замечательно. Также он видит круглые дыры, «некоторые больше, некоторые меньше, какие-то менее, а какие-то более глубокие… каждая охвачена круглым, поднимающимся вверх валом, как будто вещество в середине выкопали и покидали по краям». Это кратеры.
Кратер – большая чашеобразная впадина, которая может образоваться в результате вулканической деятельности, ударного воздействия или взрыва. Также крупные кратеры возникают при ведении горных работ. Все эти объяснения в разное время предлагались в качестве версий происхождения лунных кратеров. Они долго муссировались, но до программы «Аполлон» вопрос оставался неразрешенным. Гук смог описать кратеры, но проблему их происхождения так и не разрешил – обычная ситуация при исследовании других планет. Кратеры, по его мнению, не могли появиться из-за столкновений с кометами, потому что во времена Гука кометы считали объектами размером с планету, достаточно массивными, чтобы уничтожить Землю «словно осиное гнездо в костре», как однажды сказал Бенджамин Франклин, описывая возможное развитие событий.

 

Плесневой грибок рода Mucor. Рисунок XII из книги Роберта Гука «Микрография, или некоторые физиологические описания мельчайших телец при помощи увеличительных стекол с их наблюдением и обсуждением».
Robert Hooke, Micrographia (London, 1665)

 

Об астероидах никто и не помышлял, пока первый из них совершенно случайно не открыли в 1801 г. «Трудно представить, откуда такие тела вообще могут взяться», – писал Гук, обсуждая идею лунных столкновений. Тем не менее он посчитал себя обязанным провести ряд экспериментов, чтобы проверить гипотезу, что когда-то (возможно, очень давно) Луна подвергалась бомбардировкам – и так на ней появились кратеры. Они с другом или помощником под разными углами стреляли из мушкета в толстый пласт белой трубочной глины, создавая кратеры и изучая результаты. Гук сообщал, что форма и структура таких кратеров, а также расходящиеся от них лучи довольно похожи на то, что наблюдается на Луне: у него получались мелкие или полусферические углубления с приподнятыми краями и лентами изверженной породы. Он был очень близок к верному ответу.
Но мысль о пулях, со свистом проносящихся по космосу, – это было чересчур, и ученый пришел к выводу, что лунные кратеры, вероятнее всего, имеют вулканическое происхождение и образовались при застывании вращающихся воронок расплавленной породы. Какой ему представлялась физика этого процесса, неясно, но он ссылается на то, что «наблюдал в котле с кипящим алебастром» (порошкообразным гипсом), как пар поднимается сквозь порошок, оставляя «маленькие ямки по форме в точности как на Луне, если осветить их свечой в большой темной комнате». Это типичная ошибка наблюдения: когда что-то похоже на то, что вы видели раньше, это оно и есть. Мы все порой этим страдаем. «При различном расположении свечи относительно этой поверхности можно точно воспроизвести все характеристики подобных ям на Луне, когда они освещены Солнцем под большим или меньшим углом».
Вероятно, Гук сочинил страницы «Микрографии» о лунных кратерах после визита на фабрику своего приятеля, где производились курительные трубки. Это захватывающий образец ранней науки, очень живо и подробно изложенный. Но это небольшой фрагмент гораздо более крупного труда, по-новому обозревающего практически всю натурфилософию с помощью микроскопа и телескопа. Тем не менее, если бы Гук в конце концов пришел к выводу, что кратеры на Луне появились из-за столкновений, а не из-за вулканов, это сэкономило бы нам массу времени.

 

Кратеры на кратерах внутри кратеров – почти что фрактал. Сделанная с «Аполлона-11» фотография 90-километрового кратера Дедал на обратной стороне Луны.
NASA

 

Предположим, что на один 10-километровый кратер приходятся 100 километровых, 10 000 стометровых и так далее. То есть количество кратеров пропорционально единице, деленной на возведенный в квадрат диаметр (степенная зависимость с показателем степени –2). В таком идеальном случае поверхность планеты выглядела бы почти одинаково при любом приближении, как фрактал. Представьте себе, что вы капитан космического корабля, совершающего посадку на такую фрактальную планету, и следите за снижением с помощью направленной вниз камеры. Через какое-то время все поле кадра заполняется кратерами. По мере снижения становятся видны все более мелкие кратеры, а крупные, наоборот, пропадают, потому что поле кадра меньше, чем они. (Корабль неизбежно окажется внутри какого-нибудь гигантского кратера.) Статистически число кратеров в любом отдельном кадре остается одним и тем же, поэтому все фотографии будут выглядеть примерно одинаково на всем протяжении спуска корабля внутрь фрактала, и вам никак не удастся оценить расстояние до поверхности.
На практике, конечно, так не бывает. У кратеров и частиц существуют предпочтительные размеры, и их наличие или отсутствие (пропавшая с пляжа пыль или отсутствие 100-метровых кратеров на астероиде Эрос) рассказывает нам об образовании, эволюции и возрасте поверхности. Крупные кратеры разрушаются, а маленькие подвергаются эрозии из-за солнечного ветра. Валуны крошатся от сильных колебаний температуры. Время от времени крупное столкновение вызывает «полную перезагрузку» огромных областей поверхности. Изучая характеристики кратеров, валунов и прочих явлений, которые подчиняются или не подчиняются степенным зависимостям, мы можем формулировать теории об их геологии, истории столкновений и эрозии под действием ветра или воды.

