Книга: Физика и жизнь
Назад: ГЛАВА 3. МАЛЕНЬКИЙ — ЗНАЧИТ ЗАМЕЧАТЕЛЬНЫЙ
Дальше: ГЛАВА 5. ПУСКАЕМ ВОЛНЫ

ГЛАВА 4

МОМЕНТ ВРЕМЕНИ

Путь к равновесию

В воскресенье, в обеденное время, когда так хочется предаться лени, лучше всего отправиться в какой-нибудь английский паб. Интерьер этих заведений зачастую создает впечатление, будто он сформировался сам по себе, а не стал результатом воплощения некой дизайнерской идеи. Типичный английский паб — это нагромождение пространств самой причудливой формы, непременный атрибут которых — дубовая мебель и массивные дубовые балки под потолком. Все это исполнено в старинном стиле, характерном для английских построек прошлых веков. Вы усаживаетесь за столик и заказываете меню, типичное для большинства пабов. Вам приносят тарелку чипсов и стеклянную бутылочку кетчупа. Но если человеку, впервые посетившему английский паб, кажется, что после этого он может расслабиться и приняться за поглощение чипсов, обильно сдабриваемых кетчупом, то его ожидает разочарование. Кетчуп нужно каким-то образом извлечь из бутылочки, а это значит, что вам предстоит нелегкая борьба.

Все начинается с того, что неопытный посетитель паба переворачивает бутылочку кетчупа вверх дном в надежде, что ее содержимое станет понемногу выливаться в тарелку. Не тут-то было! Тем не менее даже опытные посетители паба совершают это бессмысленное действие. Кетчуп — очень густая и вязкая жидкость, и ее собственной силы тяжести явно недостаточно для того, чтобы выливаться в тарелку. То, что происходит с кетчупом в стеклянной бутылочке, объясняется двумя причинами. Во-первых, вязкость препятствует опусканию приправ, содержащихся в кетчупе, на дно бутылочки, если вы не пользовались ею какое-то время, поэтому, чтобы удостовериться в том, что ингредиенты кетчупа хорошо перемешаны между собой, вам нет необходимости встряхивать ее содержимое. Но что более важно, люди предпочитают, чтобы каждый ломтик жареной картошки был покрыт толстой «шапкой» кетчупа, а этого практически невозможно добиться, если кетчуп жидкий. Однако кетчуп пока еще не покрывает чипсы. Он все еще находится в бутылочке.

Через несколько секунд, окончательно убедившись, что гравитация не властна над кетчупом, незадачливый посетитель паба начинает трясти бутылочку. Он трясет ее все ожесточеннее и под конец ударяет ладонью свободной руки по ее дну. Соседи по столику на всякий случай отшатываются назад, опасаясь, что брызги от вывалившейся из бутылочки порции кетчупа окажутся у них на лице, рубашке или брюках. Их опасения не так уж беспочвенны: добрая четверть содержимого бутылочки одним махом вываливается в тарелку с чипсами. Вот ведь странно: оказывается, кетчуп довольно легко извлечь! О чем наглядно свидетельствует его толстый слой, покрывший всю тарелку с чипсами (и, возможно, полстола). Еще несколько секунд назад он упорно не желал покидать бутылочку, а теперь выливается оттуда как ни в чем не бывало. Почему?

Дело в том, что, когда вы пытаетесь подталкивать его очень медленно, он ведет себя почти как твердое тело. Но как только вы заставляете его двигаться быстро, он начинает вести себя подобно жидкости, свободно вытекая из бутылочки. Когда он находится внутри бутылочки или на ломтике жареной картошки, на него действует лишь гравитация (и притом очень слабо), поэтому он ведет себя как твердое тело и не проявляет никакого желания куда-либо двигаться. Но достаточно энергично встряхнуть бутылочку и привести кетчуп в движение, как он начинает вести себя как жидкость и свободно вытекает из бутылочки. Тут все дело во времени. Совершая одно и то же действие быстро или медленно, вы получаете абсолютно разные результаты.

Кетчуп — не что иное, как протертые помидоры, сдобренные уксусом и специями. Предоставленный самому себе, он кажется жидким и даже водянистым; ничего интересного с ним не происходит. Но в бутылочке с кетчупом есть полпроцента кое-чего еще, представляющего собой длинные молекулы, составленные из цепочки связанных сахаров. Это ксантановая камедь (загуститель) — вещество, получаемое путем бактериальной ферментации или синтетическим способом и в настоящее время широко используемое в качестве пищевой добавки. Когда бутылочка с кетчупом стоит на столе, эти длинные молекулы окружены со всех сторон водой и слегка спутаны с другими такими же цепочками. Они удерживают кетчуп в виде плотной и вязкой массы. Но если бутылочку энергично потрясти, эти длинные молекулы немного распутываются (впрочем, они довольно быстро перепутываются снова). Когда в результате нескольких ударов по дну бутылочки кетчуп приходит в более быстрое движение, сцепления между длинными молекулами продолжают рваться и в какой-то момент распутывание длинных молекул становится быстрее, чем их повторное перепутывание. По достижении этой критической точки кетчуп перестает себя вести как твердое тело и подобно обычной жидкости свободно выливается из бутылочки.

Есть способ «обойти» эту проблему, но, учитывая, сколько времени тратят британцы на поглощение чипсов, политых кетчупом, остается лишь удивляться, почему они им так редко пользуются. Тактика переворачивания бутылочки с кетчупом вверх дном и поколачивания по нему ладонью не очень-то эффективна, поскольку кетчуп, который вы пытаетесь превратить в жидкость, сосредоточивается именно в том месте, по которому вы ударяете. Горлышко бутылки по-прежнему закупорено густой вязкой жижей, которая никуда не девается. Решение проблемы — разжижить кетчуп, закупоривающий горлышко бутылки, поэтому ее нужно держать под углом и наносить удары по горлышку. При этом количество извлеченного кетчупа будет довольно ограниченным, поскольку разжиженный кетчуп будет сосредоточен лишь у горлышка. Соседи за столом не пострадают от судорожных движений ваших локтей и возможного попадания брызг кетчупа на одежду, а чипсы не будут погребены под его чрезмерным количеством.

Время — немаловажный фактор в физическом мире, так как скорость протекания событий имеет существенное значение. Если вы делаете что-либо с удвоенной скоростью, то иногда достигаете того же результата за половину времени. Но зачастую получаете абсолютно другой результат. Это бывает очень полезно в повседневной жизни. Мы пользуемся этим свойством, управляя окружающим миром разными способами. В нашем распоряжении есть разные масштабы времени в том смысле, что те или иные события могут происходить за разное время. Фактор времени важен для кофе, голубей и высоких зданий, причем временные рамки, которые имеют значение, будут разными в каждом из этих случаев. Речь идет не только о более удобном выполнении тех или иных повседневных дел. Оказывается, жизнь возможна лишь потому, что физический мир в действительности никогда не поспевает за самим собой. Начнем, однако, с самого начала. А именно с существа, которое никогда ни за чем не поспевает, — талисмана для тех, кто всегда опаздывает.

* * *

Одним солнечным днем в Кембридже мне наконец пришлось признать, что улитка победила меня.

Наверное, нет смысла (да и времени) заниматься садоводством на последнем курсе университета, но при доме, в котором я проживала вместе с тремя подругами, был сад, а я обожаю ухаживать за деревьями. В редкие часы, свободные от учебы и занятий спортом, я с энтузиазмом уничтожала обширные заросли крапивы, обнаруживая по ходу дела небольшие островки ревеня и кусты замечательных, скрывавшихся в траве роз. Отец посмеивался надо мной («типичная полька!»), узнав, что я пытаюсь выращивать картошку, однако картошка занимала лишь часть моего импровизированного огорода. Интереснее всего было то, что в моем распоряжении оказалась небольшая теплица. Рассада выращивается сначала в ней, а весной высаживается в открытый грунт. В конце февраля я посеяла семена в лотки и стала ждать всходов.

