На глубине сотен километров под твердой поверхностью Земли раскинулось скрытое, непостижимое царство тайны. Экстремальные давление и температура — условия, несовместимые с жизнью, — те две силы, что формируют глубокие недра планеты. Атомы сталкиваются друг с другом, приобретая необычные, более плотные кристаллические формы. Наше представление о космосе искажено нашим существованием на практически непроницаемой границе между Землей и Воздухом. Мы ограничены хождением по твердой поверхности Земли — каменистому барьеру, который мешает нам исследовать что-то помимо тончайшего слоя нашего величественного планетарного дома.
Какие поразительные открытия ждут нас на глубине сотни, тысячи километров под нашими ногами?
Наши знания об углеродсодержащих минеральных видах, какими бы всеобъемлющими они ни казались, довольно поверхностны, т.е. в буквальном смысле поверхностны — обусловлены доступностью лишь верхней пары километров земной коры. Почти все известные нам минералы выросли и обрели свою форму в этой тонкой каменистой оболочке. А многие из них — те, что собраны из выветрелых отвалов шахт или образовались из тлеющих экскрементов пустельги, — являются поверхностными в силу своего происхождения.
В Обсерватории глубинного углерода мы жаждем знать больше. Мы хотим понять скрытую, недоступную, глубинную область земной коры и мантии, где огромные давления и температуры давят и обжигают углерод и сопутствующие ему элементы, преобразуя их в новые, плотные формы, которые только-только становятся нам понемногу известными. Мы должны узнать эти манящие секреты недр, поскольку почти весь углерод Земли заперт внутри планеты. Для нас Земля — огромный сферический пазл, в котором лишь несколько кусочков по краям находятся точно на своих местах. Мы страстно желаем вставить недостающие фрагменты пазла минералов углерода, но есть серьезное препятствие: чем глубже мы идем, тем более сложной становится задача.
Из более чем 400 известных минералов углерода лишь жалкая горсточка представлена разновидностями, образовавшимися при высоком давлении. Алмаз, выкованный при экстремальных температурах и давлениях в глубоких недрах Земли, — самый очевидный пример углеродсодержащего мантийного минерала. Еще один вероятный кандидат — плотный муассанит, представляющий собой карбид, в котором атомы углерода связаны непосредственно с кремнием в кристаллическую структуру, подобную алмазу (примечательно, что в этой структуре отсутствует кислород). Поскольку кристаллы карбида кремния обладают физическими свойствами, удивительно похожими на свойства кристаллов алмаза, ювелирные камни из ограненного и полированного синтетического муассанита нашли свое место на рынке в качестве сравнительно недорогих заменителей бриллиантов. Присутствие редких включений в алмазе указывает на несколько других возможных карбидных минералов родом из мантии, в которых атомы углерода связаны с металлами — железом, хромом или никелем. Но это касается найденных в природе образцов из глубин. Что еще может быть там, внизу?
Стандартный способ выявления возможных мантийных минералов заключается в том, чтобы подвергнуть распространенные минералы земной коры суровым условиям глубин в сотни или более километров под поверхностью Земли. Обычный кальцит — повсеместно распространенный карбонат кальция — стал одним из очевидных минеральных видов, которые стоило протестировать. Я хорошо помню, как читал передовое исследование Уильяма (Билла) Бассета и его аспиранта Лео Меррилла, описавших первую из последовательностей плотных форм кальцита, образующихся при высоком давлении. Я был тогда аспирантом, и передо мной стоял вопрос об интересной теме для диссертации. У Билла имелся заманчивый ответ — кристаллография высокого давления.
Для такого ученого, как Билл Бассет, «глубинный углерод» означает «углерод высокого давления». Чем глубже вы погружаетесь в недра Земли, тем выше давление. Мантия Земли подвергает минералы давлению в сотни тысяч атмосфер, а в ядре оно превышает 1 млн атм. Шотландцу Джеймсу Холлу было весьма сложно воссоздать условия глубины 1 км в своих смелых экспериментах с ружейными дулами. Воссоздать же среду мантии Земли — самая трудная экспериментальная задача, которую только можно представить.
Дополнительная сложность для изучающего кристаллы экспериментатора — создать экстремальные давления Земли, не раскрошив кристаллический образец в порошок. Это своего рода компромисс. Вы хотите добиться самого высокого давления, какое только возможно, но при этом требуется подвергнуть крошечные площади действию больших сил. Однако крошечные площади означают крошечные кристаллы, которые легко разрушаются. Как же измерить столь малые кристаллы под давлением, не уничтожив то, что вы хотите исследовать? Проблема сложная, поскольку для того, чтобы выдержать давление, ваш образец должен быть заключен в крепкую защитную камеру. Но как можно сделать какие-либо полезные измерения через такой прочный барьер?