 

Командир «Аполлона-12» Чарльз Конрад стоит около посадочного модуля автоматического космического аппарата «Сервейер-3», в 200 м от того места, где пилот Алан Бин совершил посадку лунного модуля «Интрепид», который виден в отдалении.
NASA/Алан Дж. Бин

 

Столетия потребовались для того, чтобы идею об образовании кратеров в результате столкновений с планетой начали воспринимать всерьез. Даже когда современные телескопы уже получали детальные изображения Луны, а геологи изучали недавно образовавшиеся кратеры на Земле, сторонники гипотезы об ударном возникновении лунных кратеров оставались в меньшинстве. Возьмем, к примеру, воронку, которую мы теперь называем Аризонским метеоритным кратером – крупнейшим из молодых ударных кратеров на нашей планете. В начале ХХ в. все те немногие геологи, которые знали о его существовании, были уверены, что он имеет вулканическое происхождение. (Его называли конусом Кун-Бьютт; с некоторого расстояния топографический подъем края кратера выглядит как обычная столовая гора. Поскольку кратер находится в зоне активного вулканизма, эту ошибку можно счесть простительной.) Американский горный инженер Дэниел Бэрринджер рассудил, что причиной образования этой километровой в диаметре ямы должны быть железные метеориты, которые так распространены в этой местности, и что под дном кратера должна была бы находиться представляющая экономическую ценность масса железа. После долгих поисков рудное тело так и не было найдено, поэтому споры продолжились дальше.
В 1960 г. американский ученый Юджин Шумейкер в своей кандидатской диссертации доказал, что эта километровая воронка появилась в результате столкновения с метеоритом. В основу доказательства Шумейкера легли крошечные кристаллы кварца, взятые со дна и стен воронки. Он изучил их под микроскопом и обнаружил четкие ударные трещины и кристаллические формы, которые могли появиться только в результате мощнейшей ударной волны, прошедшей через породу. Такие условия не возникают даже при самом свирепом извержении вулкана. Для них требуется гиперзвуковое событие: массивное тело, летящее со скоростью во много километров в секунду, или ядерный взрыв.
Железные фрагменты, которые находят на этой территории, являются обломками того, что получило название «метеорит Каньон-Дьябло» в честь прекратившего свое существование пристанционного городка в 20 км от кратера. Железные метеориты были среди первых объектов, отвердевших в молодой Солнечной системе; в самом деле, обломок метеорита Каньон-Дьябло был одним из пяти метеоритов, использованных Клэром Паттерсоном для уже упомянутого первого точного определения возраста Земли. Наши современники обшарили всю территорию вокруг Аризонского кратера с металлоискателями; в прошлом же тут попадались фрагменты массой до 500 кг. Большие слитки чистого железо-никелевого сплава вызывали священный трепет у людей каменного века, которые отродясь не видали даже мелких кусочков металла.
О том, что Кун-Бьютт, он же Аризонский метеоритный кратер, появился в результате падения метеорита, уже было известно к тому времени, когда началась подготовка к экспедициям «Аполлона», а Шумейкер стал одним из руководителей геологического направления тренировки астронавтов. Тем не менее его коллеги все еще ожесточенно спорили о происхождении лунных кратеров: возникли они в результате столкновений или из-за извержений вулканов. Самый уважаемый американский геолог ХIХ в. Гров Карл Джильберт пришел к выводу, что кратеры на Луне имеют ударное происхождение, но сам Аризонский кратер возник в результате извержения вулкана с выбросом пара, подобно расположенным неподалеку кратерам Сьерра-Пинакате на границе штата Аризона с Мексикой. Путаница в голове у Джильберта, как и ошибка Гука, в значительной степени сказались на истории этого вопроса, поскольку и тот и другой были величайшими геологами своего времени.
Готовясь к полетам, астронавты программы «Аполлон» проходили подготовку в кратерах пустынного Юго-Запада США; там же досконально проверялись космические скафандры и прочее оборудование. Отрабатывались выходы: на Луне у экипажа имелись считаные часы на то, чтобы выполнить целый ряд трудоемких задач, и поэтому вся деятельность астронавтов должна была быть тщательно отрепетирована. Целью Шумейкера было удостовериться, что астронавты, по основной своей специальности пилоты, в достаточной мере знакомы с геологией, чтобы произвести точные, значимые с научной точки зрения наблюдения и принять правильные решения о том, какие образцы доставить на Землю.