Спустя какое-то время я обратила внимание, что ростки не появляются, зато появилось много улиток. Зайдя утром в теплицу с лейкой, чтобы полить ростки (которые, как я рассчитывала, должны были взойти к тому времени), я обнаружила вместо них в каждом лотке по самодовольному моллюску. Кроме улитки в лотке находилась голая земля и остатки изжеванных побегов. Подлые твари! Я решила, что не отступлюсь, и заново посеяла семена. Правда, на этот раз поставила каждый лоток на кирпич, чтобы затруднить улиткам доступ. Через две недели я застала в теплице прежнюю картину: ростки снова были уничтожены, а количество улиток в лотках значительно увеличилось. Я перепробовала несколько способов борьбы с улитками, однако они не принесли желаемого результата. Впрочем, у меня оставался еще один вариант. На этот раз я взяла пары пустых цветочных горшков, поместив сверху на каждую такую пару чайный поднос, перевернутый вверх дном; получилось нечто вроде большущих грибов со сдвоенной ножкой. Эти «ножки» я обильно смазала жиром и водрузила лотки для рассады на «шляпки» моих импровизированных «грибов». Заменив в лотках компост, я посеяла в них остатки семян, скрестила пальцы и вернулась к изучению физики конденсатов.

Ростки продержались целых три недели, после чего случилось то, что и должно было случиться: в один не самый прекрасный день я обнаружила вместо них жирную и довольную улитку. Я помню, как стояла тогда в теплице и безуспешно пыталась сообразить, как она проникла в лоток с рассадой. Были возможны лишь два варианта. Вариант №1: улитка вскарабкалась по внутренним стенкам теплицы до потолка, проползла по нему какое-то расстояние и свалилась вниз — прямо в лоток с рассадой. Это представлялось маловероятным, но, в конце концов, а вдруг? Вариант №2: улитка вскарабкалась по ножке скамейки, проползла по ней, взобралась по боковой поверхности цветочного горшка, проползла «вверх ногами» по нижней поверхности чайного подноса, перебралась через его край (умудрившись при этом не свалиться вниз), а затем проползла по верхней поверхности чайного подноса и наконец добралась до лотка с рассадой. В любом случае я должна была признать, что своим упорством улитка заслужила щедрое вознаграждение в виде молодых побегов рассады. Как же ей это удалось? В обоих вариантах предполагалось передвижение улитки «вверх ногами»; в этом случае она могла бы цепляться за поверхность, лишь приклеиваясь к ней собственной слизью. Если понаблюдать за перемещением улитки, то она движется не так, как гусеница: она не приподнимает себя над поверхностью, а просто приклеивается к ней слизью, умудряясь при этом как-то продвигаться вперед. Но слизь — это секретное оружие улитки, поскольку она ведет себя как кетчуп.

Если посмотреть, как улитка двигается, вы не увидите ничего особенного, так как наружный обод ее «ступни» просто перемещается с постоянной (очень медленной) скоростью. Все то, что по краям, происходит очень неспешно: слизь подобна кетчупу в неподвижном состоянии: то и другое имеет густую, липкую и очень малоподвижную консистенцию. Но снизу, посередине, мышечные волны проходят от спины улитки к ее голове. Каждая такая волна с большой силой проталкивает слизь вперед, заставляя ее достаточно быстро перемещаться. Как и кетчуп, слизь «разжижается при сдвиге», поэтому при ее перемещении с достаточно большой скоростью ее текучесть резко повышается. Улитка плывет поверх этой жидкой слизи за счет упоминавшихся выше мышечных волн, пользуясь ее пониженным сопротивлением. Улитке нужна не только жидкая, но и густая слизь, чтобы было от чего отталкиваться. Единственная причина, позволяющая улиткам (и слизням) перемещаться, состоит в том, что одна и та же слизь может вести себя либо как твердое тело, либо как жидкость, в зависимости от того, насколько быстро они заставляют ее перемещаться. Огромное преимущество такого метода заключается в том, что улитка не падает, ползая по потолку «вверх тормашками», потому что никогда не приподнимает себя над поверхностью.

Каким же образом улитке удается этот трюк? Слизь улитки представляет собой гель, состоящий из очень длинных молекул, называемых гликопротеинами, переплетенных между собой. Когда слизь улитки пребывает в состоянии покоя, между цепочками молекул образуются химические связи, поэтому слизь ведет себя как твердое тело. Но при достаточно сильном толчке эти связи внезапно разрываются, и все длинные молекулы могут легко скользить относительно друг друга, подобно нитям спагетти. Если такую слизь оставить на какое-то время в покое, химические связи между цепочками молекул восстановятся. Достаточно лишь секунды, чтобы вы снова получили гель.

Если бы тогда я знала все это, могла бы я защитить рассаду от улиток? Оказывается, защиту невозможно обеспечить, подбирая поверхность, к которой улитка не могла бы «приклеиться». Слизь приклеивается буквально ко всему, что вы могли бы найти у себя дома, — в том числе к поверхностям, которые специально выполнены как неклеющиеся. Эксперименты показали, что улитки способны «приклеиваться» даже к сверхгидрофобным поверхностям — то есть тем, на которых вода совершенно не задерживается. Это поистине замечательное свойство, которым, однако, могут восторгаться лишь те, кому не приходится защищать от улиток драгоценную рассаду.

Тот же механизм положен в основу так называемых нестекающих красителей. Когда такая краска пребывает в состоянии покоя, она имеет густую, тягучую и липкую консистенцию. Но если ткнуть в нее малярной кистью, она становится гораздо менее вязкой и ее можно легко наносить на нужную поверхность (например, на стену) тонким и ровным слоем. Но как только вы отнимете кисть, краска через какое-то время вновь станет очень вязкой и не будет стекать вниз по стене до полного высыхания.

* * *

Кетчуп и улитки — это, конечно, мелочь, но тот же физический принцип может иметь серьезные последствия в гораздо большем масштабе. Крайстчерч в Новой Зеландии был очаровательным и мирным городом, когда я посетила его в 2002 году. Почва здесь состоит из осадочных пород: слой на слое крошечных частиц, наносимых рекой Эйвон на протяжении миллионов лет. Это прелестное местечко, однако Крайстчерч, фигурально говоря, сидит на бомбе замедленного действия. В 12:51 по местному времени 22 февраля 2011 года примерно в 11 кило­метрах от центра города произошло землетрясение магнитудой 6,3 балла. Само по себе землетрясение стало немалым бедствием: людей подбрасывало высоко в воздух, а здания рушились, как карточные домики. Но осадочные породы, на которых построен город, были прочными, лишь пока пребывали в состоянии покоя. Мощное встряхивание превратило их, подобно кетчупу, в жидкость. Подробности на микроуровне отличаются — но лишь очень незначительно: вместо химических связей между длинными молекулярными цепочками вода проникает между крупицами песка и отдаляет их друг от друга, в результате чего они начинают течь. Но в целом физические процессы в том и другом случае одинаковы: если твердую почву быстро «расшевелить», она, как и жидкость, начинает течь.

Автомобиль — достаточно тяжелый объект, поэтому гравитация заставляет его оказывать серьезное давление на почву в том месте, где он стоит. Автомобили не проваливаются сквозь землю, поскольку она достаточно твердая, чтобы успешно сопротивляться их давлению. Но в Крайстчерче буквально за несколько минут это общее правило было нарушено. В тот день немало машин было припарковано на песчаных обочинах дорог, покоясь на хорошо спрессованной почве, на протяжении многих десятилетий пребывавшей в неподвижности. В результате землетрясения слои песка пришли в движение и начали очень быстро скользить относительно друг друга из стороны в сторону. Если бы скольжение происходило медленно, то автомобилям ничто не угрожало бы. Но все случилось настолько быстро, что вода проникла между крупиц песка и им просто не хватило времени, чтобы вернуться в прежнее положение до того, как им пришлось двигаться в другом направлении. Поэтому вместо слоев песка, неподвижно покоящихся друг на друге, почва внезапно превратилась в смесь песка и воды, не обладающую какой-либо фиксированной структурой. Автомобиль, припаркованный поверх такой смеси, неминуемо должен был провалиться в это месиво по мере продолжения подземных толчков. Но как только толчки прекратились, буквально за пару секунд крупицы песка несколько «уселись»: теперь их снизу поддерживала не вода, а другие крупицы песка. Почва вновь отвердела, однако к этому времени автомобиль уже на­половину ушел в песок.

