Книга: Физика и жизнь
Назад: ГЛАВА 7. ЧАЙНЫЕ ЛОЖЕЧКИ, СПИРАЛИ И СПУТНИК
Дальше: ГЛАВА 9. ЧУВСТВО ПЕРСПЕКТИВЫ

ГЛАВА 8

КОГДА ПРОТИВОПОЛОЖНОСТИ ПРИТЯГИВАЮТСЯ

Электромагнетизм

Сумка, которая самостоятельно наводит порядок внутри себя, — звучит как несбыточная мечта, но тем не менее она может оказаться реальностью. В прошлом году я посетила лондонский Музей науки, где намеревалась купить несколько симпатичных сферических магнитов (для себя и одной из своих подруг; сувенир с научным подтекстом — лучший подарок, не так ли?). Я остановилась выпить чашку горячего шоколада, а заодно и полюбоваться новыми приобретениями, а затем положила слипшиеся между собой магниты в верхний карман дорожной сумки и отправилась домой. Двумя днями позже, в Корнуолле, я вспомнила, что давненько не любовалась «новыми игрушками», и принялась копаться у себя в дорожной сумке. Я обнаружила их на дне сумки, причем слегка потолстевшими за счет семи монет, двух скрепок для бумаг и металлической кнопки. Я уже поздравляла себя с тем, что мне удалось изобрести новый способ навести порядок в сумке, как вдруг заметила, что далеко не все монеты, валявшиеся на дне сумки, притянулись к магнитам. Я попыталась разобраться, в чем разница между монетами, которые притянулись к магнитам и которые не реагировали на них. Ответить на этот вопрос оказалось не так-то просто. Некоторые из десятипенсовиков притянулись к магнитам, тогда как другие не желали этого делать. Монеты достоинством выше 20 пенсов вообще не притягивались. Большинство одно- и двухпенсовиков притягивались; исключение составляли лишь выпущенные до 1992 года.

Вообще говоря, магниты ведут себя очень избирательно. Большинство материалов — пластмассы, керамические изделия, вода, дерево и живые существа — ими не притягиваются. Другое дело — железо, никель или кобальт. Изделия из этих материалов охотно тянутся к магнитам. Это может показаться странным, но если бы железо не было одним из самых распространенных материалов в мире, то мы, наверное, никогда не столкнулись бы с магнетизмом в повседневной жизни. Лишь на один этот элемент приходится 35% массы Земли, а сталь (состоящая в основном из железа с добавлением некоторых примесей) составляет существенную часть современной инфраструктуры. Если бы дверцы холодильников не изготавливались с применением стали, то симпатичные магниты, которыми многие домохозяйки украшают их, было бы невозможно прикрепить. Но изделия из стали встречаются буквально повсюду, поэтому магнетизм знаком большинству из нас.

Магниты в моей дорожной сумке рассортировали монетки согласно их химическому составу. Современные одно- и двухпенсовики имеют стальную основу, покрытую снаружи тонким слоем меди. До 1992 года монеты такого достоинства были на 97% медными. Для меня старые и новые однопенсовики на вид почти неотличимы, но магниты реагируют на их разный качественный состав. «Серебряные» двадцатипенсовики не притягиваются магнитами, поскольку, как ни странно, состоят главным образом из меди. То же можно сказать о более старых десятипенсовиках, но все монеты, которые начали чеканить с 2012 года, имеют стальную основу с никелевым покрытием. Все монеты, притягивающиеся магнитами — даже так называемые медяки, — преимущественно состоят из стали.

Любой магнит окружен магнитным полем — тем, что можно назвать «силовым полем». Это подразумевает наличие вокруг магнита области, которая может притягивать и отталкивать другие объекты, даже если сам по себе магнит к ним не прикасается. На первый взгляд это кажется странным, но так уж устроен физический мир. Проблема с магнитными полями заключается в том, что они невидимы и неосязаемы для нас, поэтому нам трудно их представить. Однако мы можем наблюдать производимое ими действие, и это будит наше воображение, заставляя его строить те или иные научные модели. Самое важное, что можно сказать о магнитах, — у каждого из них есть два особых, четко выраженных конца: северный и южный полюс.

Северный полюс одного магнита будет притягивать южный полюс другого магнита, но северные полюса двух разных магнитов будут отталкиваться друг от друга. Изначально мои монетки не обладали свойствами магнитов, но магниты применили хитрый прием, чтобы притянуть их к себе. Внутри каждого из моих новых однопенсовиков разные участки железа имеют магнитные поля, указывающие в разных направлениях. Эти участки называются доменами, а магнитные поля атомов внутри каждого из них действуют строго однонаправленно. Каждый домен обладает собственным магнитным полем, но поскольку северные полюса всех доменов указывают в разных, притом случайных, направлениях, у железной основы однопенсовой монетки все эти разнонаправленные магнитные поля взаимно компенсируются. Когда я подношу такую монетку к одному из магнитов, его сильное магнитное поле начинает воздействовать на все отдельные домены в монетке. Сами по себе атомы в доменах не движутся, но их магнитные поля переориентируются таким образом, чтобы их северные полюса оказались как можно дальше от северного полюса моего магнита. При этом все южные полюса доменов в монетке выстраиваются как можно ближе к магниту. А учитывая, что противоположные магнитные полюса притягиваются друг к другу, южный полюс монетки притягивается к северному полюсу магнита и монетка прилипает к нему. Стоит оторвать монетку от магнита, и все ее магнитные домены снова станут ориентированы почти случайным образом.

Это явление может показаться странным, однако люди научились им пользоваться, причем с такими примерами мы часто сталкиваемся в повседневной жизни. Речь идет не только о монетках, скрепках для бумаг и магнитах на дверцах холодильников. Магниты также играют важную роль в выработке электроэнергии. В основе каждого устройства, доставляющего ее в электросеть, есть магнит. Однако сами по себе магниты не решают задачу, а магнетизм — лишь половина дела. Магнетизм связан фундаментальным образом с электричеством. Все это имеет жизненно важное значение для современного общества, хотя многие из нас этого просто не замечают.

Однажды писатель-фантаст Артур Кларк сказал, что «любая достаточно продвинутая технология неотличима от волшебства». Электричество и магнетизм в совокупности лежат в основе большинства самых продвинутых современных технологий, даруя нам их поистине волшебные возможности. Если внимательно изучить эти две невидимые силы — электричество и магнетизм, — можно понять, что это две стороны одного и того же явления: электромагнетизма. Они неразрывно связаны между собой, влияя друг на друга. Но прежде чем рассматривать эту связь, давайте копнем поглубже в ту сторону, которая знакома нам гораздо лучше: электричество. К сожалению, первый в жизни опыт непосредственного контакта с электричеством, как правило, малоприятен: мы испытываем удар электрическим током.

* * *

Штат Род-Айленд — крошечный дружелюбный кусочек американского северо-востока, где я прожила два года. Род-Айленд еще называют «Океанским штатом». Местные жители совершенно забыли об ироническом подтексте этого названия самого маленького штата Америки, данного в честь самого обширного образования на планете, океана. Менталитет жителей Род-Айленда покоится на двух столпах: побережье и лето. Жизнь — это морские прогулки, домики на берегу, салат из улиток и пляж. Однако зимой здесь бывает очень холодно. Туристы куда-то пропадают, местные жители впадают в зимнюю спячку, а оливковое масло у меня на кухне загустевало, если я выключала отопление, когда приходилось надолго отлучаться.

В наиболее памятные для меня зимние дни я просыпалась с ощущением необычной тишины и неподвижности в природе. Еще до того как открыть глаза, я могла сказать, что ночью выпал первый снег. Для того, кто родился и вырос в сером и скучном Манчестере, такие эмоции были весьма волнующими. Все это мне нравилось — за исключением единственного, повторяющегося из раза в раз момента. Обувшись в уютные зимние ботинки, расчистив снег у наружной двери и с дорожки и посмеявшись вдоволь над белками, копошащимися в снегу, я топала к своему автомобилю. И каждый раз, едва прикоснувшись к нему, ощущала довольно болезненный удар электрического тока. Черт побери, как же я в очередной раз забыла об этом!

Почему-то мне всегда казалось, что всему виной автомобиль. Разу­меется, он был вовсе ни при чем. Пока я к нему шла, я тащила на себе группу крошечных и беспокойных пассажиров. Они внимательно высматривали маршрут, по которому могли бы от меня сбежать. Болезненное ощущение в моей руке было лишь побочным эффектом их поспешного бегства. Этими пассажирами были электроны, невероятно маленькие частицы материи, относящиеся к числу самых фундаментальных строительных блоков нашего мира. Одно из их самых удивительных свойств — это то, что обнаружить их движение можно без помощи дорогостоящих ускорителей элементарных частиц и сложных научных экспериментов. В надлежащей ситуации тело человека может выявить движение электронов самым непосредственным образом. Жаль только, что оно регистрирует его как болевые ощущения.

Все начинается с атома. Внутри каждого атома находится тяжелое ядро, в котором сосредоточена практически вся масса атома. Оно обладает внушительным положительным электрическим зарядом, поэтому почти никогда не бывает в одиночестве. Электрический заряд — странная концепция, но на ней держится наш мир. Существует всего три вида строительных блоков, из которых состоит практически все, что нас окружает: протоны, электроны и нейтроны. Каждый из них обладает собственным, присущим лишь ему электрическим зарядом. Протоны гораздо массивнее электронов и являются носителями положительного заряда. Нейтроны имеют примерно такие же размеры, как и протоны, но электрического заряда у них нет. Электрон гораздо меньше по размерам, чем протон или нейтрон, но величина его отрицательного электрического заряда в точности совпадает с величиной электрического заряда протона. Это сочетание строительных блоков определяет структуру всего физического мира. В центре каждого атома сочетание протонов и нейтронов образует тяжелое ядро. Но атом должен быть электрически сбалансированным. Электрические заряды влияют на мир, поскольку разноименные заряды притягиваются, а одноименные — отталкиваются (как мы уже видели на примере магнитов и монет). Таким образом, крошечные электроны кружатся вокруг массивного ядра, потому что заряжены отрицательно и, следовательно, притягиваются к положительному заряду в центре атома. В целом все положительные и отрицательные заряды взаимно компенсируются, но силы притяжения удерживают атом, не позволяя ему развалиться на части. Вся окружающая нас материя полна электронов, но поскольку все сбалансировано, мы их не замечаем. Они дают о себе знать, только когда движутся.

Проблема в том, что, когда вам приходится иметь дело со столь малыми и проворными объектами, как электроны, баланс время от времени нарушается. При соприкосновении двух разных материалов электроны довольно часто переходят из одного материала в другой. Это происходит постоянно, но обычно не имеет большого значения, так как избыточные электроны, как правило, довольно быстро возвращаются назад. Хождение по дому в носках не было проблемой: с каждым очередным шагом немногочисленные электроны перебирались с синтетического коврика мне на ноги, но вскоре возвращались обратно на коврик. Ситуация переменилась, как только я надела ботинки с утеплителем из натуральной шерсти и резиновой подошвой. «Бродячие» электроны, как и прежде, перебирались с синтетического коврика на резиновые подошвы моих ботинок. Но какими бы шустрыми они ни были, есть материалы, проникнуть в которые электронам крайне трудно; это так называемые электрические изоляторы, и резина один из них. У резины хватает собственных электронов, но она очень неохотно вбирает в себя любые «посторонние» электроны. Пока я складывала в сумку все, что может мне пригодиться днем, подбирала одежду по погоде и убирала после завтрака, я постепенно накапливала на себе электроны. В результате на поверхности моего тела их скопилось изрядное количество. К моменту, когда я вышла из дому, я несла на себе несколько тысяч миллиардов избыточных электронов — гигантское количество, которое все же составляло лишь микроскопическую долю электронов, принадлежащих моему собственному телу.