Первые высадки на поверхность Луны включали в себя лишь выходы продолжительностью в несколько часов. Программы последующих экспедиций, все в большей степени сосредоточенных на научных задачах, включали «ночной» отдых и захватывающие поездки на лунных вездеходах. К запуску «Аполлона-14» астронавты освоили приемы поисковой геологии. Они размещали сейсмологические станции и закладывали пиротехнические заряды, которые подрывались с орбиты после того, как спускаемый модуль покинул Луну. Они устанавливали ретрорефлекторы, чтобы ученые с Земли могли замерить время, которое уйдет у лазерного луча на путь туда и обратно, и определить расстояние между Землей и Луной с точностью до миллиметров. Они загоняли в грунт метровые штыри, чтобы определить его несущую способность, и высверливали керны с помощью электробура. Они подбирались на лунных вездеходах к самому краю кратеров, ездили вдоль лунных каньонов и фиксировали все, что видели. Признаки ударного образования кратеров были повсюду, подобно тому, как в русле реки везде есть признаки водной эрозии. Образцы, заслуживавшие доставки на Землю, пришлось тщательно выбирать.
Геология лунных кратеров представляет собой палимпсест: самые старые и крупные из них перекрываются породой, извергнутой из чуть более новых, и так далее, как груда одеял на постели, которую никогда не убирают. Последние крупные кратеры, образовавшиеся поверх всего этого, наиболее заметны. Невооруженным глазом в темную ночь вы видите только Тихо – кратер диаметром 90 км, который выделяется, потому что яркие лучи от него расходятся по всей Луне. Эти лучи – выбросы породы от удара астероида вполовину меньше того, который убил динозавров. «Аполлон-16» совершил посадку внутрь одного из таких лучей, и астронавты собрали там образцы импактитов, которые датируются как образовавшиеся 108 млн лет назад – вероятно, это и есть возраст Тихо.
Мелкие кратеры формируются чаще всего, и установленная на искусственный спутник Луны камера высокого разрешения (Lunar Reconnaissance Orbiter Camera, LROC) смогла зафиксировать появление одного такого кратера диаметром с плавательный бассейн, сделав снимки его района до и после столкновения. Кратер возник из-за удара космического тела размером с мяч для йоги, обладавшего энергией, эквивалентной одной тонне тротила. Было найдено и несколько более мелких новообразованных кратеров. Кратеры такого размера выглядят из космоса как углубления в центре паутины едва заметных лучей и неровностей поверхности. Выброшенные камни и пыль падают вокруг этих кратеров, как град осколков при взрыве бомбы, разлетаясь на расстояние в сотни диаметров кратера и в свою очередь поднимая мельчайший реголит. Сейсмические толчки расходятся от эпицентра и тоже будоражат поверхностную пыль, вызывая кратковременные оптические изменения, подобно книге, брошенной на пыльное покрывало. Где-нибудь на Луне такое происходит примерно каждый год.
На астероидах тоже есть кратеры, и самые большие из них могут быть размером почти с сам астероид. Необычный пример являет собой примитивный астероид Матильда диаметром в 60 км, у которого отсутствуют по крайней мере пять гигантских кусков (только на той половине, которую сфотографировал наш космический аппарат), причем каждый из них больше 20 км в поперечнике. Выглядит это так, будто астероид был атакован гигантской ложкой для мороженого. Мы пока пролетали только у одного из тысяч примитивных астероидов такого размера, поэтому на самом деле нельзя сказать, является ли он необычным. Возникновение кратеров Матильды в результате наносимых под случайным углом ударов астероидов диаметром в несколько километров (это похоже на ребенка, колотящего палкой по пиньяте) должно было привести к ее довольно быстрому вращению – по крайней мере, это следует из любых осмысленных расчетов. Но вместо этого Матильда практически замерла, совершая один оборот за 18 земных суток! Это один из самых медленно вращающихся объектов в Солнечной системе. Либо моменты импульса, набранные после каждого удара, каким-то образом погасили друг друга – вероятность этого составляет менее 1 %, – либо в процессе образования астероидных кратеров есть еще что-то такое, чего мы не понимаем.
Почему образование полудюжины гигантских кратеров не разрушило Матильду? То же самое в 1970-е гг. спрашивали о спутнике Марса Фобосе – 20-километровом теле с 10-километровым кратером. Согласно всем данным науки того времени, такой удар должен был расколоть Фобос (к которому мы еще вернемся) на части. Матильда тоже должна была развалиться. И тем не менее – вот они.
Учитывая непрерывно идущий процесс образования кратеров, можно подумать, что астероиды должны быть очень прочными, чтобы пережить такие масштабные столкновения, но в действительности дело обстоит как раз наоборот. Представьте, что вы стреляете из пистолета в кучу песка и пыли; получается кратер, и вы можете раскопать песок и найти пулю. Теперь вообразим, что вы смешали этот песок и пыль с водой и получили глину, которая засохла до состояния твердого кирпича. Выстрелите в этот кирпич такой же пулей – и никакого кратера не получится. У вас останется несколько осколков, а пуля разрушится. Это рассуждение, подтвержденное компьютерным моделированием и последующими наблюдениями с автоматических космических аппаратов, привело нас к убеждению, что «выживает слабейший»: для того чтобы не быть подверженным катастрофическому разрушению, астероиды должны быть мягкими и податливыми, состоять из неплотного, зернистого материала, такого как пыль и гравий.