Именно этот процесс стал виновником огромного материального ущерба, понесенного Крайстчерчем. Многие автомобили погрузились в ил, а здания обрушились, поскольку почва не выдержала их веса. Этот процесс известен как «разжижение». Чтобы произошло разжижение почвы, требуется мощная сила, такая как землетрясение, приводящая осадочные породы в достаточно быстрое движение. Но если мягкая песчаная почва приходит в достаточно быстрое движение, ее прочность тает столь же быстро, как утренний туман. Кстати, именно поэтому, передвигаясь по зыбучим пескам, рекомендуется вести себя как можно осторожнее и не совершать резких движений. Если же вы начнете сильно топать ногами, зыбучие пески станут вести себя как жидкость и вы просто утонете в них. Двигайтесь по возможности медленнее, и у вас появится шанс остаться в живых. В этом случае очень важен фактор времени. Изменяя временные рамки для того или иного действия, вы зачастую изменяете его исход.

Мы часто говорим о каком-то событии, что оно «произошло так быстро, что я и глазом не успел моргнуть». На моргание глазом требуется примерно треть секунды, а среднее время реакции человека составляет приблизительно четверть секунды. Кому-то может показаться, что это довольно оперативно, однако задумайтесь над тем, что должно произойти за это время, если вы, например, проходите стандартный тест на реагирование? Когда лучи света попадают на сетчатку вашего глаза, специализированные светочувствительные молекулы скручиваются, и это запускает цепочку химических реакций, которые вызывают небольшой электрический ток. Этот электрический сигнал проходит по оптическому нерву и попадает в мозг, заставляя его клетки посылать сигналы друг другу, в результате чего вырабатывается понимание, что произошло нечто такое, что требует той или иной реакции. Затем электрические сигналы пытаются добраться до мышц; при этом их движение замедляется, когда они преодолевают зазоры между нервными клетками путем химической диффузии. Когда приказ мышцам сократиться получен, молекулы в мышечных волокнах начинают цепляться друг за друга, пока ваши пальцы не нажмут нужную кнопку. Учтите, что вся эта цепочка действий совершается только для того, чтобы вы могли сделать самую простую вещь!

За нашу пресловутую сложность приходится платить скоростью. Люди — достаточно медлительные создания, неспешно пробирающиеся через физический мир, поскольку даже при выполнении простейших действий нам приходится преодолевать множество разных стадий. Пока мы продираемся сквозь чащобу, многие более простые физические системы справляются с решением множества других задач. Но эти простые и быстрые процессы протекают настолько стремительно, что мы их просто не замечаем. Вы можете получить некоторое представление об этом мире, опустив в кофе капельку молока с довольно большой высоты. В лучшем случае вы лишь успеете заметить, как она, упав в кофе, слегка отскочит от его поверхности, а затем снова в него упадет. Но это уже будет на грани человеческих возможностей: развитие какого-либо более быстрого процесса вам не удастся заметить. Мой научный руководитель любил говорить, что если бы мы могли реагировать быстрее, то, пока капля молока совершает падение в кофе, мы могли бы передумать его пить с молоком и поймали бы эту каплю на лету. Впрочем, лично я полагаю, что для поимки капли молока нам следовало бы прибегнуть к помощи чего-нибудь более маленького и шустрого, чем человек.

Высказывание моего научного руководителя заставило меня задуматься о том, как много мы упускаем в жизни из-за своей медлительности. Как было бы здорово, если бы мы могли собственными глазами видеть все, что делается буквально у нас под носом, каким бы крошечным оно ни было и с какой бы скоростью ни происходило. Поэтому я и выбрала научное направление, позволяющее заниматься высокоскоростной фотографией — технологией, с помощью которой можно наблюдать процессы, невидимые из-за своей стремительности. Но фотокамеры такого рода доступны лишь человеку. А что делать тем, у кого их нет — например, голубям?

В 1977 году предприимчивый ученый по имени Барри Фрост убедил голубя вступить на беговую дорожку. Это один из тех экспериментов, за которые в наши дни вручили бы, наверное, Шнобелевскую премию. Он мог бы служить идеальным примером научного исследования, которое сначала заставляет вас покатываться со смеху, а затем задуматься. Пока лента беговой дорожки медленно двигалась назад, птице, чтобы оставаться на месте, приходилось продвигаться вперед. Голубь довольно быстро освоился с таким темпом движения ленты, однако кое-что в его поведении казалось необычным. Если вам когда-либо приходилось, сидя на скамейке в парке, наблюдать за голубями, снующими туда-сюда в поисках съедобных крошек, то вы, скорее всего, замечали, что во время ходьбы они кивают головами вперед и назад. Мне всегда казалось, что такое болтание головами должно «напрягать» голубей, заставляя их совершать эти бесполезные и утомительные телодвижения. Но голубь на беговой дорожке не кивал головой, и это послужило для Барри указанием на что-то очень важное. Очевидно, что кивание головой вовсе не непременный атрибут «походки» голубя, поэтому не имеет никакого отношения к физике его передвижения. Но зато имеет непосредственное отношение к тому, что голубь видит. Пребывая на ленте беговой дорожки, голубь как бы продвигался вперед, но окружающая обстановка при этом не менялась. Если голубь держал голову неподвижно, он все время видел вокруг себя одну и ту же отчетливую картину. Но когда голубь движется по земле, окружающая обстановка непрерывно меняется. Оказывается, эти птицы не способны «быстро» фиксировать изменения картинки, чтобы воспринимать их. Таким образом, их «кивания» головой вовсе не кивания. Они наклоняют голову вперед, а потом делают шаг, что позволяет их телу «догнать» голову; затем снова наклоняют голову вперед. Во время совершения шага голова остается, по сути, на месте, поэтому у голубя появляется больше времени, чтобы оценить ситуацию, прежде чем сделать следующий шаг. Голубь делает один «фотоснимок» окружающей обстановки, а затем вытягивает голову вперед, чтобы сделать следующий «фотоснимок». Если понаблюдать за голубем достаточно долго, то можно удостовериться в правильности описанной мной модели (правда, для этого вам придется запастись терпением, поскольку голуби довольно быстрые). Похоже, никто точно не знает, почему одни птицы столь медленно обрабатывают визуальную информацию, что им приходится кивать головами, тогда как другие в таком кивании не нуждаются. Но «медлительные» птицы не поспевают за окружающим их миром, и им приходится разбивать его на бесконечный ряд стоп-кадров.

Зрение человека поспевает за темпом его ходьбы, но, если вам нужно рассмотреть что-то, находящееся очень близко, вы обычно испытываете непреодолимое желание остановиться на несколько секунд и получше разглядеть искомый предмет. Во время движения наше зрение не успевает обрабатывать информацию окружающего мира достаточно быстро, чтобы уловить все подробности. Фактически людям приходится решать ту же проблему, что и голубям (правда, без кивания головой), и наш мозг «сшивает» картину окружающего мира так, что мы даже не замечаем этого. Мы быстро шарим взглядом по окружающим объектам, шаг за шагом добавляя визуальную информацию к картине, формирующейся в нашем сознании. Если вы взглянете на себя в зеркало и посмотрите прямо на отражение в нем одного из ваших глаз, то заметите, что никогда не видите движений своих глаз, хотя человек, стоящий рядом с вами, увидит, как они бегают из стороны в сторону. Ваш мозг соткал воедино ваше восприятие сцены таким образом, что вы никогда не замечаете «швов» между отдельными фрагментами этой картины, хотя эти швы возникают постоянно.

Все дело в том, что мы действуем чуть-чуть быстрее голубя. Правда, из этого следует, что в окружающем нас мире огромное множество систем, гораздо более быстрых, чем мы. Мы привыкли жить в довольно ограниченном временном диапазоне, поэтому можем отслеживать лишь процессы длительностью от одной секунды до нескольких лет. Однако диапазон масштабов времени, в которых происходят многие другие процессы, значительно шире. Без помощи науки мы бы даже не подозревали о существовании процессов, длящихся несколько миллисекунд или несколько тысячелетий. Мы воспринимаем лишь то, что происходит на очень небольшом отрезке в середине этого колоссального диапазона. Быстродействие современных компьютеров поражает воображение. Именно поэтому они кажутся нам такими загадочными. Они успевают решать сложнейшие задачи за столь короткие промежутки времени, что мы полагаем, будто компьютер вовсе не затрачивает время на их решение. Между тем быстродействие компьютеров постоянно повышается, хотя мы не всегда это замечаем: действительно, какая разница, решает компьютер некую задачу за несколько милли- или микросекунд, — мы ведь не замечаем ни тот, ни другой отрезок времени!