Почему же эти избыточные отрицательно заряженные электроны не желали покидать мое тело? Каждый из них отталкивался другими электронами; покинуть меня было бы для них более приемлемым вариантом, чем оставаться на мне. Но непреодолимым препятствием на их пути становились мои ботинки с резиновой подошвой. Помимо стекания на землю, электроны могли бы покидать меня через влажный окружающий воздух. Он содержит множество молекул воды, у каждой из которых есть положительный участок, который мог бы приютить лишний электрон на какое-то время. В большинстве других случаев скопившиеся на мне избыточные электроны постепенно «рассосались» бы, присоединяясь один за другим к молекулам воды. Но в морозные дни после сильного снегопада в воздухе очень мало влаги. Поэтому избыточные электроны, скопившиеся на моем теле, не могли рассосаться постепенно и незаметно для меня.

Таким образом, каждый сухой, снежный день я шла по дорожке от коттеджа к автомобилю, забыв о миллиардах отрицательно заряженных пассажиров на моем теле — по крайней мере до того момента, пока им не представлялся удобный случай от меня сбежать. Мой автомобиль стоял на земле, представляя собой огромный резервуар сбалансированных электронов и ядер. В то самое мгновение, когда мои пальцы прикасались к металлу автомобиля, словно открывался туннель для массового бегства электронов, накопившихся на моем теле. Металл прекрасный электрический проводник, поэтому электроны могут стекать на него практически беспрепятственно. Мои «электронные пассажиры» рванули толпой через небольшой участок кожи на кончике моего пальца, поспешно стекая на металлический корпус автомобиля. Нервные окончания в коже, получив мощный электрический импульс от потока электронов (по сути, электрического тока), вздрогнули не на шутку. Забыв на мгновение об очаровании первого снега и бодрящей свежести морозного воздуха, я невольно чертыхнулась.

В наше время удар электрического тока для большинства из нас — это непосредственное и яркое напоминание об электричестве. Между тем в повседневной суете мы забываем о его вездесущности в нашей жизни. Стены зданий, всевозможные электронные устройства, автомобили и осветительные приборы, часы и электрические фены — буквально все вокруг пронизано электричеством. Но электричество — это не только электрические розетки и провода, электрические цепи и плавкие предохранители. Все это лишь зримые свидетельства способности человека использовать данное явление в своих целях. Наша планета буквально жужжит от пронизывающего ее электричества, причем его можно обнаружить в самых неожиданных местах. Примером может служить обычная пчела.

Представьте теплый погожий летний день в каком-нибудь английском саду. В аккуратно подстриженной траве порхают с места на место в поисках корма птички. Цветы, высаженные на клумбе заботливыми руками хозяев, ведут неспешную, но тем не менее ожесточенную борьбу друг с другом за воду, питательные вещества, солнечный свет и внимание со стороны насекомых-опылителей. По травке стелется аромат жасмина и душистого горошка, рекламируя достоинства того и другого. Над клумбой деловито жужжит пчела, проверяя, нельзя ли здесь чем-нибудь поживиться. На человека такая сцена производит расслабляющее впечатление, но для пчелы это тяжелый труд, расслабляться ей некогда. Чтобы держаться в воздухе, пчела вынуждена прилагать немалые усилия. Ей приходится непрестанно махать своими крошечными крылышками, совершая примерно двести взмахов в секунду. Это постоянное взбивание воздуха настолько интенсивно, что мы способны слышать создаваемые им вибрации — жужжание. Для пчелы оказываемое воздухом сопротивление ощущается гораздо сильнее, чем для человека. С каждым взмахом крылышек ей приходится преодолевать значительное сопротивление со стороны молекул воздуха. Когда вы летите, изо всех сил колошматя крыльями воздух, ваш полет кажется не столь величественным и элегантным, как парение орла. Но если у вас нет иного способа перемещаться по воздуху, то годится и такой. Пчела останавливается в полете на секунду возле розовой петунии, прежде чем решить, что этот цветок заслуживает более тщательного обследования. Подлетев к цветку, но еще не успев прикоснуться к нему, пчела совершает неожиданный маневр. Пыльца, сосредоточенная в центре петунии, внезапно вздымается в воздух, оседая на волосках «воротника», в который укутана пчела. Усевшись на цветок, пчела принимает на себя дополнительную порцию пыльцы. Она еще не успела отведать нектар цветка, но уже приняла на себя покров из ДНК растения, причем все выглядит так, будто пыльца сама «перебралась» на тело пчелы.

Оказывается, полет делает пчелу очень привлекательной — в буквальном смысле слова. Но объясняется это вовсе не ее внешним видом или поведением, а тем, что пчела электрически заряжена — правда, заряд очень слабый. Все дело в том, что, как и в случае с электрическим зарядом, который ударил меня током в момент прикосновения к автомобилю, пчела тоже переносит электроны. Впрочем, на этот раз обошлось без пострадавших.

Собственные электроны пчелы концентрируются возле молекул в ее крылышках. Если что-то проносится мимо пчелы очень быстро (например, воздух) и что-то должно быть сброшено, то этим «чем-то», скорее всего, будет электрон. Именно так все и происходит. Это то же самое, что потереть воздушный шарик о шерстяной свитер: статическое электричество накапливается, а это означает, что в каком-то месте возникает избыток или нехватка электронов. Когда крылышки неистово расталкивали молекулы воздуха на своем пути, электроны смахивались с них в окружающий воздух. На теле пчелы образовывался небольшой положительный заряд, потому что количества оставшихся электронов уже не хватало, чтобы компенсировать положительный заряд всех протонов в ее теле. Однако этот положительный заряд очень мал — и уж во всяком случае недостаточен для того, чтобы человек ощутил удар электрического тока.

Приближаясь к цветку, пчела притягивает отрицательно заряженные электроны и отталкивает положительные заряды. Как северный полюс магнита притягивает к себе свою противоположность (магнитные южные полюса), так и положительно заряженная пчела притягивает к себе отрицательно заряженные электроны. Когда она находится очень близко к цветку, но еще не касается его, ее положительный заряд притягивает поверхность пыльцы с силой, достаточной, чтобы поднять часть пыльцы в воздух и преодолеть небольшой зазор между цветком и пчелой. Затем пыльца прилипает к волоскам на теле пчелы, так же как прилипает к стенке воздушный шарик, на котором скопилось статическое электричество. Когда пчела перелетает к следующему цветку, она переносит на себе всю налипшую на нее пыльцу. Опыление пчелами происходило бы и без статического электричества — исключительно за счет прикосновения к пыльце волосков на теле пчелы, когда она опускается на цветок. В этом случае пыльца прилипала бы к волоскам именно из-за своей липкости. Однако ввиду разности зарядов пыльцы и тела пчелы процесс прилипания существенно ускоряется, начинаясь еще до того, как пчела опустится на цветок.

Электроны — крошечные очень подвижные частицы, поэтому, когда электрический заряд перемещается в пространстве, его переносят, как правило, электроны. Несмотря на высокую подвижность электронов, обычно мы не замечаем их движения. Отрицательно заряженные электроны отталкиваются друг от друга, так что, если большое их количество сконцентрируется в каком-то одном месте, они отталкиваются друг от друга и разлетаются в стороны. Значительный заряд никогда не накапливается. Но есть две возможные ситуации, в которых электроны перестают разлетаться в стороны и происходит некоторое накопление заряда: либо электронам просто некуда деваться, либо они не могут двигаться. Когда пчела летит, положительному заряду действительно некуда деваться, поэтому он накапливается снаружи тела пчелы.

Но другая ситуация — когда электроны не могут двигаться — дает нам возможность управлять электричеством. Если пчела опустится на пластмассовый цветочный горшок, положительный заряд не сможет переместиться на пластмассу, поскольку это электрический изолятор. Это означает следующее: хотя в пластмассе предостаточно собственных электронов, они жестко связаны со своими молекулами и не могут свободно перемещаться в таком материале. Сложно добавить в пластмассу хотя бы небольшое число дополнительных электронов или изъять их оттуда, потому что они не могут проскользнуть между собственными электронами пластмассы. Именно в этом особенность электрических изоляторов: они не могут принимать в себя дополнительные электроны или отдавать их. Поэтому, когда пчела садится на пластмассовый цветочный горшок, положительный заряд остается на ней. Если бы пчела опустилась, к примеру, на металлические вилы, то сразу бы лишилась положительного заряда: металлы — превосходные проводники электричества и электроны чрезвычайно легко стекают в них. Причина такого поведения металла заключается в том, что все его атомы охотно делятся друг с другом своими наружными электронами, в результате чего внутри металла образуется нечто наподобие огромного облака, состоящего из электронов, свободно мигрирующих от одного атома к другому. Поскольку эти электроны все время движутся от одного атома к другому и ни один из них не принадлежит какому-то определенному атому, добавление в металл дополнительных электронов или изъятие их оттуда не представляет проблемы.

Люди могут генерировать электрический ток и управлять им лишь потому, что имеют оба типа материалов — и проводники, и изоляторы. Это все, что вам нужно: мозаика из материалов, создающая нечто вроде лабиринта для электронов, где одни пути гораздо легче других, что позволяет управлять движением электронов, заставляя их поток выполнять те или иные полезные функции. Овладев основами такого управления, вы получаете возможность контролировать многие процессы в физическом мире.

* * *

Статическое электричество — только начало, истинные перспективы открываются, когда вам удается обеспечить систематическое и упорядоченное движение электронов и электрических зарядов. Электрическая сеть, которую мы используем для передачи электроэнергии на расстояние, — источник безграничных возможностей. Продвигая электрические заряды по проводам и управляя их потоком с помощью всевозможных переключателей и преобразователей, мы можем доставлять электроэнергию в места, где она будет использоваться для удовлетворения тех или иных потребностей человека. Электросеть — лишь один из способов перераспределения электроэнергии. Самое важное качество любой электрической цепи — то, что это цепь. То есть любая электрическая цепь должна представлять собой замкнутый контур, по которому электроны могли бы свободно перемещаться, не накапливаясь где-нибудь «на дальнем конце». Каждая электрическая цепь должна начинаться и заканчиваться на источнике питания — устройстве, которое поддерживает движение электронов, принимая их с одного конца, продвигая по цепи и возвращая обратно в цепь на другом конце. Источник питания немного напоминает лифт, доставляющий детей от подножия горки, по которой они скатываются к ее началу, на самый верх. Дети могут круглосуточно кататься на таком лифте вверх и спускаться по горке — до тех пор, пока лифт будет работать и сможет служить источником достаточной энергии, чтобы каждый раз доставлять пассажиров в ту точку, с которой они начали свой путь по горке. Правило любой электрической цепи гласит, что вы должны потратить всю дополнительную энергию, полученную от источника питания, чтобы доставить электроны обратно в то место, из которого они стартовали.