 

Южный полярный регион астероида Веста. Это очень потрепанный астероид, вся топография которого на самом деле представляет собой совокупность ударных кратеров и их краев, а также показанных тут впадин 10-километровой ширины, опоясывающих астероид вдоль экватора.
NASA/JPL/DLR

 

Мегакратеры образуются и на полноразмерных планетах, но, вместо того чтобы принимать форму чашеобразного углубления, они повреждают, истончают и подогревают кору, вызывая сейсмические и долгосрочные геологические колебания, из-за которых в итоге превращаются в обширные плоские пространства. Самые крупные кратеры на планете могут полностью исчезнуть. Мощнейшие столкновения посылают ударные волны глубоко в ядро, запуская глобальные процессы, которые могут идти много дней, лет и даже миллионов лет. Образование огромных кратеров может пробудить внутри планеты тепловые двигатели, ведь если планета уже и так горячая, это словно снять крышку с чайника: внутреннее пространство начинает охлаждаться неравномерно, поскольку тепло быстрее выходит с того бока, где кора тоньше всего. Такое положение может привести к запуску общепланетарной конвекции (теплое поднимается, холодное опускается) как способа восстановить тепловое равновесие. По мере того как планета затвердевает после образования мегакратера, такое неравновесное состояние может оказаться зафиксированным на долгое время.

 

Марс, маленькая планета с большой геологией. Эта рельефная карта составлена по данным лазерного альтиметра MOLA орбитального зонда «Марс Глобал Сервейор». Северные низменности, также известные как Великая Северная равнина, образуют гигантский бассейн диаметром 2300 км. Заметные справа вершины на экваторе и к северу от него – это вулканы нагорья Фарсида, самые высокие горы вулканического происхождения в Солнечной системе. Тянущийся с востока на запад шрам правее (восточнее) от них – это Долины Маринера, крупнейший каньон в Солнечной системе. 800-километровое углубление слева на юге – Равнина Эллада.
NASA/GSFC

 