То, что вы видите, зависит от масштаба времени, в котором действует ваше зрение. Чтобы уяснить контраст, попробуйте сравнить очень быстрое и крайне неповоротливое: дождевую каплю и гору.

Крупной дождевой капле требуется одна секунда, чтобы пролететь 6 метров, что соответствует высоте двухэтажного здания. Что с ней происходит за секунду? Дождевая капля — это совокупность сталкивающихся между собой молекул воды, каждая из которых прочно сцеплена с остальными членами группы, но непрерывно меняет свои предпочтения внутри нее. Как говорилось в предыдущей главе, молекула воды состоит из атома кислорода, связанного с двумя атомами водорода, по одному с каждой стороны; эта троица образует структуру, напоминающую букву V. Молекула воды может сгибаться и растягиваться по мере перемещения (если точнее, прыгания) по слабо связанной сети, образованной миллиардами других таких же молекул. За одну секунду она может совершить 200 миллиардов прыжков. Если наша молекула достигнет края капли, она обнаружит, что за ее пределами нет ничего такого, что бы могло притягивать ее с той же силой, с какой молекулы, содержащиеся внутри капли, притягивают ее обратно к центру. У того, как капли воды изображаются на картинках, мало общего с действительностью: дождевые капли бывают разных форм, но ни одна из этих форм не имеет остроконечных точек. Любой остроконечный край тотчас же сгладится, поскольку отдельные молекулы не могут противостоять притяжению со стороны основной массы молекул. Но, несмотря на силу этого притяжения, идеальная форма не достигается никогда. В ответ на воздействие со стороны воздуха происходит постоянное перегруппирование молекул в капле. Капля может принять расплюснутую форму, после этого снова стянуться в более компактную форму, может «перелиться через край», вытянуться в длину и стать похожей на мяч для регби, а затем снова стянуться. В течение одной секунды может произойти 170 таких превращений. И обусловлены они воздействием внешних сил, которые пытаются разорвать каплю в клочья, и неистовым притяжением со стороны остальных молекул в капле, стремящихся сохранить ее. Иногда дождевая капля превращается в некое подобие блина, который растягивается и принимает форму тонкого зонтика — и в конце концов рассыпается на множество крошечных капелек. Все это происходит менее чем за одну секунду. Мы не можем этого видеть, поскольку такое множество трансформаций совершается буквально в мгновение ока. Затем дождевая капля разбивается о скалу — и происходит смена масштаба времени.

Это гранитная скала, и на памяти человека она остается такой же, как и несколько десятков лет тому назад. Но четыреста миллионов лет назад в Южном полушарии бушевал гигантский вулкан и магма, извергающаяся из него, постепенно, в течение миллионов лет, застывала, превращаясь в твердые вулканические породы — кристаллы разных типов, — становясь в конце концов чрезвычайно прочным гранитом. Проходило время, и твердый шершавый гранит постепенно обтачивался и полировался ветром, снегом и дождями. Пока этот гигантский вулкан разрушался, он не стоял неподвижно на месте. С момента колоссального взрыва, который прекратил существование вулкана, этот кусок континента медленно уползал на север. Тем временем внутренние механизмы планеты сдвигали и раздвигали эти покореженные участки земной поверхности, приходили и уходили одна за другой геологические эпохи, возникали одни виды живых существ, а затем сменялись другими. Сегодня, спустя десятую долю суммарного времени существования Земли, все, что осталось от некогда величественного вулкана, — жалкие остатки его вывороченных наизнанку внутренностей. Сейчас он называется Бен-Невис, самая высокая (1343 метра) вершина Британских островов.

Глядя на гору или дождевую каплю, мы замечаем очень мало изменений. Но это объясняется исключительно нашим собственным восприятием времени, а не тем, на что мы смотрим.

Мы воспринимаем лишь очень небольшую, примерно среднюю часть огромного диапазона масштабов времени, и нам подчас очень нелегко относиться всерьез к остальным отрезкам этого диапазона. И дело не только в разнице между сейчас и после; это головокружение, которое мы испытываем, пытаясь уяснить, что же на самом деле представляет собой сейчас. Это может быть миллионная доля секунды, а может быть и год. Ваша точка зрения может в корне меняться, когда вы рассматриваете невероятно быструю цепь событий или, наоборот, глобальные медленные трансформации. Однако разница между ними не в том, как происходят изменения, а в самом темпе этих изменений. Сколько требуется времени, чтобы перейти из этого состояния в то? И в чем именно заключается то состояние? Речь идет о состоянии равновесия. Ничто, будучи предоставленным само себе, никогда не будет пытаться изменить это конечное состояние, поскольку у него нет для этого причин. Точнее говоря, нет сторонних сил, которые бы к ним привели, поскольку все эти силы сбалансированы. У физического мира есть лишь один «пункт назначения» — равновесие.

Вообразите ворота шлюза в каком-нибудь канале. Они были придуманы в силу самой оригинальной из причин: чтобы речные суда могли «взби­раться на холмы». Механизм шлюзования обеспечивается тем, что суда могут плыть против течения, но только при условии, что оно очень медленное. Ни одно речное судно не сможет взобраться вверх по водопаду, но с помощью системы шлюзов может «подниматься на холмы». Шлюз состоит из двух ворот, образующих в канале глухую пробку, создавая между двумя воротами изолированный пруд. По одну сторону шлюза уровень воды высокий, по другую — низкий. Любое судно, движущееся вверх или вниз по каналу, обязательно проходит через шлюз. Допустим, лодке на нижнем уровне нужно плыть вверх по каналу. Вода между воротами шлюза вначале находится на той же высоте, что и нижний уровень в канале. Нижние ворота открываются, и наша лодка заходит в шлюз, после чего нижние ворота закрываются. Теперь открываются — а точнее, лишь слегка приоткрываются — верхние ворота, и вода начинает поступать в шлюз. Это очень важный момент. Когда верхние ворота были закрыты, у воды над шлюзом не было причин куда-либо течь. Она располагалась на самом низком из возможных положений, пребывая в равновесии. При закрытых верхних воротах ей некуда было деваться, то положение, в котором она находилась, было для нее самым удобным, и она могла бы оставаться в нем бесконечно долго. Но как только верхние ворота приоткрываются и для этой воды создается путь, по которому она может соединиться с прудом, заключенным между воротами шлюза, баланс нарушается. Гравитация все время тянет воду вниз. Приоткрыв верхние ворота, мы создали для воды возможность реагирования на действие силы земного притяжения и перехода на еще более низкий уровень. Таким образом, вода затекает внутрь шлюза до тех пор, пока уровень воды в нем не сравняется с уровнем воды, находящейся выше шлюза. От нас требуется лишь создать путь к новому состоянию равновесия. Но теперь лодка находится на той же высоте, что и верхняя часть канала, и как только ворота будут полностью открыты, она сможет продвинуться вперед на своем пути вверх по течению — по очень медленному течению канала. Позади нее, как только ворота закроются, все опять будет в равновесии. Вода между шлюзами сможет оставаться здесь до бесконечности, так как лучшего для себя положения ей не найти. Все силы сбалансированы. Затем в какой-то момент в шлюз войдет еще какая-нибудь лодка, плывущая в противоположную сторону, то есть по течению; кто-нибудь откроет нижние ворота, и вода начнет поступать в ту часть канала, которая расположена ниже по течению, где она продолжит движение к новому состоянию равновесия.

Вывод из вышесказанного заключается в том, что управление позицией равновесия позволяет решать очень многие задачи в нашем мире. Вещи, предоставленные сами себе, меняются до тех пор, пока в них все не сбалансируется, а достигнув этого состояния, остаются в нем до тех пор, пока те или иные внешние силы не выведут их из него. Иными словами, целенаправленное изменение состояния равновесия — путь к ус­пеху. То есть, имея возможность менять правила в ходе игры, вы сможете изменять ход тех или иных процессов в нужном для вас направлении и запускать их именно тогда, когда считаете нужным.