Что же заставляет электрон двигаться по электрической цепи? Первое обязательное условие — наличие электрического проводника, то есть того, что создает путь, по которому будет перемещаться электрон. Второе — наличие силы, которая будет продвигать электрон по проводнику.

Магнитик, закрепленный на дверце холодильника, и воздушный шарик, несущий на себе электрический заряд, имеют одно общее свойство — демонстрируют возможность создания невидимого силового поля, наличие которого выражается в том, что один стационарный объект отталкивает или притягивает к себе другой объект, находящийся поблизости. Это сходство не случайно, но истинная связь между тем и другим становится очевидной лишь при перемещении электрического или магнитного поля в пространстве. Прежде всего давайте вернемся к принципу силового поля. Нужно заметить, что полями могут пользоваться не только люди.

Дно ручья напоминает мутновато-коричневый лабиринт, устланный камнями, растениями и корнями деревьев. Примерно на метровой глубине под водой едва различимы два усика в виде антенн, осторожно высовывающихся из-за края валуна. Кажется, будто эти усики-антенны тщательно обследуют окружающую обстановку. Рядом появляется какой-то движущийся предмет, и усики мгновенно скрываются за валуном. Это пресноводная креветка — мусорщик, которая питается всевозможными отбросами, случайно попадающими в ручей. Она голодна, но очень чувствительна и осторожна. Где-то выше по течению в воде появился потенциальный враг. Он движется по водной поверхности к середине ручья, энергично загребая воду своими перепончатыми лапами, затем закрывает глаза, зажимает нос, затыкает уши и ныряет. Утконос проголодался и намерен отобедать.

Если креветка будет пребывать в полной неподвижности, это сохранит ей жизнь. Утконос плывет быстро, уверенно продвигаясь вперед, хотя сейчас он ничего не видит, не слышит и не обоняет. Его плоский клюв рыскает из стороны в сторону, сканируя ил, скопившийся на дне ручья. Еще одна креветка — потенциальная добыча утконоса, чувствует его приближение по характерным колебаниям воды, резко поджимает хвост и скрывается под галькой, усеивающей дно ручья. Утконос направляется в ее сторону. Сигнал, приведший к резкому сокращению хвостовой мышцы креветки, был электрическим. Этот электрический импульс создал кратковременное электрическое поле, сосредоточенное на креветке. Электрическое возмущение, передаваясь через воду, кратковременно воздействовало на близлежащие электроны. Хотя оно и заняло какую-то долю секунды, но этого оказалось достаточно. На верхней и нижней поверхностях клюва утко­носа сосредоточен массив из примерно сорока тысяч электрических датчиков. Одновременного колебания воды и электрического импульса хватило, чтобы определить нужное направление и расстояние. Клюв ударяет дно ручья в нужном месте — и креветка отправляется в желудок животного.

Шевеление креветки выдало ее с головой, потому что изменило ее электрическое поле. Каждый электрический заряд притягивает или отталкивает другие близлежащие электрические заряды. Электрическое поле — лишь способ описания того, насколько сильно это притягивание или отталкивание в тех или иных местах. Когда же речь идет об электрических сигналах, это означает, что произошло перемещение электрического заряда и нечто, находящееся от него поблизости, уловило это, так как изменилось (увеличилось или уменьшилось) воздействие на это «нечто». Поскольку все мышечные движения сопровождаются перемещением электрических зарядов в мышцах, все эти движения генерируют электрические поля. Поэтому улавливание электрических сигналов — надежный способ ведения подводной охоты, если охотник находится недалеко от своей потенциальной добычи, никакая маскировка не поможет заглушить электрический сигнал. Рано или поздно любое живое существо будет вынуждено пошевелиться, и даже мельчайшее движение создаст электрический сигнал, который выдаст свой источник.

Если это так, то почему же мы не ощущаем электрические поля, которые сами же и создаем? Отчасти потому, что они довольно слабые, но главным образом потому, что в воздухе, который не проводит электричество, электрические поля быстро затухают. Поток воды (а особенно соленая морская вода) — очень хороший проводник электричества, поэтому электрические сигналы удается улавливать на гораздо больших расстояниях, чем в воздухе. Почти все виды живых существ, которые обладают органами, способными улавливать электрические сигналы, — это обитатели морей (к числу известных нам исключений относятся пчелы, ехидна и тараканы).

В электрической цепи электроны движутся потому, что в проводе существует электрическое поле. Оно толкает каждый электрон, продвигая его по проводу. Но откуда берется электрическое поле? Чтобы ответить на этот вопрос, лучше всего начать с батареи. Батареи бывают разных форм и размеров, но одну из их разновидностей я не забуду никогда. Это были специальные морские батареи, и я очень волновалась за их судьбу (они попали в сильный шторм во время проведения важного эксперимента), поскольку от них питался один из научных приборов.

Чтобы изучать физику поверхности океана во время шторма, нам нужно было выходить в море и наблюдать за поведением водной поверхности. Океан — очень сложная среда. Строить всевозможные теории, сидя в кресле в теплом кабинете, можно до бесконечности, только вряд ли такое теоретизирование способно принести реальную пользу, если вы собственными глазами не видели, как все происходит на самом деле. Но даже когда вы оказываетесь в реальной обстановке, на борту корабля в штормящем море, очень трудно «пощупать» именно тот водный слой, который интересует меня больше всего: слой на глубине двух-трех метров от поверхности воды. Знание того, что происходит на этой глубине, позволит нам понять, как «дышит» океан, что поможет давать более точные прогнозы погоды и строить более точные климатические модели. Но чтобы узнать подробности, вам нужно оказаться на указанной глубине, а это очень беспокойное и опасное место. Я не могу плавать в такой воде, но свои эксперименты должна проводить именно там. Для экспериментов с использованием научной аппаратуры требуется электропитание, которое могут обеспечивать электрические батареи. Но им придется работать непосредственно в море, болтаясь вверх и вниз на волнах, невдалеке от корабля. К моему счастью, электрические цепи способны работать не только на суше, но и на море, не боясь волн и болтанки.

* * *

Боцман окинул сердитым взглядом горизонт, засунул руки глубоко в карманы своей непромокаемой куртки с капюшоном и направился в мою сторону. Дело было в ноябре, в северной части Атлантики. Мы уже четыре недели не ступали на берег и не видели вокруг себя ничего, кроме серого моря, которое, куда ни обрати взор, сливалось на горизонте с таким же беспросветно серым небом, и непрестанно раскачивались на волнах: вверх-вниз, вверх-вниз… Моток электрического кабеля, который я только что вытащила на палубу, отвлек меня на какое-то время от унылого однообразия морского пейзажа. Я уже успела частично распутать этот моток, и теперь кабель тянулся поперек палубы, упираясь концом в башмак боцмана. Характерный и, на мой взгляд, смешной бостонский акцент боцмана казался совершенно неуместным в столь суровой обстановке. «Сколько вы собираетесь возиться со всем этим?»

Самое неприятное для меня в экспериментах на море — это последние проверки, которые я обязана провести, прежде чем завершить работу. Я немного нервничала, поскольку я, и только я, несла ответственность за данный этап эксперимента. Чтобы определить характеристики воздушных пузырьков, которые образуются непосредственно под бушующими волнами, я использовала большой желтый буй с закрепленными на нем всевозможными измерительными приборами. Боцман отвечал за маневрирование судна возле буя (например, не задевать его корпусом судна и не создавать каких-либо помех работе научной аппаратуры, закрепленной на буе). Приближавшийся шторм обещал быть достаточно серь­езным, и я ожидала получить ценную информацию по результатам своего эксперимента. «Мне осталось только подключить электрические батареи, после чего можно приступать», — сказала я. Огромный желтый 11-метровый буй был все еще надежно закреплен на палубе. Подключение батарей я начала с бронированной камеры, установленной наверху буя. Положив ладонь на место подсоединения кабеля питания к камере, я провела рукой по проводу, тянущемуся до дна буя, где были закреплены массивные электрические батареи, и вставила вилку в разъем. Затем таким же способом подсоединила к батареям акустические резонаторы. Нащупать место подсоединения кабеля питания к очередному устройству, провести ладонью по кабелю питания до места его подсоединения к батареям и вставить вилку в разъем. Это называется проверкой надежности подсоединения к источнику питания. Семь раз проверь, один раз измерь — вот мое правило. В ходе этих экспериментов могут проводиться невероятно тонкие и сложные манипуляции в физическом мире, но только при наличии электропитания. В моем случае оно обеспечивалось четырьмя массивными свинцово-кислотными морскими аккумуляторными батареями, весом около 40 килограммов каждая. Эти батареи были изобретены еще в 1859 году, и с тех пор их конструкция не претерпела существенных изменений. Тем не менее они очень надежные.

Когда пришел момент опустить буй с аппаратурой на воду, мы, ученые, в своих непромокаемых комбинезонах, собрались на дальнем конце палубы, а за работу принялась команда судна. С помощью лебедки они приподняли нашего желтого монстра с палубы и осторожно опустили в темные воды. Оказавшись в одиночестве среди бескрайнего бушующего моря, он уже не производил впечатления монстра — скорее, напоминал маленькое желтое пятнышко, которое с трудом угадывалось за вздымающимися вокруг него волнами. Экипаж и ученые, столпившись возле поручней, начали оживленно обсуждать посадку буя на воду и скорость, с которой он удалялся от корабля. Но я не задумывалась об этом. Я думала об электронах.

Там, под водой, началась их гонка. Они отчаливали от батареи, обегали электрические цепи научной аппаратуры, закрепленной на буе, и возвращались в батарею — с другого ее конца. В этих кольцевых гонках по электрическим цепям устройств, задействованных в эксперименте, участвовало фиксированное количество электронов; все они обегали одно и то же кольцо. Электроны не покидали его пределов, никуда не «расходовались» — просто наматывали круг за кругом. Задача заключалась лишь в том, чтобы постоянно подпитывать систему энергией, которая бы заставляла электроны совершать свое поступательное движение. Наматывая круг за кругом по кольцу, электроны затрачивают определенную энергию. Ее источником является батарея, а это весьма хитроумное устройство.

«Фишка» батареи в том, что она организует некую цепочку событий, где каждое звено служит источником электронов, необходимых следующему звену. Таким образом, как только к какой-либо электрической цепи подключают батарею, создаются условия, обеспечивающие движение электронов по этой цепи. У каждой из наших морских батарей было два вывода, с помощью которых они подсоединялись к любой электрической цепи, обеспечив ее питание. Внутри батареи каждый вывод был подсоединен к одной из двух свинцовых, не соприкасавшихся между собой пластин. Пространство между ними было заполнено кислотой (именно поэтому батареи называются свинцово-кислотными). Свинец может вступать в реакцию с кислотой двумя способами. Для одного необходим приток дополнительных электронов, а другой обеспечивает такой приток, вырабатывая дополнительные электроны. Свинцово-кислотная батарея считается полностью заряженой, когда эти две реакции между свинцом и кислотой заходят настолько далеко, насколько это возможно.