Хотя измерять самые крупные кратеры очень трудно, кажется, первое место среди них принадлежит Северному Полярному бассейну на Марсе. По данным компьютерного моделирования, кратер такого размера и формы мог образоваться при типичном по скорости и углу атаки столкновении с блуждающей планетой диаметром примерно 2000 км – в три раза меньше Марса, причем большая часть ударяющего тела продолжила свой полет после возникновения кратера. Но, несомненно, все не так просто. Согласно моделям, имитирующим термическую реакцию Марса, его теплая мантия не осталась бы в покое. Она бы отреагировала новым бурным циклом конвекции, который привел бы к возобновлению процесса формирования коры и созданию на ране в теле планеты толстого струпа. Если это так, то занимающая большую часть бассейна Великая Северная равнина – это молодая поверхность планеты, а находящееся в ее центре Северное плато – вторичная кора, как бы континент, образовавшийся внутри углубления от удара. Это полностью противоположное понимание геологических данных! В планетологии важно сохранять непредвзятое отношение к объектам изучения.
* * *
Как правило, чем гуще поверхность планеты покрыта кратерами, тем она старше. Столкновения происходят повсюду, так что ландшафт с редкими кратерами, вероятно, возник недавно или полностью обновил свою поверхность из-за какого-то события – например, истечения лавы или другой местной катастрофы, – или из-за длительного воздействия ветра и воды, или из-за тектоники плит. С помощью кратеров мы можем определять возраст поверхности. Подобно деревянному столу, который покрывается щербинами и следами от сигарет, понемногу становясь антиквариатом, покрытая кратерами поверхность позволяет предположить, сколько прошло времени, и даже сделать количественную оценку. Что касается качественных характеристик, при бомбардировке преимущественно небольшими телами поверхность становится более неровной, утрамбованной и фактурной. Если крупных ударов было больше, начинают выделяться отдельные приметы – как круглый след от горячей сковородки, которую когда-то поставил на стол ваш давно повзрослевший сын, заставляет осознать, как летят годы.
Мы легко можем установить, что лунные нагорья гораздо старше лунных морей с их редкими кратерами – это относительный возраст. Намного трудней определить возраст абсолютный – сколько миллиардов лет назад сформировались моря? Если в околоземном пространстве происходит разрушение астероида, на планету обрушивается целый град осколков, и поверхность Земли может какое-то время «быстро стареть». В подобных ситуациях поверхности кажутся старше, чем они есть. Еще одна сложность состоит в том, что мы не можем точно сказать, кратер какого размера останется от того или иного астероида, особенно в случае принимающего тела небольшого размера. Ученые попытались разобраться с возрастом поверхности маленького астероида Бенну, 500-метровой цели аппарата NASA «Озирис-Рекс», но, чтобы сделать это, мы должны предположить – поскольку нам это неизвестно, – какого размера кратер оставляет то или иное ударяющее тело и какого размера ударяющие тела способны стереть с поверхности более старые кратеры.
Если мы знаем частоту столкновений и «правило масштабирования», которое дает размер кратера, образовавшегося в результате столкновения с определенными характеристиками, тогда кратеры, которые видны на планетном теле, могут служить часами при условии предварительной калибровки по частоте столкновений. И здесь как нельзя лучше подходит Луна – тело, которое с точки зрения геологии мертво по крайней мере последние 4 млрд лет, за исключением гигантских истечений вулканической лавы, которые на глубину нескольких километров затопили бассейны видимой стороны от 3 до 3,5 млрд лет назад. Возраст лунных морей используется для калибровки статистики кратерообразования, после чего ее можно применять ко всей внутренней Солнечной системе.
Кратеры лунных нагорий начали появляться в течение нескольких миллионов лет после формирования спутника; Земля тогда еще была неоформившимся, безумным местом. Каждый новый кратер на нагорьях разрушал предыдущие; поверхность нагорий насыщена кратерами, поэтому после определенного момента хронологию восстановить трудно. Другая крайность – это поверхности таких планет, как Венера и Земля, достаточно больших, чтобы иметь длительную глобальную геофизическую активность. Венера очень молода в том смысле, что кратеров на ней мало; возраст ее поверхности – полмиллиарда лет. Земля еще моложе: средний возраст ее поверхности около 100 млн лет, но некоторые континенты хранят память о прошлом вопреки активной тектонике плит.
Мы не знаем, какие процессы вызывали или вызывают постоянное обновление поверхности Венеры. Если бы это была тектоника плит или эрозия, тогда многие из ее самых крупных и древних кратеров должны были быть разрушены непрерывной геологической активностью иногда почти до неузнаваемости, как древнейшие кратеры на Земле или Марсе. Вместо этого самые крупные и древние кратеры на Венере хорошо заметны и полностью сохранились. Где же уничтоженные выветриванием, частично подвергшиеся субдукции или еще каким-то образом разрушенные кратеры Венеры?
Получается загадка: высчитываемый по кратерам поверхностный возраст Венеры очень мал, но незаметно никакого процесса, который обновлял бы ее поверхность. Это не может быть погода: воды там нет, а ветров у вялой поверхности, где атмосферное давление столь огромно, очень мало. Не может быть причиной и землеподобная тектоника плит, потому что тогда бы сохранялись древние, густо покрытые кратерами континенты. Локальная тектоническая или вулканическая активность оставили бы после себя частично разрушенные или захороненные крупные кратеры и ударные впадины. Вулканическая деятельность предпочтительно стирала бы кратеры в низинах и оставляла бы дуги кратерных краев вокруг затопленных лавой бассейнов, как на Луне. Ничего из этого мы не видим.