Представление о том, что физический мир всегда будет двигаться в направлении равновесия — то есть горячая и холодная жидкости будут смешиваться, пока не достигнут единой температуры, или воздушный шарик будет расширяться, пока давление внутри него и снаружи не станет одинаковым, — связано с убеждением, что время течет только в строго определенном направлении. Мир не может двигаться вспять. Вода никогда не будет сама по себе течь через шлюз от более низкого уровня к более высокому. Это означает, что вы всегда можете сказать, какое именно направление имеется в виду, когда речь идет о движении той или иной системы вперед: для этого достаточно понять, какое ее состояние будет состоянием равновесия. В то время как для осуществления изменений за счет применения грубой силы необходимы значительные затраты энергии, для воздействия на скорость «соскальзывания» системы в состояние равновесия обычно хватает минимальных усилий. К тому же часто это чрезвычайно полезно.

Гувер-Дам (плотина Гувера) на реке Колорадо в США — одно из крупнейших достижений гражданского строительства прошлого века. Подъезжая к нему со стороны Лас-Вегаса на автомобиле, вы движетесь по довольно пустынной скалистой местности, где кажется почти невероятным встретить большое сооружение. Единственные подсказки о том, что где-то поблизости есть нечто необычное, исходят от отблесков солнца на голубой воде, время от времени возникающих где-то очень далеко посреди пустыни. А потом вы поворачиваете, и внезапно перед вами предстает исполинское бетонное сооружение (общим весом около 7,5 миллиона тонн), построенное посреди сурового американского ландшафта.

Примерно сто лет тому назад река Колорадо безмятежно несла свои воды по руслу узкого каньона. Она берет свое начало в Скалистых горах, продолжает путь через обширные равнины, двигаясь по каскаду долин в юго-западном направлении, и впадает в Калифорнийский залив. Проблема для фермеров и жителей городов, расположенных в нижнем течении реки, заключалась вовсе не в нехватке воды — она-то как раз была в изобилии, — а в распределении ее поступления во времени. Весной ужасные наводнения смывали буквально все на своем пути, тогда как осенью река превращалась в хилый ручеек, воды в котором было явно недостаточно для удовлетворения нужд постоянно увеличивающегося населения. Река всегда брала свое начало в одних и тех же горах, текла через одни и те же равнины и впадала в один и тот же Калифорнийский залив. Однако фермеров и городских жителей не устраивал «график поступления воды»: они хотели, чтобы он был управляемым и, в частности, чтобы в какие-то моменты ее поступление можно было бы вообще прекращать. В итоге было решено строить плотину.

Капля воды, совершившая долгое путешествие со Скалистых гор вниз через Большой каньон, теперь попадает в озеро Мид — гигантское водохранилище, образовавшееся позади дамбы. Прежде чем добраться до Калифорнийского залива, капле придется немного задержаться в озере. Дело в том, что избыток воды теперь накапливается в водохранилище, расположенном на границе штатов Невада и Аризона, в среднем течении реки Колорадо — то есть до того как ее воды достигнут Калифорнии. До 1930 года капле воды, покинувшей Большой каньон, приходилось опускаться примерно на 150 метров, прежде чем она достигнет того места, где сейчас находится дно озера Мид. Но после 1935 года, когда дамба была построена, такая же капля воды, достигшая озера Мид, теперь оказывается на 150 метров выше дна долины в этом месте. Самое удивительное, что для удержания воды на этом уровне не нужно затрачивать энергию — достаточно было лишь воздвигнуть надежное препятствие, которое не позволяло бы воде бесконтрольно продолжать течение. В данном случае мы имеем дело не с чем иным, как с рукотворным состоянием равновесия.

Разумеется, прежде всего люди должны были решить, что река Колорадо больше не будет самовольно распоряжаться своими водами, и поставить их под контроль человека путем создания дамбы, регулируя с ее помощью количество воды, попадающей в нижнее течение реки. После возведения плотины Гувера наводнения уже не угрожают населению Калифорнии, как не угрожает и полное высыхание реки Колорадо: теперь вода течет по ее руслу непрерывно. У такого решения проблемы есть еще одно важное преимущество: вода, пропускаемая через плотину, вращает турбины электрогенераторов, установленных на гидроэлектро­станции. В результате плотина, помимо всего прочего, становится источником достаточно дешевой электроэнергии, что позволяет сотням тысяч людей полноценно жить и работать в безводных пустынях американского юго-запада.

Плотина Гувера строилась для того, чтобы человек мог эффективно регулировать поток воды, однако использованный при этом принцип распространяется не только на воду. Каждый раз, когда нужно запастись энергией, от нас требуется создать пару-тройку препятствий на ее пути «из пункта A в пункт B». Физический мир всегда стремится к состоянию равновесия, но иногда нам удается искусственно создать ближайшую точку равновесия для использования в собственных целях. Контролируя такой поток, мы можем также контролировать моменты высвобождения энергии. А затем добиваемся, чтобы она совершала какое-то полезное для нас действие. Мы не создаем энергию и не уничтожаем ее, а всего лишь направляем в нужное русло и регулируем заслонки на ее пути.

Подобно многим цивилизациям до нас мы сталкиваемся с проблемой ограниченных ресурсов. Ископаемые виды топлива, такие как нефть и (в определенной степени) уголь, сформировались из растений, которые существовали благодаря использованию энергии Солнца. Эти ископаемые энергоресурсы — энергетический эквивалент плотин, форма, которая запасает энергию в состоянии временного равновесия. Когда мы добываем их из земных недр и приступаем к использованию запасенной в них энергии, мы, по сути, самостоятельно выбираем момент ее высвобождения, создавая маршрут к другому возможному состоянию равновесия посредством сжигания и химического разложения на двуокись углерода и воду. Проблема, стоящая перед нами, заключается в том, что у нас есть лишь весьма ограниченное количество ресурсов «в верхнем течении» (то есть «вверх по потоку») в форме ископаемых видов топлива и за время жизни буквально нескольких поколений мы высвободили энергию, на накопление которой ушли миллионы лет. Запасы ископаемых энергоресурсов на планете подходят к концу, и у нас нет нескольких миллионов лет, чтобы их восполнить. Возобновляемая энергия, как и гидроэлектроэнергия, вырабатываемая на плотине Гувера, является производной энергии Солнца, пронизывающей сегодня наш мир. Проблема, с которой сталкивается наша цивилизация, неизменна: научиться эффективно останавливать и запускать поток энергии, чтобы использовать нужное ее количество, не нанося при этом заметного ущерба окружающему миру.

Включив в очередной раз какое-либо устройство, питающееся от батареи или аккумулятора, вы, по сути, выбираете момент высвобождения энергии из соответствующего источника, открывая электрический шлюз и направляя энергию по электрическим цепям данного устройства, с помощью которого хотите совершить некое полезное действие. В конечном счете эта энергия превратится в тепло. Именно к этому в итоге приводит каждое нажатие кнопки включения на любом из таких устройств. Все они представляют собой привратников, контролирующих моменты пуска и остановки потока, неизменно направляющегося в сторону равновесия. Если мы предоставим этому потоку возможность беспрепятственного прохождения, то получим один результат; если же замедлим его прохождение тем или иным способом (например, разрешим ему проходить лишь в моменты, когда это нужно нам), то результат будет совершенно иным. Время играет здесь очень важную роль, поскольку также течет только в одну сторону; выбирая момент, когда поток движется в сторону равновесия, а также скорость этого движения, мы обеспечиваем себе необычайно эффективный контроль над окружающим миром. Впрочем, далеко не всегда система, достигнув равновесия, останавливается. Если при приближении к точке равновесия она движется очень быстро, то может ее просто проскочить. Это открывает дверь для совершенно нового множества явлений, а также сопутствующих им проблем.