Подсоединив научную аппаратуру к батарее, я, по сути, создала путь, пролегающий от одной свинцовой пластины через электрические схемы всей научной аппаратуры к другой свинцовой пластине. Оставалось добавить в этот лабиринт последний, но принципиально важный, недостающий фрагмент: вследствие химических реакций, протекающих на свинцовых пластинах, в проводах возникло электрическое поле. Именно оно приводит в движение электроны, заставляя их перемещаться от одной свинцовой пластины к другой. Но поскольку электроны не могут перемещаться в кислоте, им ничего не остается, как двигаться длинным окольным путем: по «наружной» электрической цепи. Как только электрическое поле создаст для электронов возможность продвижения по электрической цепи, реакции на свинцовых пластинах начинают идти в обратном направлении из-за образования замкнутой электрической цепи. Одна из свинцовых пластин (точнее, следовало бы говорить об «одном комплекте» свинцовых пластин) отдает электроны кислоте, а затем кислота передает этот заряд на другую свинцовую пластину (опять-таки, следовало бы говорить о «другом комплекте» свинцовых пластин), которая в процессе химической реакции принимает на себя электроны. В целом процесс движения электронов по цепи поддерживается, поскольку существует наружная электрическая цепь, по которой они могут возвращаться к первому комплекту пластин. Самое главное, что в процессе перемещения по наружной электрической цепи электроны теряют часть энергии. Такое их перемещение называется электрическим током. Если его прохождение по сложной электрической цепи приводит к выполнению какой-либо полезной функции, реализуемой этой электрической цепью, то это означает, что с помощью электрической батареи вам удалось заставить электрическую энергию работать.

Все эти мысли проносились в моей голове, пока я, перегнувшись через поручни на палубе, наблюдала за желтым буем, пляшущим на волнах. Камера должна была включиться, создав путь для электронов от батареи, которые добрались по проводу до отсека с камерой. Пути прохождения электронов нужно все время контролировать, памятуя о том, что они всегда выбирают самый легкий для себя путь. Пути для движения электронов создаются с помощью проводящих материалов. Кабель питания изготавливается из металла. Продвигаться по металлу электронам гораздо легче, чем по пластмассовой оболочке кабеля, поэтому можете быть уверены, что они будут двигаться именно по кабелю, а не рваться наружу через его пластмассовую оболочку. Помимо управления электрическим током путем комбинирования проводящих и непроводящих материалов, самым основным элементом управления электрическим током является переключатель. Замкнутый переключатель — то место в электрической цепи, где соприкасаются две части электрического провода. Они не соединены между собой «намертво», но когда соприкасаются, электроны могут свободно перетекать из одной части в другую. Чтобы остановить их движение, достаточно просто рассоединить эти части электрического провода. Поток электронов остановится, лишившись легкого пути, чтобы перебраться из одной части провода в другую.

Добравшись по проводу до отсека с камерой, поток электронов разветвляется по двум направлением: одно ведет к компьютеру, а другое — к собственно камере. Говорят, что все дороги ведут в Рим. Применительно к электрическим цепям можно сказать, что они ведут к батарее. Массивный желтый буй был лишь наружной оболочкой для этого ветвящегося потока электронов, а сами они генерировали электрические и магнитные поля, приводя в движение шторки камеры, выполняя роль секундомеров, создавая световые вспышки и фиксируя данные в виде огромной и чрезвычайно сложной синхронизированной последовательности электрических импульсов, прежде чем вернуться к батарее.

И все это происходило во время шторма, разыгравшегося в Северной Атлантике, когда буй раскачивался на огромных волнах (иногда их высота достигала 8–10 метров). Мы маневрировали, отдавшись во власть стихии, рядом с буем на исследовательском судне, где сила земного притяжения была весьма ненадежным товарищем и где видимость порядка поддерживалась лишь стальными тросами, пеньковыми канатами и эластичными шнурами. Через три-четыре дня течение химической реакции в батареях подошло к концу — они снова вернулись в свое первоначальное, незаряженное состояние. Запас электрической энергии на буе закончился, исчерпалась сила, заставлявшая электроны перемещаться по электрическим цепям. Буй превратился в безжизненную оболочку из металла, пластика и полупроводниковых материалов. Но собранные нами данные уже хранились в полупроводниковой памяти компьютера, и это было очень надежное хранилище информации.

Через несколько дней, когда шторм стих, мы подтянули буй к судну и затащили на борт. Я всегда испытывала безмерное восхищение мастерством экипажа нашего исследовательского судна, наблюдая за тем, как умело они вылавливают из воды всевозможные предметы. Корабль нельзя заставить двигаться вбок; он медленно поворачивается и меняет направление. Чтобы получить шанс выловить буй и поднять его на борт, капитану нашего 75-метрового судна нужно было поставить его так, чтобы не повредить буй, но стать рядом с ним настолько близко, чтобы боцман мог зацепить его длинным багром. Как правило, этот маневр удавался капитану с первого раза.

Теперь наступала наша очередь. Батареи подключались к дизель-генератору. Электроэнергия, подаваемая с него, запускала в них обратные химические реакции, которые обеспечивали заряд батарей. Научную аппаратуру, за исключением камеры, извлекали из буя и заносили в помещения. Камеру мы оставляли на холоде, так как у танца электронов есть оборотная сторона и моему бедному аспиранту пришлось бы заплатить соответствующую цену.

Возможно, самый фундаментальный из известных нам физических законов — который из раза в раз подтверждает свою точность и его еще никогда и никому не удавалось опровергнуть — это закон сохранения энергии. Он гласит, что энергию нельзя создать или уничтожить, а можно лишь преобразовывать из одной формы в другую. Батарея заключала в себе химическую энергию, а химические реакции преобразовывали ее в электрическую энергию, после чего она перемещалась где-то между одним терминалом батареи и другим. Но где конкретно? Что-то происходило: камера делала снимки, выполнялись компьютерные программы, на носители информации записывались данные. Но ни одно из этих устройств не сохраняло электрическую энергию в каком-либо новом месте. Она просто незаметно куда-то «вымывалась». За целенаправленное перемещение электронов всегда приходится платить определенную цену, и такой ценой становится тепловыделение. Любое электрическое сопротивление заставляет платить некий «энергетический налог» на электрическую энергию, проходящую через него. Несмотря на то что электроны всегда выбирают путь наименьшего сопротивления, какой-то «налог» приходится платить в любом случае.

Камера была заключена в толстый пластмассовый корпус — материал, очень плохо проводящий тепло. Когда она работала, вся энергия электронов, перемещающихся по электрическим цепям, постепенно преобразовывалась в тепло. Пока камера пребывала в воде, это не имело особого значения, так как температура морской воды в то время составляла примерно 8 °С и вода интенсивно вбирала в себя тепло, эффективно охлаждая корпус камеры. Но воздух гораздо хуже справлялся с этой задачей. В лаборатории при загрузке данных из камеры в компьютер камера перегревалась. Мы делали все, что было в наших силах, но единственным решением, которое нам удалось найти, было оставлять камеру снаружи, в ведре, наполненном водой вперемешку со льдом (благо у нас на корабле был агрегат для его приготовления). Таким образом, моему аспиранту приходилось тратить по девять-десять часов, запуская и останавливая загрузку данных, чтобы предотвратить перегрев камеры и возможную потерю данных, собранных с таким трудом. Вот так творится наука в полевых условиях!

Вот почему в процессе использования нагреваются ноутбуки, пылесосы и фены. Электрическая энергия должна куда-то выходить, и если она не преобразовывается в какие-то другие виды энергии, то неизбежно выделяется в виде тепла. В фенах это свойство используется для нагрева воздуха: они так устроены, чтобы преобразовывать электрическую энергию в тепло очень концентрированным способом. Но производителям ноутбуков приходится думать над тем, как избавиться от тепла, выделяемого в ходе работы устройства, потому что перегрев снижает эффективность функционирования электронных схем. За использование электрической энергии неизбежно приходится платить «тепловой налог».

Таким образом, упорядоченное перемещение электронов обеспечивается действием электрического поля. В действительности батарея не является источником электронов — в окружающем нас мире их более чем достаточно. Задача — создать электрическое поле, действие которого обусловливает упорядоченное перемещение электронов. Если электрическая цепь замкнута, это электрическое поле заставит электроны двигаться по образовываемому ею контуру. На первый взгляд ничего сложного. Но что означают все эти числа, нанесенные на электрические разъемы и указанные мелким шрифтом в рекомендациях по соблюдения мер безопасности? Возможно, лучше всего воспользоваться типично британским подходом к решению любых проблем: найти коробку печенья и поставить на плиту чайник?

Главная особенность такого подхода заключается в том, что он включает и перерыв, и чай. Некоторые из моих американских коллег никогда этого не понимали и во время чаепития продолжали говорить о работе. Но для истинного британца «поставить чайник на плиту» означает смену ритма. Я собираюсь сделать это сейчас, причем в данном случае воспользуюсь электрическим чайником. Для этого мне нужно наполнить его водой и вставить вилку в розетку. Я разрешаю своему мозгу расслабиться ненадолго, пока чайник выполняет порученную ему работу.

Нажатие кнопки включения выполняет очень простую функцию: сдвигает маленькую металлическую пластину, в результате чего в электрическую цепь добавляется последний фрагмент, превращающий ее в замкнутый контур, по которому электрический ток может проходить от одного штырька вилки до другого. Правда, в данном случае источник электрического поля не батарея, а гнезда настенной электрической розетки.

У стандартной трехконтактной вилки сверху есть один длинный штырек. Он называется штырьком заземления и полностью отделен от остальной электрической цепи. По сути, он выполняет ту же задачу, что и мой автомобиль холодным снежным утром, — создает путь для отвода избыточных электронов, которые могут накапливаться в нежелательном для нас месте (скажем, на поверхности корпуса чайника). Этот путь не имеет никакого отношения к пути, по которому проходит электрический ток, нагревающий мой электрочайник.

Другие два штырька меньшего размера — это составные элементы электрической цепи, которая служит для нагрева электрочайника. Один из них ведет себя как фиксированный положительный заряд, а другой — как фиксированный отрицательный заряд. Нажимая кнопку включения, я добавляю недостающее звено в электрическую цепь, в результате чего она становится замкнутой. Под действием электрического поля в ней начинается упорядоченное движение электронов. Они отталкиваются от штырька — носителя отрицательного заряда и, проходя через цепь электрочайника, притягиваются к положительно заряженному штырьку. Итак, пока я ищу заварочный чайник и пакетики с чаем, электроны продолжают циркулировать по замкнутой цепи моего электрочайника.

В нижней части электрочайника указано, что он может питаться от сети напряжением 230 вольт (230 V). Напряжение означает силу электрического поля, которое обусловливает упорядоченное движение электронов в замкнутой электрической цепи. Чем сильнее это электрическое поле, тем большую энергию должен потратить каждый электрон при прохождении электрической цепи. Таким образом, величина напряжения говорит нам о количестве энергии, используемой при прохождении электрической цепи. Выше мы приводили аналогию с перемещением людей в кабине лифта. Если ее продолжить, то напряжение — это высота, с которой электрон скатывается по горке электрической цепи к другому штырьку вилки. Чем выше напряжение, тем больше энергии понадобится каждому электрону при прохождении электрической цепи.