 

Радиолокационный снимок ударного кратера Балч (диаметр 40 км), полученный американской межпланетной станцией «Магеллан». Более светлые части снимка соответствуют участкам с неровностями порядка 10 см (рабочая длина волны радара). Балч – один из немногих крупных кратеров Венеры, которые мы застали в процессе разрушения.
NASA/JPL

 

Попытки разрешить все эти противоречия на основе наших ограниченных знаний привели к идее «венерианского катаклизма», обновившего сразу всю поверхность планеты полмиллиарда лет назад. Возможно, кора стала слишком толстой, перестала пропускать тепло и обвалилась вся целиком, перевернувшись вверх дном повсюду одновременно. Возможно, точку поставило столкновение с какой-то внутренней планетой размером с Луну, которое привело к расплавлению всей поверхности; пожалуй, эта версия не так уж надуманна. Возможно, обновление поверхности Венеры связано с не менее странными событиями на Меркурии, который каким-то образом утратил свою мантию. Как бы там ни было, Венера, кажется, начала планетную жизнь с чистого листа, стерев всю свою прошлую историю.
Поверхность Венеры негостеприимна: там так жарко, что плавится свинец, давление, как на морской глубине около 900 м, может раздавить иную подводную лодку, а облака состоят из серной кислоты. Ниже тоже нет ничего хорошего; поверхностная температура уже выше, чем может вынести какой-либо живой организм, а в глубине становится еще жарче. Если когда-то, до того, как случилась некая катастрофа, там и была жизнь, она погибла. Но над облаками, где-то в 50 км выше поверхности, давление и температура не особенно отличаются от атмосферных условий на поверхности Земли. Могло ли что-то живое уцелеть там? Чем бы оно питалось?
Ученые смогли всерьез задаться этими вопросами, когда «Магеллан», важнейшая американская межпланетная экспедиция середины 1980-х гг., обеспечила нам подробные геологические изображения всей Венеры, полученные с помощью радара, 10-сантиметровые волны которого могли проникать под облака. Десятилетием раньше советские спускаемые аппараты серии «Венера» впервые показали нам поверхность планеты и взяли пробы атмосферы. Остается надежда на еще одну важнейшую межпланетную экспедицию – «Венера-Д» (индекс «Д» означает «долгоживущая»). Ее целью является посадка модуля, который проведет на поверхности планеты двадцать четыре часа, а также вывод на орбиту радара. В качестве возможного вклада NASA рассматриваются аэростатные зонды или другая полезная нагрузка. Кому обязательно нужно быть долгоживущим, так это специалисту по Венере: старт экспедиции всегда ожидается через десяток лет, а Венера и ее секреты терпеливо ждут своего часа.
* * *
С момента своего зарождения Солнце совершило 20 оборотов вокруг центра Млечного Пути – прошло 20 космических лет. Примерно равный космическому году отрезок времени – 250 млн лет – требуется горячей отвердевшей мантии Земли, чтобы полностью перевернуться на конвейерной ленте тектоники плит, которая обеспечивает планетарный теплообмен и скорее всего крайне важна для появления по-настоящему землеподобных условий на нашей планете. Впервые она была описана немецким геофизиком Альфредом Вегенером как процесс распада суперконтинента под названием Пангея: идея совместить, как кусочки мозаики, очертания и географию континентов, расположенных по разные стороны Атлантики, в итоге оказалась верной, хотя изначально ее высмеивали как идиотскую. Сейчас тектоника плит понимается как повторяющийся глобальный цикл заталкивания, перемалывания, погружения и извержения.
Вот кратко ее механизм. Пластины холодной и жесткой литосферы, которые также называют плитами, опускаются по своим краям, более холодным и тяжелым. Они погружаются в мантию – более горячую, более примитивную по составу и более податливую – и затягивают за собой океанические желоба. За этими желобами, в подвижных клиньях, где смешиваются материалы погружающейся части плиты (субдуцирующего слэба) и исходной мантии, формируются вулканические дуги, такие как Японский архипелаг или Анды. Там, где сходятся и сталкиваются более мощные или сложно построенные плиты, возникают горные хребты вроде Сьерра-Невады и Гималаев.
Поскольку общая площадь поверхности Земли не меняется, на замену уходящей вниз образуется новая кора; благодаря конвекции мантии, в Атлантическом и Индийском океанах, а также в восточной части Тихого океана возникают зоны спрединга (раздвигания), похожие на швы на бейсбольном мяче. В Африке, над мантийным поднятием прямо сейчас раскрывается новое внутриконтинентальное море. Сегодня краевые части плит, слэбы, опускаются под действием конвекции до середины мантии, где претерпевают изменения и растворяются; раньше, когда мантия была горячее, фрагменты слэбов могли погружаться вплоть до ядра, образуя там «кладбище плит». Гигантские магматические капли из этих глубин, возможно, всплывают, поднимаясь сквозь всю мантию, чтобы извергнуться в так называемых горячих точках вроде Гавайских островов.
Зоны спрединга открываются, плиты сталкиваются, и в следующем космическом году континенты Земли будут такими же неузнаваемыми, как Пангея. Но физической основой этого процесса является простой факт: Земля горячая, космос холодный, поэтому тепло уходит наружу. То, как оно уходит, и определяет геологию планеты. У крупных планет гораздо больше тепла, которое им предстоит потерять, чем у маленьких, так что, возможно, размеры Земли оптимальны для существования сложной жизни, тогда как тела размером с Марс слишком неактивны, а суперземли, напротив, слишком активны. Но не исключено, что здесь я становлюсь пленником своего человеческого подхода.
Наши представления о земной тектонике плит имеют один пробел: вопрос ее запуска. По мере затвердевания земная кора становилась жесткой и формировала первые литосферные плиты, похожие на кору лунных нагорий. Но с чего одна плита вдруг поднырнет под другую и начнет тонуть? Не должна ли кора просто становиться все толще и толще, пока тепло прорывается наружу через вулканы? Особый ответ на этот вопрос вполне приемлем, потому что Земля – единственная известная нам планета с таким постоянным циклом тектоники плит. Возможно, для существующих где-то в космосе землеподобных планет размером с Землю нормально то, что мы видим на Венере.