Обеденный перерыв, во время которого я успеваю не торопясь выпить чашку чая, — важная частью моего рабочего дня. Но недавно я заметила, что даже эта чашка заставляет меня «сбавлять обороты», причем дело здесь не только в том, что для того чтобы вскипел чайник, требуется какое-то время. Мой кабинет в University College London находится на одном конце длинного коридора, а комната для приема пищи — на другом. Путешествие с полной чашкой чая в руке обратно в кабинет происходит отнюдь не в том темпе, в котором я привыкла работать (привычный мой темп можно было бы описать одним словом: гонка). Дело не только в том, что я держу в руке полную чашку чая, — проблема в колебаниях поверхности жидкости. С каждым шагом они усиливаются. Обычный человек в таких случаях принимает вполне естественное решение: двигаться медленнее. Но любой уважающий себя физик должен сперва провести ряд экспериментов, чтобы убедиться, что указанное выше решение действительно единственно правильное. Вы никогда не знаете, какие открытия поджидают вас на этом пути. Короче говоря, я не собиралась сдаваться без боя.

Налив воду в чашку, поставьте ее на ровную поверхность и слегка подтолкните: вода начнет колебаться из стороны в сторону. Что же происходит на самом деле? После того как вы слегка подтолкнули чашку, она немного сдвигается, однако вода в ней поначалу остается на месте, но «накапливается» с той стороны чашки, которую вы подтолкнули. В результате уровень воды с одной стороны чашки оказывается выше, чем с другой. Гравитация тянет вниз воду с той стороны, где уровень воды выше, а вода с другой стороны подталкивается вверх. Через какое-то мгновение поверхность воды в чашке выравнивается, но у воды нет никакой причины останавливаться. Она продолжает движение, вследствие чего ее уровень с другой стороны чашки (назовем ее «второй» стороной) начинает повышаться. Гравитация тянет вниз воду с этой стороны, но, чтобы полностью ее остановить, требуется какое-то время. К моменту, когда вода остановится, ее уровень на «второй» стороне чашки будет выше, чем на противоположной, «первой» стороне; затем описанный выше цикл повторится снова. Если чашка с водой стоит на ровной горизонтальной поверхности, то колебания воды постепенно затухнут, то есть будет достигнуто состояние равновесия. Другое дело, если вы движетесь с чашкой в руке.

Цикл — вот корень проблемы. Если вы проведете тест с толканием чашек разных размеров, то увидите, что во всех случаях колебания поверхности жидкости происходят одинаково, но в узкой чашке они быстрее, чем в широкой. Обычно в полной чашке число колебаний поверхности жидкости, совершаемых за одну секунду (их частота), не меняется, сколь бы сильным ни был первоначальный толчок. Но количество колебаний зависит от чашки как таковой, причем самым главным параметром является ее радиус.

Существует противоречие между силой тяжести, направленной вниз и приводящей жидкость в состояние равновесия, и импульсом жидкости, который достигает максимальной величины, когда она переходит через точку равновесия. В большей чашке содержится больший объем жидкости, поэтому размах колебаний увеличивается, а каждый цикл продолжительнее. Особая частота колебаний, присущая каждой чашке, называется собственной частотой. Собственная частота — это частота колебаний поверхности жидкости в чашке, если эту чашку толкнуть, а затем позволить ей самостоятельно вернуться в состояние равновесия.

Я затратила немало времени на эксперименты с чашками у себя в кабинете. У меня есть одна маленькая чашка диаметром всего 4 санти­метра с изображением Ньютона на боковой поверхности. Вода в ней совершает примерно пять колебаний в секунду. Диаметр самой большой моей чашки 10 сантиметров. Вода в ней совершает примерно три колебания в секунду. Эта большая чашка — старая, дешевая и уродливая. Она никогда мне не нравилась, но я не выбрасываю ее потому, что иногда мне приходится запасаться большой порцией чая.

Когда я выхожу из комнаты для приема пищи с полной чашкой чая в руке и делаю пару быстрых шагов по коридору, я инициирую колебательный процесс в чашке. Чтобы добраться до кабинета, не расплескав по пути чай, мне нужно позаботиться о том, чтобы колебательный процесс не усиливался. В этом суть проблемы. Когда я иду по коридору, чашка с чаем слегка колеблется у меня в руке — и с этим ничего не поделаешь. Если частота этих колебаний совпадает с собственной частотой колебаний чая в чашке, то их амплитуда будет нарастать. Когда вы раскачиваете ребенка на качелях, вы подталкиваете качели в определенном ритме, который совпадает с ритмом раскачивания качелей, в результате чего размах раскачиваний увеличивается. То же происходит и с чаем. Это явление называется резонанс. Чем ближе внешнее подталкивание к собственной частоте колебаний чая в чашке, тем выше вероятность, что чай прольется на пол. Проблема всех людей, испытывающих жажду, заключается в излишней спешке и движении в ритме, близком к собственной частоте колебаний воды в «типичной» чашке. Чем быстрее вы шагаете, тем ближе ритм вашей ходьбы к собственной частоте колебаний воды в чашке. Короче говоря, эти соображения привели меня к мысли, что нужно просто уменьшить скорость ходьбы.

Однако поначалу такое решение показалось мне далеким от оптимального. А что, если я воспользуюсь маленькой чашечкой? Чай в ней будет колебаться слишком быстро даже для присущего мне быстрого темпа ходьбы. Поэтому вряд ли можно ожидать, что в такой чашке колебание чая при ходьбе усилится и он прольется на пол. Однако микроскопической порции чая, которую может вместить такая чашка, для меня явно недостаточно. Если же я воспользуюсь большей чашкой, то ритм моей ходьбы окажется очень близким к собственной частоте колебаний жидкости в чашке и чай прольется на пол, едва я успею сделать несколько шагов по коридору. Следовательно, единственно правильное решение — снизить скорости ходьбы, чтобы частота вызванных ею колебаний чашки оказалась гораздо меньше собственной частоты колебаний чая в чашке. Я чувствую себя намного увереннее, проверив все самостоятельно, но в данном случае урок для меня заключался в том, что даже при наличии знаний и находчивости невозможно преодолеть зависимость физических явлений от фактора времени.

Всему, что раскачивается (колеблется, осциллирует), присуща собственная частота колебаний. Поправки вносит конкретная ситуация, а также связь между размером силы, обусловливающей возвращение в состояние равновесия, и скоростью, с которой оно происходит. Ребенок, раскачивающийся на качели, — один из примеров, наряду с маятником, метрономом, креслом-качалкой и камертоном. Когда вы катите тележку с покупками в супермаркете и она начинает раскачиваться в темпе, не соответствующем темпу вашей ходьбы, это объясняется лишь тем, что она раскачивается с собственной частотой колебаний. Большие колокола издают звуки низкой частоты, потому что, исходя из их размеров, им требуется больше времени на сдавливание, распрямление и повторное сдавливание. Именно этим обусловлено низкочастотное звучание таких колоколов. Мы получаем огромный объем информации о размерах объектов, прислушиваясь к их звучанию, в первую очередь к тональности испускаемых ими звуков.

Эти особые масштабы времени очень важны для нас, так как мы можем их использовать для управления теми или иными процессами в физическом мире. Если мы не хотим, чтобы амплитуда колебаний нарастала, нам нужно позаботиться о том, чтобы «подталкивание» системы не происходило на ее собственной частоте. Это похоже на мои эксперименты с чаем. Но если мы хотим, чтобы колебания продолжались без особых усилий с нашей стороны, то «подталкивание» системы должно происходить на ее собственной частоте. Этим пользуются не только люди, но и собаки.

Поза Инки выражает максимальную сосредоточенность и готовность. Все ее внимание сконцентрировано на теннисном мячике; она похожа на спринтера, ожидающего выстрела стартового пистолета. Когда я поднимаю вверх руку с мячиком, Инка напрягается, а когда бросаю мячик далеко вперед, она срывается с места и стремглав мчится за ним, вызывая в моем воображении картину сгустка безграничной энергии и энтузиазма. Пока собака несется по лужайке за мячиком, я продолжаю беседовать с ее хозяином, Кэмпбеллом. Инка не приносит брошенный мною мячик, потому что держит в зубах второй теннисный мячик, но, под­бежав к нему, усаживается и «охраняет» его, пока мы с Кэмпбеллом не подойдем и не швырнем этот мячик еще дальше. После получаса таких пробежек Инка усаживается, энергично виляя хвостом по траве. Она часто дышит, свесив язык набок, и внимательно наблюдает за нами.