Я ополоснула заварочный чайник и опустила в него пакетик с чаем. Чашка и молоко готовы. Остается подождать, пока нагреется вода в чайнике. Для этого требуется всего пара минут, но когда я испытываю жажду, мне не терпится. Скорее же! Я знаю, какое напряжение в электросети, но это далеко не все. Чем оно выше, тем больше энергии может отдать каждый электрон. Но это не говорит о том, сколько электронов проходит по электрической цепи. Чтобы отдать в воду как можно большее количество энергии, нужно, чтобы по цепи двигалось как можно больше электронов. Это называется силой электрического тока, которую мы измеряем в амперах. Чем сильнее ток, тем больше электронов проходит через определенную точку в проводе за одну секунду. Если напряжение источника питания умножить на силу тока, протекающего по цепи, вы получите суммарную величину энергии, выделяющейся за одну секунду. Напряжение, подаваемое на мой электрочайник, равняется 230 вольт, сила тока, протекающего в цепи электрочайника, составляет 13 ампер, так что, умножая, получим 230 × 13 = 3000 (приблизительно). Согласно паспортным данным моего электрочайника, его мощность равна 3000 ватт (3000 W), что соответствует 3000 джоулям энергии, выделяющейся за одну секунду. Этого достаточно, чтобы нагреть воду до кипения менее чем за две минуты. Правда, какая-то часть тепла при этом рассеивается в окружающей среде, так что на практике кипячение воды в таком чайнике занимает примерно две с половиной минуты.

У меня нет никакого желания это проверять, пока я готовлю чай, но говорят, что «напряжение бьет, а ток убивает». Разница напряжений между мной и моим автомобилем тогда, в морозный день в Род-Айленде, составляла, наверное, 20 000 вольт. Но через мой палец прошла лишь крошечная величина электрического заряда, поэтому он не причинил мне особого вреда. Сила тока была незначительна, и энергии было передано мало. Если бы я прикоснулась пальцами к оголенным проводам, которыми подсоединяется к электросети настенная розетка у меня дома, ситуация оказалась бы совершенно иной. Сильный электрический ток означает упорядоченное перемещение огромного количества электронов, каждый из которых является носителем одного и того же количества энергии. Суммарное количество энергии огромно ввиду колоссального числа ее носителей. Испытать на себе действие энергии такой величины гораздо опаснее, чем удар статического электричества в результате прикосновения к автомобилю, несмотря на то что величина напряжения, подаваемого на электрочайник, составляет лишь сотую долю напряжения, возникающего между моим пальцем и автомобилем. Главную опасность для человека представляет не величина напряжения, воздействующего на него, а сила тока.

Когда электроны проходят через металл нагревательного элемента электрочайника, они движутся под действием электрического поля. Оно придает им некоторое ускорение, но поскольку проводник состоит из множества атомов, эти ускорившиеся электроны неизбежно соударяются с препятствиями, возникающими на их пути, и в результате теряют энергию, нагревая то, с чем соударяются. Таким образом, заставляя огромное количество зарядов упорядочено перемещаться по нагревательному элементу, вы принуждаете их соударяться с препятствиями. В результате огромного числа таких соударений происходит сильный нагрев. Именно в этом и заключается принцип работы электрочайника: ускорение электронов при прохождении через его нагревательный элемент приводит к их многочисленным соударениям с препятствиями, вследствие чего электроны отдают свою энергию в виде тепла. Сами по себе электроны в цепи дрейфуют довольно медленно, со скоростью примерно 1 миллиметр в секунду. Но этого вполне достаточно.

В кипящей воде масса дополнительной энергии. Самое поразительное, что вода получает ее от соударения невообразимо крошечных электронов с препятствиями, возникающими на их пути. Удивительно, но факт: мой чай вскипятился в результате нагрева, вызванного воздействием электрических полей на электроны в проводнике! Это, наверное, простейший из возможных вариантов использования электрической энергии: ее непосредственное преобразование в тепло. Но как только люди научились создавать всевозможные электрические цепи и источники электропитания, варианты применения электричества начали усложняться, причем с нарастающей скоростью.

Существует фундаментальная разница между движением электронов, вызванным электрической батареей, и происходящим при подключении какого-либо из устройств к настенной электрической розетке. В любом устройстве, работающем от батареи, электроны всегда движутся в одном направлении. Такое их упорядоченное одностороннее движение называется постоянным током (direct current — DC). Стандартная электрическая батарейка типоразмера AA обеспечивает постоянный ток напряжением 1,5 вольта. Но ток, получаемый из настенной электрической розетки, принципиально отличается от постоянного тока — он переменный (alternating current — AC). Переменный ток меняет свое направление со скоростью примерно сто раз в секунду. Переменный ток во многих отношениях более удобен в использовании, чем постоянный ток.

Можно ли переходить с применения переменного тока на постоянный и наоборот? Можно, но это вызывает дополнительные проблемы. С ними сталкивается каждый, кто часто возит с собой ноутбук: в дополнение к нему приходится обязательно брать небольшую, но довольно увесистую коробочку — неотъемлемую часть кабеля питания ноутбука. Это адаптер, преобразующий переменный ток, получаемый от настенной электрической розетки, в постоянный, требуемый для питания ноутбука. Альтернативный источник питания устройства — внутренняя аккумуляторная батарея, которая представляет собой источник постоянного тока. Для преобразования переменного тока в постоянный требуются трансформаторы, это катушки проводов и довольно сложные электрические цепи, поэтому сделать адаптеры очень маленькими пока не удается.

Сегодня мы воспринимаем электронику как нечто само собой разумеющееся. Но в пору становления она доставляла нам немало хлопот своей капризностью и непредсказуемым поведением. Мой дедушка хорошо помнит те времена, когда электроника лишь робко входила в наши дома, принося вместе с собой сложности, которые были весьма не­обычны для живущих тогда людей.

Мой дедушка Джек был одним из первых телевизионных инженеров. В те времена электроника была громоздкой, выделяла много тепла и даже «сильно воняла», как утверждает моя бабушка. Ее описания не­исправностей, которые приходилось устранять дедушке, живо напоминали мне об особенностях первых электронных устройств, напрочь забытых в наши времена повсеместного распространения смартфонов и Wi-Fi. Слушая воспоминания бабушки, я не переставала удивляться ее познаниям в области телевизионной техники того периода. Я никогда не слышала, чтобы она интересовалась техникой как таковой, но когда речь заходила о старых телевизорах, бабушка подчас употребляла технические термины, которые были незнакомы даже мне. Однажды она рассказывала: «Важным компонентом был строчный выходной трансформатор. Когда с ним возникали проблемы, из корпуса телевизора вился легкий дымок и чувствовался запах гари». Ее ярко выраженный акцент северянки напоминал мне о том, что люди с севера Англии вообще очень сдержанны в своих эмоциях и высказываниях: возможно, бабушка что-то недоговаривала и в действительности все обстояло гораздо хуже. Пользуясь телевизорами первых поколений, вы всегда рисковали: в любой момент что-либо внутри них могло задымиться, загореться, а то и взорваться. Можно сказать, что мой дедушка присутствовал при рождении новой эпохи — эпохи телевидения — и принадлежал к тому поколению людей, которые могли по-настоящему прочувствовать, что такое мир электричества. Они могли в буквальном смысле пощупать этот мир собственными руками. Впрочем, к моменту окончания трудовой деятельности моего дедушки транзисторы, а затем и микросхемы скрыли от человеческих глаз многие нюансы из жизни этого мира и отдалили от него людей. Крошечные размеры этих компонентов не позволяют человеку разглядеть их богатый и сложный внутренний мир. Но в годы, предшествовавшие появлению современных электронных чипов, вы могли воочию наблюдать многое из того, что происходит в мире электричества.

В 1935 году, в 16-летнем возрасте, мой дедушка нанялся учеником в компанию Metropolitan Vickers. Этот гигант тяжелого электромашиностроения выпускал электрогенераторы, паровые турбины и прочие виды крупного электротехнического оборудования. Когда в двадцать один год дедушка завершил курс обучения и стал специалистом по электро­технике, считалось, что он владеет редкой и очень востребованной профессией. Поэтому его не призвали на военную службу, а оставили работать в Metropolitan Vickers, где в течение пяти лет он испытывал электронные системы управления стрелковым вооружением самолетов. Первый тест таких систем назывался «испытанием на пробой». Вы прикладывали к тестируемой системе напряжение 2000 вольт, и если она выдерживала его, то считалась пригодной к дальнейшему тестированию. Это было, так сказать, начальной стадией приручения электрона, когда люди пытались поставить его себе на службу.

По окончании Второй мировой войны крупная британская компания EMI остро нуждалась в опытных специалистах по электронике, так как первые телевизоры были чрезвычайно капризными и сложными созданиями и для их настройки и ремонта требовались высококвалифицированные специалисты. EMI отправила моего дедушку на курсы повышения квалификации в Лондон, где он должен был освоить профессию инженера-телевизионщика. В то время в мире электроники — и, в частности, в телевизорах — бал правили компоненты весьма внушительных размеров: кинескопы, радиолампы, резисторы, конденсаторы, провода и трансформаторы. Вся эта смесь стекла, керамики и металла имела довольно привлекательный внешний вид и служила основой любого телевизора вплоть до начала 1990-х годов. Задача этих компонентов была достаточно простой: создать направленный пучок электронов и управлять им так, чтобы на экране кинескопа формировалось подвижное изображение.

Дедушка осваивал телевизоры на ЭЛТ. Мне нравится эта аббревиатура, поскольку она соединяет нас с миром, существовавшим задолго до открытия электронов. ЭЛТ расшифровывается как «электронно-лучевая трубка» (cathode ray tube — CRT); дословно «трубка катодных лучей». Когда эти «катодные лучи» только были открыты, они показались довольно странными. Представьте изумленное выражение лица немецкого физика Иоганна Гитторфа, наблюдавшего в далеком 1867 году результаты своего эксперимента, суть которого сводилась к следующему: он брал стеклянную трубку, из которой полностью выкачан воздух, а с обоих концов впаяны два металлических стержня, и подавал на эти стержни высокое напряжение от электрической батареи. В результате внутри трубки возникало течение странной невидимой субстанции от одного стержня к другому. Гитторф был уверен, что эта субстанция действительно возникает при подаче напряжения, подтверждением чему служило свечение, появляющееся на конце одного из стержней. Более того, помещая внутри трубки на пути этой субстанции те или иные препятствия, Гитторф фиксировал появление тени. Хотя никто не знал, что именно представляла собой эта субстанция, ее нужно было как-то назвать. Гитторф решил назвать ее катодными лучами. Катод — это электрод, подключенный к отрицательному полюсу батареи. Именно из катода исходили загадочные лучи.

Прошло еще тридцать лет, прежде чем Дж. Томсон открыл, что «катодные лучи» — вовсе не лучи, а поток отрицательно заряженных частиц, известных сегодня как электроны. Впрочем, их первоначальное название было решено оставить. Затем этот устоявшийся термин перекочевал в название электронно-лучевой трубки — cathode ray tube, или CRT. Сегодня мы знаем, что, приложив к ней высокое напряжение, мы создаем электрическое поле, тянущееся от одного ее конца к другому. Под воздействием этого электрического поля электроны вылетают из отрицательного конца (катода) и направляются в сторону положительного конца (анода). Любая частица, обладающая электрическим зарядом, под воздействием электрического поля будет ускоряться, то есть постоянно подталкиваться вперед на всем пути от одного конца трубки к другому. Таким образом, электроны не просто продвигаются вперед, к положительному концу трубки, потому что притягиваются им, а ускоряются на этом пути. Чем выше разность напряжений между двумя концами трубки, тем быстрее движутся электроны, приближаясь к другому концу. В телевизоре с ЭЛТ электроны в момент соударения с экраном достигают скорости порядка нескольких километров в секунду. Это не так уж мало по сравнению со скоростью света — наибольшей скоростью, которой можно достичь во Вселенной.