 

Тектоника плит более примитивного типа. Блоки ледяной коры Европы, сфотографированные межпланетным зондом «Галилео» в 1997 г., демонстрируют признаки появления возвышенностей и низменностей в ходе «дрейфа» блоков по более теплому или жидкому нижнему слою какое-то время назад (это видно по кратерам на некоторых низменностях). Разница высот составляет сотни метров. Размер изображения 35 на 50 км.
NASA/JPL

 

Выдвигалось предположение, что начало тектонике плит положили крупные столкновения, которые пробили кору и запустили в мантии глобальную конвекцию. Всем нравится ссылаться на гигантское столкновение. Но и на Венере, как мы полагаем, случались такие же мощные глобальные столкновения. То же самое верно и для Марса, и для Меркурия (пропорционально их размерам). Возможно, тут был нужен правильный удар в правильный момент. Или, быть может, все это Луна и ее беспрестанное приливное воздействие.
Не исключено, что во всем виновата вода. До запуска тектоники плит поверхность Земли могла затвердеть в виде нагорий 10-километровой толщины, рассеченных глубокими желобами – трогами, сформировавшимися, когда литосферные блоки раскалывались и дрейфовали по бушующему океану магмы, напоминая хаотичные регионы Европы. Эти троги, вероятно, заполнялись водой первых океанов, но их топография должна была быть очень нестабильной. В какой-то момент по какой-либо причине одна из таких литосферных плит могла пододвинуться под другую, создав зону субдукции. Субдукция становится как бы трубопроводом, доставляющим насыщенные водой осадочные породы в нижний слой коры и верхний слой мантии; такое вливание воды должно вызывать частичное расплавление образовавшегося клиновидного участка плиты с выплавкой легкой гранитной магмы, которая медленно, но верно поднимается, формируя массивные плутоны; наконец, аккреция (слияние) плутонов ведет к формированию первичной континентальной коры. Так мог бы начаться тектонический цикл.
Эффектные горы вроде тех, которые окружают Йосемитскую долину, могут возникать, когда плутоны поднимаются быстрее, чем их разрушает выветривание. Но куда более важные события разворачиваются ниже, в корневых частях горных хребтов, где эти плутоны складываются в континентальные щиты – мощные плиты вроде африканской, канадской и антарктической. Когда океаническая плита сталкивается с континентальным щитом, она уходит под него и образуется еще больше гранитной магмы, добавляющей к континентам новые плутоны. Когда щиты сталкиваются с другими щитами, происходит нагромождение, или скучивание, их материала, в результате чего возникают плато вроде Гималаев. Результатом становится топографическая дихотомия Земли: древние континенты и молодые океанические бассейны.
На Венере также есть возвышенности и низменности, но они не так явно выражены, как на Земле, и, кажется, не являются результатом тектоники плит или образования океанов. Высокогорья Земля Иштар и Земля Афродиты иногда называют континентами, но вы не сможете с легкостью обвести их линией по контуру, как делаете это с земными континентами: нет никакой очевидной границы, которая бы определяла их пределы. На Земле такая граница – это уровень моря: континенты находятся явно выше этого уровня, абиссальные области – определенно ниже, а участки, попадающие в зону влияния подъемов и опусканий уровня моря в пределах первых сотен метров, относятся к континентальным окраинам. На Венере и Марсе нет континентальных окраин, только принятое за уровень отсчета давление сухого воздуха (к примеру, один бар или один миллибар давления); нет также значительной геологической дихотомии. Ниже мы исследуем эту взаимосвязь более подробно: наличие океанов делает возможным появление гранитов, а из гранитов складываются континентальные щиты.
Самые древние кратеры на Земле расположены на древних щитах. Самый большой из таких кратеров – Вредефорт в Южной Африке, структура диаметром 300 км. Возраст Вредефорта превышает 2 млрд лет, и он почти стерт выветриванием и эрозией. Самый молодой крупный кратер на Земле – это Чикшулуб, образовавшийся при столкновении Земли с 10-километровым астероидом или кометой. Возможно, это событие привело к вымиранию динозавров почти 66 млн лет назад. Выброс веществ при ударе повысил кислотность океанов, уничтожил известковый (то есть обладающий скелетными образованиями с высоким содержанием кальция) планктон и напрямую или опосредованно стал причиной вымирания трех четвертей видов растений и животных, завершив мезозойскую эру.
До открытия этого 180-километрового кратера, погребенного под километрами осадочных отложений, все, что у нас было, – оставшиеся в летописи осадочных пород следы глобального биологического опустошения, тонкие слои импактных выбросов в разных местах и метровые слои этих выбросов, к примеру, на Гаити. На поиски кратера ушло более десяти лет, и существовал большой шанс, что он так и не будет найден: он мог располагаться в океане и давно исчезнуть в зоне субдукции, оставив после себя, как улыбку Чеширского Кота, только следы выбросов. Как выяснилось, астероид ударил в континентальную окраину на восточной оконечности того, что теперь стало полуостровом Юкатан, на границе с мелководным морем. Это объясняет, почему столкновение оказалось таким смертоносным: среди пород в месте удара были богатые сульфатами донные отложения, что привело к глобальному выбросу сульфатных аэрозолей, которые значительно закислили биосферу.
Геологическая история Луны определяется в основном крупными столкновениями и – на видимой стороне – затоплением магмой лунных морей. Геологические периоды Луны связаны с четырьмя архетипическими кратерами. Нектарский период назван в честь Моря Нектара (Mare Nectaris) – одного из старейших опознаваемых морей видимой стороны Луны. Имбрийский связан с Морем Дождей (Mare Imbrium), чьи границы четко очерчены, а выбросы распространяются по значительной части поверхности Луны. Эратосфенский и коперниковский периоды названы в честь кратеров Эратосфен и Коперник, образцы импактных расплавов из которых были взяты астронавтами программы «Аполлон» и получили абсолютные датировки. Каждый период – это выражение общего геологического времени, когда формировались кратеры определенного типа.