Я присаживаюсь на корточки и глажу ее по спине. От всей этой беготни собаке стало жарко. Разумеется, она не вспотела (собаки вообще не потеют), но ей хочется избавиться от лишнего тепла. Наблюдая за учащенным дыханием собаки, вам может показаться, что это ей дается нелегко. Создается впечатление, что она тратит при этом много энергии, что приводит к дополнительному перегреву. Парадокс, не правда ли! Инка с благодарностью принимает мои поглаживания, из ее раскрытой пасти свисает тонкая нитка слюны. После обычной утренней пробежки мне требуется какое-то время, чтобы восстановить нормальный ритм дыхания, но Инка мгновенно прекращает учащенно дышать. Она внимательно смотрит на меня своими большими карими глазами, и я задумываюсь, сколько еще времени ей нужно, чтобы восстановить силы и приступить к новому раунду погони за теннисными мячиками.

Самый эффективный способ избавиться от перегрева сводится к испарению воды. Именно поэтому мы потеем. На превращение жидкой воды в газ уходит очень много энергии, после чего газ улетучивается, унося с собой эту энергию. Поскольку собаки не потеют, они не вырабатывают на своей шкуре воду, которая могла бы испаряться, но в их носовом ходе имеется достаточно воды. Учащенное дыхание — не что иное, как проталкивание как можно большего количества воздуха сквозь влажный носовой ход, что позволяет максимально быстро избавиться от лишнего тепла. Словно решив продемонстрировать нам правильность такого вывода, Инка снова начинает учащенно дышать. Мне удается подсчитать, что каждую секунду она совершает примерно три вдоха-выдоха. Может сложиться впечатление, что это отнимает у нее немало сил, хотя на самом деле это не так. Легкие собаки ведут себя как генератор колебаний. Три вдоха-выдоха за секунду — самая эффективная для нее частота дыхания, так как соответствует собственной частоте легких собаки. Когда собака делает вдох, эластичные стенки ее легких расширяются, а спустя мгновение сжимаются с силой, достаточной для повторения дыхательного цикла. В тот момент, когда легкие возвращаются к нормальному, нерастянутому размеру, собака прилагает лишь минимальное усилие, чтобы инициировать очередной цикл их расширения-сжатия. Обратная сторона такого дыхательного процесса заключается в том, что, когда собака дышит так часто, она не успевает замещать воздух в глубине легких, поэтому в процессе дыхания фактически не успевает вдыхать необходимое количество дополнительного кислорода. (Именно поэтому собака не дышит так все время.) Но когда собаке нужно избавиться от лишнего тепла, она готова поступиться каким-то количеством нужного ей кислорода. Расширяя и сжимая легкие с наиболее подходящей для них час­тотой, собака прогоняет через свой нос максимально возможный для себя объем воздуха, прилагая для этого минимальные усилия. Таким образом, учащенное дыхание вырабатывает очень незначительное количество тепла по сравнению с теплом, которое собака теряет в процессе такого дыхания. Собака дышит через нос, однако ее пасть при этом широко открыта, потому что слюноотделение также охлаждает собаку. Испарение слюны помогает ей избавиться от какой-то части тепловой энергии. Учащенное дыхание снова останавливается, и Инка поглядывает на теннисный мячик. Достаточно лишь одного вопросительного взгляда на Кэмпбелла, чтобы игра возобновилась.

Собственная частота того или иного объекта зависит от его формы и материала, из которого он изготовлен. Но самый важный фактор — размер. Вот почему маленькие собачки дышат еще быстрее. Их легкие очень малы; соответственно, частота их расширения-сжатия существенно выше. Учащенное дыхание — очень эффективный способ избавления от лишнего тепла, если ваши размеры невелики. Но эффективность снижается по мере их увеличения. Возможно, именно этим объясняется то обстоятельство, что более крупные животные — в том числе люди — потеют (особенно если их тело не покрыто шерстью).

Каждому объекту присуща собственная частота, причем иногда таких частот может быть несколько, если возможны разные картины вибрации. Когда объекты увеличиваются в размерах, эти частоты обычно снижаются. Чтобы привести в движение очень массивный объект, требуется толчок значительной силы, но даже здание может вибрировать — правда, с очень-очень низкой частотой. Вообще говоря, здание может вести себя как метроном — наподобие маятника, перевернутого вверх тормашками (фундамент зафиксирован, а верхушка колеблется из стороны в сторону). Вверху скорость ветра выше, чем внизу, и этого вполне достаточно, чтобы придать высокому и узкому зданию нечто вроде толчка, который вызовет раскачивание здания с его собственной частотой. Если вам приходилось в очень ветреный день бывать на верхних этажах небоскребов, то вы, наверное, ощущали эти раскачивания. Один цикл такого раскачивания может занимать пару секунд. Те, кто в такие моменты находится внутри высотных зданий, испытывают не самые приятные ощущения, поэтому архитекторам приходится искать способы сократить раскачивания. Полностью избавиться от них невозможно, но можно по крайней мере изменить собственную частоту и гибкость зданий, чтобы сделать раскачивания менее заметными. Если вы вдруг почувствуете, что здание, в котором находитесь, раскачивается под напором ветра, не волнуйтесь — здание проектируют таким образом, что оно может несколько изгибаться, но это вовсе не означает, что оно рухнет.

Ветер бывает порывистым, но он не толкает здание в строго определенном ритме, который может совпасть с собственной частотой здания, поэтому его раскачивание происходит лишь с очень небольшой амплитудой. Но толчки, вызываемые землетрясением, приводят к распространению «ряби» по земной поверхности. Эти громадные волны расходятся от эпицентра землетрясения в виде концентрических кругов, медленно покачивая земную поверхность из стороны в сторону. Что происходит с высоким зданием в случае землетрясения?

Утром 19 сентября 1985 года Мехико-Сити пришел в движение. Тектонические пласты под Тихоокеанским побережьем, в 400 кило­метрах от города, начали громоздиться друг на друга, вызывая землетрясение магнитудой 8 баллов по шкале Рихтера. В Мехико-Сити толчки ощущались на протяжении приблизительно трех-четырех минут. Этого оказалось достаточно, чтобы город превратился в груду развалин. В тот день, по некоторым оценкам, с жизнью попрощались около десяти тысяч человек, а инфраструктуре города был нанесен колоссальный урон. На восстановление города ушло несколько лет. Чтобы оценить масштаб ущерба, Национальное бюро стандартов США, а также Служба геологии, гео­дезии и картографии США направили в Мехико-Сити бригаду из четырех инженеров и одного сейсмолога. Согласно составленному ими подробному отчету, причиной беспрецедентных разрушений стало шокирующее совпадение частот.

Прежде всего Мехико-Сити расположен на вершине, состоящей из осадочных пород, которые сформировались на дне озера и заполняют впадину, образованную твердыми скальными породами. Устройства контроля за развитием землетрясения показывали замечательные регулярные волны с единой частотой, хотя обычно у импульсов землетрясения гораздо более сложный характер. Оказалось, что особое геологическое строение осадочных пород озера придало им определенную собственную частоту колебаний, в результате чего они усиливали любые волны длительностью примерно две секунды. Впадина, заполненная осадочными породами, на которых был построен Мехико-Сити, на короткое время превратилась в столешницу, вибрирующую практически с неизменной частотой.

Усиление наблюдаемых колебаний оказалось значительным. Но при анализе конкретных повреждений инженеры обнаружили, что количество этажей у большинства разрушенных или сильно поврежденных зданий находилось в диапазоне от пяти до двадцати. Более высокие или, наоборот, низкие здания (а таких в городе было немало) практически не пострадали. Инженеры пришли к выводу, что собственная частота землетрясения почти совпадала с собственной частотой зданий средней этажности. Подвергаясь воздействию длительных регулярных толчков землетрясения, практически совпадающих с собственной частотой таких зданий, они начинали вибрировать, подобно камертонам, и в конце концов не выдержали напора стихии.