Таким образом, тот же фундаментальный процесс, приведший к открытию электрона, использовался в каждом из телевизоров, выпускавшихся в мире каких-нибудь пару десятков лет тому назад. В них применялся прибор, «вырабатывающий» электроны, а именно кинескоп — полая камера, из которой откачан воздух (то есть созданы условия, близкие к вакууму), стало быть, внутри нее нет никаких препятствий. В результате электроны, которыми выстреливает так называемая электронная пушка в кинескопе, движутся в вакууме, пока не ударятся об экран. Такой их поток в кинескопе представляет собой электрический ток в чистом виде: заряженные частицы, движущиеся по прямой линии.

* * *

Моя тетя открывает коробку со всевозможным «электронным хламом», оставшимся ей «в наследство» после смерти моего дедушки. В коробке можно найти стеклянные радиолампы, немного напоминающие своим видом цилиндрические осветительные лампочки; правда, вместо обычной нити накаливания внутри них скрывается довольно сложная металлическая конструкция. Радиолампы используются для управления потоком электронов в электрических цепях. Когда дедушка занимался ремонтом телевизоров, он прежде всего старался выяснить, не сгорела ли какая-либо радиолампа, которыми были буквально нашпигованы внутренности каждого телевизора, чтобы заменить ее. Мои мама, тетя и дедушка питали к радиолампам искренние чувства любви и благоговения, поскольку от их исправности зависело очень многое в жизни. Разнообразие радиоламп просто поражает!

А еще в углу коробки можно обнаружить большой кольцеобразный магнит (сейчас он уже раскололся на две части). Глядя на него, я размышляю о великой связи между электричеством и магнетизмом. Если вы хотите управлять электричеством, вам нужны магниты. Если хотите управлять магнитами, вам требуется электричество. Электричество и магнетизм — две стороны одного и того же явления. И электрическое, и магнитное поле могут подталкивать движущийся электрон. Но результаты такого подталкивания разнятся. Электрическое поле будет подталкивать движущийся электрон в направлении действия поля. Магнитное — в сторону, перпендикулярно направлению поля.

Создать направленный пучок электронов — лишь полдела. Главная проблема, которую следовало решать конструкторам старых телевизоров, — управлять этим пучком электронов так, чтобы он попадал в нужные точки экрана. В основе такого управления лежит принцип неразрывной связи между электричеством и магнетизмом. Когда электрон движется через магнитное поле, он отклоняется в сторону. Чем сильнее магнитное поле, тем сильнее отклоняется электрон. Следовательно, изменяя определенным образом величину магнитного поля в ЭЛТ старого телевизора, можно отклонять пучок электронов на тот или иной угол, целенаправленно изменяя точку попадания пучка электронов на экран. Большой кольцеобразный постоянный магнит, покоившийся в углу заветной дедушкиной коробки, был смонтирован вблизи электронной пушки и обеспечивал основную фокусировку. Но управляющие электромагниты, находящиеся несколько ближе к экрану, контролировались непосредственно сигналом, поступающим с телевизионной антенны. Эти электромагниты управляли пучком электронов таким образом, чтобы он сканировал экран по горизонтали, строка за строкой. Сам по себе пучок электронов при прохождении каждой очередной строки то включался, то выключался, и в том месте, где он попадал на экран, появлялась яркая точка. Строчный выходной трансформатор, о котором я упоминала выше, относился к числу устройств, предназначенных для управления сканированием экрана. Чтобы обеспечить непрерывное изображение на экране телевизора, нужно было сканировать 405 строк 50 раз в секунду, при этом пучок электронов следовало включать и выключать в строго определенные моменты времени — соответственно изображению, формируемому на экране.

Управление пучком электронов — невероятно сложный процесс. Для формирования изображений на телеэкране требуется множество электронных компонентов, причем все они должны действовать строго синхронно, исполняя свои функции исключительно в определенные моменты времени. Именно поэтому в телевизорах старых типов множество ручек настройки, позволяющих корректировать и «подстраивать» картинку на экране. Кстати, многие владельцы телевизоров этим злоупотребляли, то и дело (зачастую без реальной необходимости) вращая ручки настройки. Впрочем, для моего дедушки настройка телевизоров была не забавой, а профессиональной обязанностью. Можно сказать, он был знатным специалистом по части ремонта и настройки телевизоров. Со стороны его манипуляции выглядели как некое священнодействие. Настоящих мастеров своего дела уважали во все времена — да и как не уважать мастера, если он делает то, что у тебя не получается! Сейчас мир изменился. Специалисты-электронщики могут «оживить» неработающее устройство, но вы не понимаете, что именно они делают и почему оно работает.

Кажется невероятным, что молчаливые и невидимые электроны, замкнутые в вакууме, могут быть ключом ко всему богатству телетрансляций, полных звуков и красочных кадров. В течение пятидесяти лет работа телевизора основывалась на одном и том же простом принципе: поместите электрон в электрическое поле — и сможете ускорять или замедлять его движение. Поместите движущийся электрон в магнитное поле — и сможете отклонять его в ту или иную сторону. Поддерживайте этот процесс в течение долгого времени — и он будет циклически повторяться.

Масштабный физический эксперимент в ЦЕРН (Женева), уже успевший прославиться открытием бозона Хиггса в 2012 году, основан на тех же принципах, что и электронно-лучевая трубка, хотя в Большом адронном коллайдере проводятся эксперименты не только с электронами, но и с другими элементарными частицами. Электрическое поле позволяет придать ускорение любой заряженной частице, а магнитное поле — искривить путь, по которому она движется. В недрах Большого адронного коллайдера — эксперимента, который наконец подтвердил существование бозона Хиггса, — ускорение придается протонам. В коллайдере достигнуты скорости, весьма близкие к скорости света. Они настолько высоки, что даже при использовании чрезвычайно мощных магнитов, управляющих движением частиц, протяженность кольца ускорителя пришлось сделать равной 27 километрам.

Таким образом, базовую концепцию, используемую и для обнаружения самого электрона, и для создания Большого адронного коллайдера в ЦЕРН — управляемый поток заряженных частиц в вакууме, — еще до сравнительно недавнего времени можно было обнаружить и у себя дома. В наши дни громоздкие телевизоры на базе электронно-лучевых трубок почти полностью вытеснены плоскими «плазменными» экранами. В 2008 году общемировые объемы продаж телевизоров с плоским экраном впервые превысили объемы продаж телевизоров на базе электронно-лучевых трубок, и тенденция сохраняется. Появление плоских экранов обусловило разработку смартфонов и ноутбуков, поскольку такие экраны могут иметь малые размеры. Эти новые дисплеи также управляются электронами, но гораздо более сложным способом. Вся площадь экрана делится на множество крошечных квадратиков, пикселов, а электронное управление каждым таким пикселом определяет, светится ли он. Если разрешение экрана составляет 1280 × 800 пик­селов, значит, вы смотрите на сетку, состоящую из более чем миллиона отдельных цветовых точек. Каждая из таких точек управляется (включение/выключение) раздельно путем подачи на них крошечных напряжений. Состояние каждого пиксела обновляется не менее шестидесяти раз в секунду. Координация раздельного управления таким количеством пикселов — чрезвычайно сложная задача, но даже она кажется тривиальной по сравнению со сложностью функций, выполняемых вашим ноутбуком.

Но вернемся к магнитам. Магнитное поле может воздействовать на электроны, поэтому может управлять электрическими токами. Однако взаимосвязь электричества и магнетизма этим не ограничивается. Электрические токи могут также создавать собственные магнитные поля.

* * *

Как мы уже знаем из , тостеры обеспечивают весьма эффективный нагрев с помощью инфракрасного света. Однако подлинная прелесть тостера вовсе не в этом — ваш гриль тоже так умеет. Подлинная прелесть тостера в том, что он знает, когда остановиться. Универсальное правило работы тостера заключается в том, что хлеб только тогда исчезает в его недрах, когда вы нажимаете на рычажок с одной стороны. Если вы нажмете на этот рычажок не до самого конца, хлеб просто выскочит обратно из тостера. Но если вы нажмете на рычажок до упора, раздастся щелчок и хлеб останется в тостере до тех пор, пока не обжарится и не выскочит из этой мини-печи. Мне не нужно неотрывно следить за процессом обжаривания, проверяя степень готовности тоста. Когда хлеб превратится в тост, раздастся еще один механический щелчок и тост выскочит из тостера сам собой. Таким образом, пока я занимаюсь какими-то другими делами, например выкладываю из холодильника на стол масло и джем, что-то удерживает тост внутри тостера.

Прелесть тостера — в простоте его конструкции. Когда вы помещаете в тостер хлеб, он оказывается на подпружиненном лотке. Пружины, на которых смонтирован лоток, поднимают хлеб в верхнюю позицию, расположенную достаточно высоко над нагревательными элементами. Впрочем, вам не составит большого труда преодолеть действие этих пружин и протолкнуть хлеб вниз. Когда лоток достигнет дна тостера, выступающая наружу металлическая пластинка замыкает зазор не в одной, а сразу в двух электрических цепях. Одна из этих цепей отвечает за функцию нагрева: электрический ток, проходя по нагревательным элементам тостера, которые являются составными частями этой цепи, начинает подогревать лоток с хлебом.

Но другая электрическая цепь представляет для нас гораздо больший интерес. Электроны в ней циркулируют по отрезку провода, обернутому вокруг небольшого куска железа, так называемого сердечника. Перемещение электронов по отрезку провода напоминает движение по винтовой лестнице: они заходят в отрезок провода с одного его конца, движутся по спирали вокруг железного сердечника, наматывая круг за кругом, а затем, выйдя с другого конца отрезка провода, продолжают движение по цепи, пока не доберутся до штырька вилки, вставленной в электрическую розетку. Вот, собственно, и все, что происходит во второй электрической цепи. Но, учитывая неразрывную связь электричества и магнетизма, проходя по проводу, электрический ток создает вокруг него магнитное поле. Если ток проходит по проводу, намотанному на катушку, то его прохождение по каждому очередному витку провода наращивает магнитное поле в катушке, а железный сердечник, помещенный внутрь катушки, усиливает его. Такая конструкция называется электромагнитом. Когда электрический ток проходит по проводу, получается магнит, когда подача тока прекращается, магнитное поле вокруг катушки исчезает. Поэтому, нажимая на рычажок, вы включаете магнитное поле у основания тостера (до этого момента оно отсутствовало). Так как нижняя сторона лотка с хлебом изготовлена из железа, лоток притягивается к магниту. Другими словами, пока я достаю масло и джем из холодильника, временное магнитное поле удерживает лоток с хлебом в нижнем положении. В тостере сбоку встроен таймер, который запускается при замыкании электрических цепей. По истечении заданного времени таймер прекращает подачу электропитания в цепи тостера. Поскольку электрический ток перестает подаваться на электромагнит, он теряет свои свойства. Магнитное поле перестает удерживать лоток с хлебом в нижнем положении, и пружина толкает его вверх.