 

«Мишень» Моря Восточного. Эта эффектная фотография сделана в 1967 г. космическим аппаратом «Лунар орбитер – 4» с высоты 2700 км. Диаметр внешнего кольца гор составляет 930 км. Правее находится Океан Бурь, а далеко справа за границей снимка – Земля.
NASA

 

Одна из самых ярких лунных достопримечательностей – Море Восточное, расположенное в напоминающем мишень кратере диаметром 930 км в восточной части лимба. Это не просто кратер, но многокольцевая ударная впадина, являющаяся самой молодой из крупных структур Луны. При наблюдении с Земли объект наполовину скрыт, и первоначально его считали чем-то вроде застывшего во времени цунами, гигантских волн, прокатившихся по сильно поврежденной коре, наполовину твердой, а наполовину расплавленной. Более свежая идея, которая, кажется, работает лучше, состоит в следующем: то, что мы видим, – это ряд концентрических уступов, которые сформировались в коре, когда податливые глубокие слои мантии выплеснулись, чтобы заполнить глубокую воронку. И само столкновение, и последовавшая за ним отдача должны были вызвать глобальные сейсмические колебания, повлиявшие на топографию всей Луны. Ударное образование Моря Восточного должно было привести к выбросу огромной массы материала, часть которого добралась бы и до Земли.
Земля кажется куда более простой. Если смотреть на запад с тихоокеанского побережья США, видно только безграничное бурное море. Но благодаря столетию развития современной геологии это можно воспринимать и так: огромная каменная плита толщиной в десятки километров и протяженностью в тысячи, покрытая несколькими километрами воды, движется на вас со скоростью роста ногтей – несколько метров за человеческую жизнь, – катясь на спине мантии, в которой происходит конвекция. У берега эта плита подныривает и опускается под вас; когда она оказывается за вашей спиной, содержащаяся в ней вода провоцирует вулканическую активность, в результате чего вверх начинают подниматься гранитные плутоны. Это неостановимое движение сопровождается трением, что становится причиной землетрясений. Люди, посторонитесь!
Назад: Глава 1 Древние руины
Дальше: Глава 3 Системы внутри систем

RandaluRges
Xem Soccer Trực Tuyến Trực Tiếp đá Bóng Ngonbản quyền world cup 2018 k+Cũng chủ yếu vì nguyên nhân này mà kênh Banthang TV luôn bị die link hoặc sập Server từng lúc có những trận đấu lớn, điều này khiến cho các người yêu thích đá bóng vô cùng khó chịu đựng vì trận đấu bị loại gián đoạn giữa chừng.