В наши дни архитекторы очень серьезно относятся к вопросу «настройки» собственной частоты проектируемых зданий. В Тайбэе 101 — 509-метровом небоскребе на Тайване, который в период с 2004 по 2010 год был самым высоким зданием на планете, — самой большой популярностью среди туристов пользовались смотровые галереи на этажах с 87-го по 92-й. В этой части здания нет офисов и подвешен 660-тонный сферический маятник, выкрашенный «под золото» — очень замечательная и чрезвычайно практичная вещь. Этот необычный маятник не только привлекает туристов, но и повышает устойчивость здания к землетрясениям. Его техническое название — настраиваемый амортизирующий груз. Идея маятника заключается в том, что во время землетрясений (рядовое событие на Тайване) здание и маятник раскачиваются независимо друг от друга. Когда начинается землетрясение, здание клонится в одну сторону и тянет за собой сферический маятник. Но к тому времени, когда маятник сместится в том же направлении, здание уже клонится в другую сторону и тянет сферический маятник обратно. Таким образом, сферический маятник всегда тянет в сторону, противоположную стороне наклона здания, в результате чего амплитуда его раскачиваний уменьшается. Размах раскачиваний сферического маятника составляет 1,5 метра в том и другом направлении, а его использование позволяет сократить раскачивание здания примерно на 40%. Люди, находящиеся в здании, чувствовали бы себя намного комфортнее, если бы оно вообще не раскачивалось. Но землетрясения выводят здания из состояния равновесия и раскачивание неизбежно. Архитекторы не в состоянии его полностью предотвратить, но могут кое-что предпринять для его максимально возможного гашения. У обитателей здания нет иного выбора, кроме как усесться поудобнее, ухватиться за поручни своих кресел и ждать окончания землетрясения.

* * *

Физический мир всегда стремится к состоянию равновесия. Этот фундаментальный физический закон известен как Второй закон термодинамики. Но нигде не сказано о том, как быстро физический мир должен туда добраться. Каждое новое «впрыскивание» энергии отдаляет физический мир от состояния равновесия, прикрывает ворота и вынуждает процесс начинаться сначала. Само существование жизни возможно лишь потому, что она использует эту систему для регулирования энергии путем управления скоростью потока в направлении равновесия.

Растения — по-прежнему неизменные спутники моей жизни, хотя сейчас я и живу в большом городе. Из кухни я могу наблюдать, как яркий солнечный свет падает на рассаду салата-латука, землянику и травы, растущие у меня на балконе. Солнечный свет, попадающий на деревянную обшивку, поглощается деревом, которое нагревается, и это тепло в итоге постепенно рассеивается через воздух и стены здания. Равновесие достигается довольно быстро, и на этом пути ничего особенного не происходит. Но солнечный свет, попадающий на листья кориандра, оказывается на небольшой химической фабрике. Вместо того чтобы преобразовываться непосредственно в тепло, он направляется на обслуживание процесса фотосинтеза. Растение использует солнечный свет, чтобы вывести молекулы из состояния равновесия, и поэтому приберегает энергию солнечного света для своих потребностей. Управляя простейшим путем назад к равновесию, механизм растения применяет эту энергию поэтапно, для создания молекул, которые ведут себя как химические батареи, а затем использует их для преобразования двуокиси углерода и воды в сахара. Это похоже на фантастически сложную систему каналов переноса энергии, содержащую множество ворот шлюзов, обходных маршрутов, водопадов и водяных колес, а поток энергии контролируется путем изменения скорости прохождения каждого участка. Вместо того чтобы продвигаться беспрепятственно вниз, энергию заставляют строить на этом пути сложные молекулы. Они не пребывают в равновесии, но растение может запасать их до тех пор, пока ему не понадобится их энергия, а потом направляет их туда, где они могут сделать следующий шаг в сторону равновесия, затем — следующий шаг и т. д. Пока солнечный свет попадает на листья кориандра, он поставляет энергию, поддерживающую эту фабрику в действии, постоянно выполняющей очередные шаги по направлению к равновесию каждый раз, когда впрыскивание энергии приводит в движение ворота шлюза. В конце концов, я съем кориандр, и это впрыснет энергию в мою систему. Я использую ее, чтобы вывести собственный организм из равновесия, и пока буду потреблять пищу, система не сможет за мной угнаться. Равновесие не будет достигнуто. Но я сама решаю, когда мне есть, а мой организм решает, когда использовать эту энергию, причем все это осуществляется путем управления воротами шлюза.

Размышляя над тем, что представляет собой жизнь на Земле, не перестаешь удивляться отсутствию единого определения того, что же это такое. Когда мы видим то или иное проявление жизни, мы это понимаем, но живой мир всегда готов предъявить нам какое-либо исключение из любого простого правила. Одно из определений гласит, что жизнь — это поддержание неравновесного состояния и использование этой ситуации для строительства сложных молекулярных фабрик, способных воспроизводить себя и развиваться. Жизнь — это то, что может управлять скоростью прохождения энергии по соответствующей системе, манипулируя этим потоком для самоподдержания. Ничто из пребывающего в равновесии не может быть живым. А это означает, что концепция неравновесности фундаментальна для двух величайших загадок нашего времени. Как зародилась жизнь? И есть ли она еще где-либо во Вселенной?

В настоящее время ученые полагают, что жизнь могла зародиться в морских расселинах 3,7 миллиарда лет тому назад. Внутри расселин находилась теплая щелочная вода. Снаружи океанская вода была более холодной и слабокислой. Когда они смешивались между собой на поверхности расселины, достигалось состояние равновесия. Складывается впечатление, что ранняя форма жизни, возможно, зародилась, остановившись на середине пути к равновесию и исполняя роль привратника. Поток в сторону равновесия был направлен на строительство первых биологических молекул. Эта первая застава могла впоследствии превратиться в клеточную мембрану — городскую стену вокруг каждой клетки, отделяющую ее внутреннюю часть, где протекает жизнь, от окружающего мира, где жизни нет. Первая клетка оказалась успешной, поскольку ей удалось сдержать равновесие и стать порталом в восхитительную сложность нашего живого мира. То же, наверное, справедливо и для других миров.

Не исключено, что где-то во Вселенной еще есть жизнь. Ведь на небе столько звезд, других планет и так много разных условий для ее зарождения, что насколько бы сложными они ни были, они вполне могли сложиться в других местах Вселенной. Но то, что представители внеземных цивилизаций решат сообщить нам о своем существовании, отправив в сторону Земли радиосигнал, маловероятно. Не говоря уже обо всем остальном. Космос настолько необъятен, что к моменту, когда какой-либо радиосигнал достигнет нашей планеты, цивилизация, которая его отправила, наверняка уже прекратит свое существование. Однако вполне возможно, что само по себе наличие жизни на какой-то планете может обусловливать передачу сигналов в космос — совершенно непреднамеренно. На вершине горы Мауна-Кеа на Гавайях построена целая система телескопов. Их пара огромных белых сферических куполов, стоящих рядом друг с другом, напомнила мне глаза гигантской лягушки, пристально всматривающейся в космос. Это знаменитая обсерватория Кека. Возможно, именно эти гигантские «глаза» заметят первые признаки жизни за пределами нашей Солнечной системы. Когда планеты других солнечных систем пересекают обращенные к нам стороны далеких звезд, вокруг которых эти планеты вращаются, свет звезды проникает сквозь атмосферу планеты и атмосферные газы оставляют на нем свой отпечаток. Телескопы обсерватории Кека фиксируют эти отпечатки и вскоре, возможно, им удастся обнаружить атмосферы, не пребывающие в равновесии. Наличие определенного количества кислорода, соответствующего количества метана… Их присутствие может указывать на существование жизни на планете и изменять баланс ее мира, когда он пытается выскользнуть из смертельных объятий равновесия. Такая информация еще не дает нам полной уверенности, что на далекой планете есть жизнь, но по крайней мере мы располагаем свидетельствами существования чего-то такого, что способно управлять скоростью движения в сторону равновесия, формируя при этом живые организмы, которые нам не дано никогда увидеть.

Назад: ГЛАВА 3. МАЛЕНЬКИЙ — ЗНАЧИТ ЗАМЕЧАТЕЛЬНЫЙ
Дальше: ГЛАВА 5. ПУСКАЕМ ВОЛНЫ