Иногда я забываю вставить вилку тостера в электрическую розетку. Впрочем, все довольно быстро выясняется: если я попытаюсь нажать на рычажок тостера, он тотчас же вернется в исходное положение, даже если я повторю нажатие. Это объясняется отсутствием подачи электрического тока на электромагнит, поэтому электромагнит не может удерживать лоток с хлебом в нижнем положении. В такой простой системе все происходит с потрясающей элегантностью. Каждый раз, готовя тост, вы пользуетесь фундаментальной связью электричества и магнетизма.

Электромагниты широко распространены благодаря своему уникальному свойству: возможности включать и выключать магнитное поле. Они применяются в громкоговорителях, электронных дверных замках и компьютерных дисководах. Чтобы электромагнит создавал магнитное поле, на него должно подаваться электропитание — иначе магнитное поле пропадает. Магниты, которые вы прикрепляете на двери холодильников, называются постоянными — их нельзя включать и выключать и на них не нужно подавать электропитание. Электромагниты при подаче электропитания, по сути, исполняют ту же функцию, что и постоянные магниты. Но их удобство в том, что их можно выключить, прекратив подачу электрического тока.

На нас все время воздействуют небольшие, локальные магнитные поля. Какие-то из них постоянные, а какие-то — временные. Эти поля почти всегда рукотворны, то есть искусственного происхождения, и используются для выполнения той или иной полезной функции. Иногда они оказываются побочным продуктом при выполнении какой-либо полезной функции. Магнитные поля действуют в весьма ограниченном пространстве, поэтому их можно обнаружить только вблизи магнита. Но все это лишь слабые проявления гораздо более мощного магнитного поля, которое охватывает всю нашу планету и имеет исключительно естественное происхождение. Мы не можем почувствовать его, но все время им пользуемся.

* * *

Большинство из нас — особенно любители совершать длительные пешие походы по незнакомой местности — воспринимают компас как нечто совершенно естественное. Очень удобно брать в походы прибор, стрелка которого всегда указывает на север. Сколько бы компасов у вас ни было — десять, двадцать или двести и как бы вы их не размещали, все они всегда указывают на север. Вы можете перенести свою коллекцию компасов в любое место на Земном шаре, разложить ее на земле — и стрелки всех компасов будут указывать на север. Магнитное поле Земли повсеместно. Оно пронизывает наши города, леса и горные массивы. Мы живем в нем и хотя и не ощущаем его действия, компас всегда напомнит нам о его существовании.

Компас — гениально простой измерительный прибор. Его стрелка — это магнит, поэтому ее концы ведут себя по-разному, будучи северным и южным полюсами магнита. Если два магнита разместить рядом и перемещать относительно друга друга, то вскоре вы заметите, что сдвинуть между собой два северных полюса очень трудно, тогда как разноименные полюса магнитов сильно притягиваются. Именно поэтому так легко определить направление магнитного поля: если поместить небольшой подвижный магнит внутри магнитного поля, он будет поворачиваться вокруг собственной оси до тех пор, пока его северный и южный концы не окажутся ориентированными вдоль этого магнитного поля. Именно в этом и заключается принцип действия компаса: подвижный магнит, который поворачивается в направлении внешнего магнитного поля. Вы не можете видеть обширное магнитное поле Земли, но можете видеть стрелку компаса, реагирующую на него. Впрочем, компасы реагируют не только на магнитное поле Земли. Возьмите в руку компас и походите с ним по комнатам своего дома. Вы наверняка обнаружите магнитные поля вокруг электрических розеток, стальных кастрюль, бытовых электро­приборов, магнитов, закрепленных на холодильнике, и даже возле утюга, если он недавно побывал возле какого-либо магнита.

Компасы, понятное дело, используются главным образом для ориентирования на местности. Проложить маршрут, находясь на поверхности сферы, не так-то просто, но магнитное поле Земли уже не одно столетие служит необычайно надежным инструментом для исследователей. У Земли есть северный магнитный полюс и южный магнитный полюс, и каждый обладатель компаса может легко ориентироваться на местности по какому-то из них. В качестве навигационного инструмента магнетизм прост, дешев и безотказен. Однако тут следует сделать несколько важных оговорок, причем оговорка номер один звучит неожиданно серьезно: магнитные полюса Земли не строго фиксированы и могут со временем менять местоположение.

В день, когда я пишу эти строки, северный магнитный полюс Земли расположен на север от Канады и находится примерно в 430 кило­метрах от «истинного севера», то есть реального Северного полюса, который определяется осью вращения Земли вокруг собственной оси. С того же самого дня в прошлом году северный магнитный полюс сместился на 42 километра; сейчас он движется через Северный Ледовитый океан в направлении России. Это вряд ли вселит оптимизм в тех, кому часто приходится ориентироваться на местности, хотя, учитывая, насколько огромен наш мир, блуждание магнитных полюсов не такая уж проблема, как кажется поначалу. Причина такого блуждания в том, что внутренняя «начинка» нашей планеты отнюдь не похожа на статичный каменный шар.

Глубоко-глубоко у нас под ногами медленно перемешивается и взбал­тывается насыщенное железом внешнее ядро Земли, вследствие чего происходит передача тепла от центра Земли к ее поверхности, а вращение планеты заставляет вращаться и расплавленное содержимое ядра. Из-за насыщенности железом это инертное внешнее ядро представляет собой электрический проводник, то есть может вести себя подобно электро­магниту в тостере. Ученые полагают, что магнитное поле Земли создается электрическими токами, проходящими через ее внешнее ядро в ходе его вращения. Процесс основывается на медленном перемешивании расплавленной лавы во внешнем ядре Земли, а поскольку процесс перемешивания расплавленной лавы с течением времени меняется, происходит блуждание магнитных полюсов. Их ориентация примерно соответствует ориентации оси вращения Земли, так как вращение насыщенного железом внешнего ядра Земли обусловлено вращением планеты в целом, однако это соответствие лишь приблизительное.

Таким образом, при потребности в более точной навигации вы должны вносить поправку на текущее положение магнитного полюса, потому что он не совпадает с истинным Северным полюсом. Сегодняшние географические карты показывают направление обоих полюсов. Только что я посмотрела на карту южного побережья Великобритании (такие карты издаются картографическим управлением Великобритании и отличаются высокой точностью), в ней наверху указаны и северный магнитный полюс, и истинный Северный полюс. Глядя на нее, я прихожу к выводу, что если бы вы двигались по компасу строго на север и прошли бы при этом 40 километров, то в результате отклонились бы от истинного направления на север примерно на 1 километр в сторону запада. Географическая карта — относительно постоянный документ, тогда как магнитное поле, которое вы используете как инструмент ориентирования на местности, со временем изменяет направление. Наличие современных технологий вроде GPS избавляет нас от беспокойства по поводу блуждания магнитных полюсов. Но в авиации, где применяется одна из самых сложных навигационных систем нашего времени, фактор блуждания магнитных полюсов приходится учитывать.

В следующий раз, оказавшись в аэропорту, обратите внимание на обозначения в начале каждой взлетно-посадочной полосы (ВПП). Каждая ВПП в мире помечается определенным числом, которое обозначает ее ориентацию по отношению к направлению на север и выражается в градусах, поделенных на десять. Так, взлетная полоса в аэропорту Glasgow Prestwick имеет номер 12, поскольку самолет, приземляющийся на нее, должен следовать курсом 120 градусов. Каждая ВПП обозначается числом от 01 до 36. Когда мы говорим о курсе, которым следует самолет, то имеем в виду направление его движения относительно магнитного севера, поскольку компас указывает именно это направление. В 2013 году взлетная полоса 12 в Глазго стала взлетной полосой 13, что было обусловлено смещением магнитного полюса. Разумеется, она осталась на прежнем месте, но магнитное поле Земли изменило ориентацию. Авиаторы отслеживают эти изменения и по мере необходимости вносят соответствующие поправки в обозначения взлетных полос. Учитывая, что полюса блуждают относительно медленно, это не составляет труда.

Впрочем, блуждание полюсов — далеко не вся история. Непостоянство магнитного поля Земли приходится учитывать не только тем, кто решает навигационные проблемы. Оно помогло, пусть и косвенно, окончательно подтвердить одну из наиболее противоречивых, простых и впечатляющих гипотез, когда-либо выдвигавшихся геологами. Континенты, эти бескрайние каменистые массы, которые доминируют на поверхности Земли, не стоят на месте. Они движутся.

* * *

В 1950-е годы человеческая цивилизация вступила в новую технологическую и научную эпоху. Закладывались основы современного общества. В ту пору начали появляться и набирать популярность микроволновые печи, Lego, Velcro и бикини. Люди постепенно смирились с необходимостью жить в атомном веке, заново переписывались социальные правила, в нашу жизнь вошли кредитные карточки. Несмотря на эти впечатляющие технологические достижения, мы все еще очень мало знали планету, на которой живем. Геологи классифицировали все минералы, встречающиеся на Земле, но не могли объяснить саму Землю. Как образовались горы? Почему этот вулкан находится здесь, а не там? Почему одни горные породы такие старые, а другие — молодые? Почему горные породы выглядят по-разному в зависимости от того, под каким углом на них смотреть?

Одна из загадок, которую людям особенно не терпелось разгадать, состояла в том, что восточное побережье Южной Америки и западное побережье Африки выглядели так, словно когда-то представляли собой одно целое, а затем его взяли да и разорвали на две части. Там все сходится: виды горных пород, формы и древние окаменелости. Как объяснить такие совпадения? Большинство ученых считали их лишь забавным курьезом, не заслуживающим серьезного внимания. Им казалось немыслимым, что столь огромные образования, как континенты, могли «разъехаться» в стороны. В начале XX века немецкий исследователь Альфред Вегенер, собрав все существовавшие на тот момент научные факты, выдвинул идею «континентального дрейфа». Вегенер предположил, что Южная Америка и Африка когда-то были соединены друг с другом и что одна из этих огромных масс земли откололась от другой и начала дрейфовать по поверхности планеты. Очень немногие ученые серьезно отнеслись к этой гипотезе: мысль о том, что целый континент мог проделать путь в 5000 километров, большинству ученых казалась нелепой. Если бы это на самом деле было так, то под действием какой силы происходил такой дрейф? Сам Вегенер предположил, что континенты «пропахали» себе путь через океанические скальные породы, но не смог подтвердить свою догадку фактами. Правда, никому не удалось выдвинуть более правдоподобную версию. Со временем гипотеза Вегенера была преданы забвению.

К началу 1950-х годов никаких новых идей на сей счет выдвинуто не было, зато появились новые измерения. Лава, извергаемая вулканами, содержит богатые железом соединения. Оказалось, что каждая крупица одного из этих соединений может вести себя подобно стрелке компаса, ориентируясь в направлении локального магнитного поля. Самым интересным было то, что, когда лава остывала и превращалась в твердую скальную породу, эти крошечные вкрапления железосодержащих минералов жестко фиксировались в исходном положении, ориентированном в направлении локального магнитного поля. Наличие этих крошечных «замороженных компасов» означало, что в момент образования скальных пород в них оказалась встроенной существовавшая в то время картина магнитного поля Земли. Когда геологи воспользовались этой картиной, чтобы исследовать изменения магнитного поля Земли, происходившие на протяжении целых геологических эпох, удалось выявить чрезвычайно любопытные факты. Выяснилось, что каждые несколько сотен тысяч лет направление магнитного поля Земли меняется на противоположное, то есть магнитный север и магнитный юг меняются местами. Казалось бы, что нам с того? Но все равно это выглядело очень странно.

Затем геологи обратили взор на морское дно. Одним из множества необъясненных явлений структуры Земли было наличие в нескольких океанах длинных цепей подводных гор, тянущихся вдоль обширных «равнин» морского дна. Никто не мог ответить на вопрос, как эти горные цепи там появились. Самая знаменитая горная цепь — Среднеатлантический горный хребет: гряда вулканов, которая берет начало над водой (Исландия представляет собой лишь окончание этого хребта, выступающее над поверхностью воды), а потом уходит под воду и тянется по центру Атлантического океана почти до Антарктики. Но в 1960 году магнитные измерения показали, что магнетизм скальных пород, окружающих этот горный хребет, выглядит чрезвычайно странно. Он необычен своей полосатостью, причем полоски тянутся параллельно хребту. По мере удаления от центрального хребта скальные породы морского дна обладают магнетизмом, который ориентируется сначала на север, затем на юг, потом снова на север, причем эти полоски тянутся по всей длине горной гряды. Но и это еще не все: если взглянуть на другую сторону гряды, то магнитные полоски на ней представляют собой зеркальное отражение первых.

В 1962 году двое британских ученых, Драммонд Мэтьюз и Фред Вайн, высказали идею на этот счет. А вдруг, предположили они, вулканы на морском дне формируют новое морское дно, когда континенты расходятся? Магнетизм, выявленный возле горного хребта, соответствует нынешнему направлению магнитного поля. Но когда континенты расходятся в стороны, горные породы от этих хребтов растягиваются по обе стороны вулканов; при этом образуются новые горные породы. Когда магнитное поле Земли меняет направление на противоположное, магнетизм этой новой лавы также меняет направление на противоположное, давая начало новой полосе, указывающей в противоположном направлении. Причина, почему эти полосы зеркально отражают друг друга, состоит в том, что каждая полоса представляет период одной магнитной ориентации, прежде чем произойдет ее очередная смена. Другие открытия, сделанные примерно в то же время, позволили выявить места, где происходило разрушение старого морского дна, что было очень важно, поскольку размер самой планеты не меняется. По другую сторону Южной Америки существует горный массив Анды, так как именно здесь старое морское дно из Тихого океана заталкивается под континент, обратно в мантию Земли. Когда вы точно знаете, что континенты могут перемещаться, сталкиваясь и разделяясь, создавая и разрушая морское дно в ходе таких перемещений, геологические картины обретают глубокий смысл. Открытие тектоники плит стало поворотным моментом в геологической науке. В наши дни тектоника плит исполняет роль станового хребта всех наших представлений о том, почему Земля именно такая, как есть.

Итак, континенты таки «дрейфуют», правда, при этом не «пропахивают» морское дно. Они плывут поверх того, что под ними, под воздействием конвекционных токов, перемещающихся под поверхностью Земли. И этот процесс разворачивается прямо у нас на глазах. Сейчас Атлантический океан все еще расширяет свои границы со скоростью примерно 2,5 сантиметра в год. В настоящее время продолжается формирование магнитной полосы. Чтобы убедить ученых в том, что поверхность Земли подвижна, потребовалось немало фактов, но неопровержимым доказательством послужили картины магнетизма морского дна. Сегодня мы можем измерить перемещение всех континентов с помощью очень точных данных, поступающих с GPS. Они позволяют нам видеть механизм таких перемещений в действии. Но ключом к прошлой истории Земли и ее нынешнему виду оказался магнетизм, заключенный в древних горных породах планеты, возраст которых сотни тысяч лет.

Сочетание электричества и магнетизма образует симбиоз, играющий огромную роль в нашей жизни. Наша нервная система использует электричество для передачи сигналов к разным участкам тела, электро­питание необходимо многим устройствам, жизненно важным для современной цивилизации, а магнетизм позволяет нам сохранять информацию и управлять упорядоченным движением электронов, исполняющим те или иные полезные функции. Мы добились значительных успехов в том, что касается контроля электромагнетизма. Мы довольно редко испытываем удар электрическим током, да и неожиданные отключения электроэнергии стали редкостью. Мы научились эффективно защищать себя от вредного воздействия сильных электрических и магнитных полей; более того, мы живем, даже не замечая их существования. С одной стороны, наше умение управлять электромагнетизмом не может не радовать. С другой — мне становится грустно оттого, что мы так тщательно прячем от себя такую важную часть физического мира, как электромагнетизм. Впрочем, меня не покидает надежда, что в будущем человечество найдет дополнительные способы напоминать людям о наличии электромагнетизма, чтобы мы не забыли о нем окончательно. Перед человечеством встала во весь рост проблема неминуемого исчерпания традиционного источника энергии — ископаемого топлива. В будущем выработка электроэнергии не обязательно будет происходить на удаленных электростанциях. Возобновляемая энергия может вырабатываться гораздо ближе к местам нашего проживания. Не исключено, что появятся какие-то новые способы выработки электроэнергии. Циферблат моих наручных часов представляет собой солнечную батарею. С момента их покупки прошло семь лет, а они тикают, как ни в чем не бывало. Уже разработаны технологии, которые позволяют добывать солнечную энергию из света, проникающего в наши жилища через окна, из кинетической энергии, вырабатываемой при ходьбе, и из энергии волн в устьях рек. Принципы, на которых основаны эти технологии, — все те же законы электромагнетизма.

* * *

Мне осталось добавить еще один фрагмент в картину электромагнетизма, иначе она будет неполной. Мы видели, что электрический ток может создавать магнитное поле в тостере. Но этот процесс действует и в обратном направлении. Когда вы перемещаете магнит вблизи проводника, магнитное поле воздействует на заряженные частицы (например, на электроны), а это означает, что вы можете создать в проводнике электрический ток, которого там раньше не было. Речь в данном случае идет не о каких-то технологиях будущего, а о довольно распространенном способе выработки электроэнергии в наши дни. Мы подаем в электрическую сеть электроэнергию, образующуюся за счет перемещения магнитов — либо с помощью вращения турбин тепловых или атомных электростанций, либо вращая ручку так называемого заводного радиоприемника, который работает от встроенной динамо-машины. Один из самых элегантных и простейших примеров использования электричества и магнитов для выработки электроэнергии — ветряной двигатель.

Если смотреть на него снизу вверх, он кажется величественным и безмятежным: высокая белая опора, на которой крепятся элегантные вращающиеся лопасти. Но эта мирная и безмятежная картина исчезает, как только вы вступаете в основание башни. Внутри царит низкое, сильное гудение. Вам кажется, что вы попали внутрь какого-то гигантского музыкального инструмента. Я побывала на одной из таких ветротурбин, расположенных в Своффэме, на востоке Англии. Это один из немногих ветряков, открытых для посещения туристами (в определенные часы). Возможно, вам понадобится немало времени, чтобы добраться до него, но уверяю, вы не пожалеете о времени, потраченном на поездку.

Взбираясь по винтовой лестнице внутри башни, вы слышите, как гудение то усиливается, то ослабевает. Вы можете даже почувствовать, как все это сооружение содрогается под напором ветра. По мере приближения к вершине башни ваши глаза улавливают вспышки света: это солнечный свет отражается то в одной, то в другой лопасти ветряка. Поднявшись на самый верх башни, на высоту 67 метров, вы попадаете в закрытую галерею кругового обзора, расположенную непосредственно под ступицей турбины. От ощущения покоя и безмятежности не остается и следа. Три гигантские лопасти, каждая длиной 30 метров, вращаются с такой мощью, что при взгляде на них не остается никаких сомнений, что из этого вращения можно извлечь немалую энергию. На то, как ветер усиливается и ослабевает, гудение и скорость вращения лопастей ре­агируют практически мгновенно. Это само по себе уже способно произвести сильное впечатление.

Но самое главное скрывается в белом мундштуке — той части механизма, которая находится за лопастями. При взгляде вверх можно увидеть вращающуюся ступицу турбины. Прямо у меня над головой ее край, ближайший к башне, плавно вращается вокруг неподвижного внутреннего кольца. Этот край ступицы обложен сильными постоянными магнитами; таким образом, они вращаются вокруг внутренней части ступицы. А неподвижное внутреннее кольцо обложено катушками из медного провода, каждая из которых подсоединена к соответствующей электрической цепи. В ходе движения каждого магнита мимо катушек провода в проводе возникает электрический ток. Несмотря на то что магниты и провода не соприкасаются между собой, энергия вращения преобразуется в электрическую энергию, вырабатываемую в проводах катушек. Вращение лопастей ветряка обеспечивает движение магнитов мимо катушек провода, а законы электромагнитной индукции создают в каждой из катушек электрический ток. Именно так вырабатывается электрическая энергия в ветротурбинах.

Те же законы электромагнитной индукции применяются на всех наших электростанциях независимо от исходного источника энергии, которым может служить уголь, мазут, ядерная энергия или энергия волн. Какой бы ни была исходная энергия, ее задача — обеспечивать движение магнитов мимо катушек провода, в результате чего исходная энергия преобразуется в электрическую. Прелесть ветротурбины в том, что энергия ветра преобразуется непосредственно в электрическую энергию. В теплоэлектростанции, работающей на угле, вода нагревается и превращается в пар, который вращает лопатки паровой турбины, а та, в свою очередь, вращает магниты. Конечный результат тот же, но для его достижения приходится использовать дополнительные преобразования энергии. Каждый раз, включая какой-либо электрический прибор, вы потребляете энергию, которая возникла вследствие того, что движение магнита мимо катушки с медным проводом вызывало в этом проводе упорядоченное движение электронов. Электричество и магнетизм неразделимы. Наша цивилизация использует энергию, которая вырабатывается электромагнитной индукцией, вызываемой движением электрического проводника в магнитном поле. Мы научились ловко скрывать процессы генерации электроэнергии, пуская ее по руслу экранированных проводов, прокладываемых в стенах зданий, и электрических кабелей, зарытых в земле. Мы настолько преуспели в маскировке этих процессов, что ребенок, родившийся в наши дни, может никогда в жизни не увидеть и не пощупать собственными руками, что такое электричество и магнетизм. Будущие поколения вообще могут быть лишены возможности наблюдать непосредственные проявления электромагнетизма и не смогут оценить их элегантность и важность для человечества: невидимый покров прогресса надежно скроет их от нас. Тем не менее мы всегда должны помнить о них, поскольку в наше время ткань человеческой цивилизации прочно сшита электромагнитными нитями.

Назад: ГЛАВА 7. ЧАЙНЫЕ ЛОЖЕЧКИ, СПИРАЛИ И СПУТНИК
Дальше: ГЛАВА 9. ЧУВСТВО ПЕРСПЕКТИВЫ