Блестящее решение этой проблемы было найдено в 1950-х гг. в Национальном бюро стандартов США (NBS), когда его ученые получили неожиданную возможность исследовать алмазы. Им дали большую партию изъятых у контрабандистов бриллиантов и сказали, что можно проводить с камнями любые эксперименты. Одну часть ценных камней — сотни карат бриллиантовых сокровищ — исследователи сожгли дотла в тщетных поисках вкраплений (вывод: в бриллиантах их не много). Другие алмазы, включая один прекрасный 8-каратный самоцвет, стоивший целое состояние, исцарапали, просверлили или раскрошили.
Именно во время тех надругательств над алмазами ученый NBS Элвин ван Волкенбург и обнаружил их уникальную способность играть двойную роль в экспериментах высокого давления — служить как резервуаром, в котором можно закреплять и сжимать образец, так и прозрачным окном для наблюдения этого сжатого образца. Ван Волкенбург составил пары бриллиантов, расположив их грани таким образом, чтобы сконцентрировать давление в образовавшейся ячейке с алмазными наковальнями. Его простая, подобная тискам конструкция прижимала алмазы друг к другу для создания огромных давлений, но образец кристалла при этом оказывался защищен.
Попробуем — слой за слоем — собрать DAC-камеру для образца. Нижний слой камеры — это плоская стальная пластина с просверленным в ней маленьким цилиндрическим отверстием. Возьмем первый алмаз и вставим его в отверстие наковальней вверх. Следующий слой — это прокладка, вырезанная из тонкого металлического листа не более 0,05 см толщиной. Маленькое отверстие в прокладке, точно отцентрированное над наковальней нижнего алмаза, служит цилиндрическими стенками ячейки с образцом. Заполним эту ячейку тремя составляющими: сначала наш кристаллический образец (обычно закрепляемый на месте крохотным комочком вазелина), рядом — мельчайшие зерна чувствительного к давлению рубина или какого-то другого материала, который послужит стандартом внутреннего давления, и наконец — чтобы дозаполнить ячейку с образцом — вода или какая-либо другая передающая давление жидкость. После того как на прокладке располагают второй алмаз, ячейка запечатывается. Его наковальня обращена вниз, он накрывается сверху второй стальной пластиной с отверстием. Когда камера для образца собрана, мы повышаем в ней давление, сжимая ее в любом из создающих давление устройств. Если мы были осторожны и аккуратно выровняли все цилиндрические отверстия, то сможем смотреть прямо сквозь алмазы на потрясающий, неожиданный мир высокого давления.
Команда NBS своей новой игрушкой, как они ее назвали, запустила целую эпопею экспериментов высокого давления. Исследователи зачарованно наблюдали, как чистая вода преобразовывалась в новые формы высокобарического льда, а алкоголь кристаллизировался иглами — их ван Волкенбург окрестил джин-сосульками. Экспериментаторы использовали дорогие спектрометры, чтобы измерять значительные изменения во взаимодействии света с материей. А еще они направляли рентгеновские лучи на образцы, пытаясь хоть чуть-чуть ухватить, как при сжатии атомы перераспределяются, образуя более плотные конфигурации.
Я был поистине пленен поразительными отчетами ван Волкенбурга и его коллег по NBS. Когда в начале 1970-х гг. я прочитал статьи об их достижениях и уловил манящий свет этого ранее скрытого глубинного царства, то понял, чем хочу заниматься в жизни.
Когда ученые из DCO говорят об обнаружении всех разнообразных «форм» углерода, у нас в мозгу возникает вполне определенное изображение. Мы представляем атомы. Все материалы вокруг нас — твердые тела, жидкости и газы — состоят из атомов. Кристаллы с их изящно повторяющимися симметричными рисунками атомов привлекают особое внимание. Каждый минеральный вид имеет свою атомную топологию, собственную кристаллическую структуру.
Давление добавляет нюансы в копилку кристаллических структур. Подвергайте минерал все более высокому давлению — и его атомы будут все сильнее уплотняться. Если мы хотим понять глубинные формы углерода Земли, то должны обнаружить эти плотные кристаллические структуры высокого давления.
Элегантным способом измерения атомных структур кристаллов является рентгеноструктурный анализ. Рентгеновские лучи — это «сильнодействующая» форма световых волн, схожих по характеру с видимым светом и радиоволнами, но с гораздо более короткими (несколько миллиардных долей сантиметра) длинами волн, близкими к стандартным расстояниям между слоями атомов в кристаллах. Когда поток рентгеновских лучей просвечивает кристалл, волны рассеиваются и усиливаются в сфокусированных потоках дифрагированных лучей. Направления и интенсивности таких лучей позволяют выявить атомную структуру.
Исходная ячейка c алмазными наковальнями NBS была изумительным достижением, но первоначальная конструкция оказалась слишком громоздкой, чтобы поместиться внутри стандартного пучка рентгеновских лучей. Более того, стальная опорная система модели NBS блокировала бóльшую их часть. Отличное решение Меррилла и Бассета, проиллюстрированное многочисленными чертежами устройства в публикации престижного журнала Review of Scientific Instruments в 1974 г., состояло в том, чтобы сконструировать миниатюрную версию ячейки с алмазными наковальнями, используя прозрачный для рентгеновских лучей металл бериллий, которым бы заменили стальные ограничивающие пластины. Сжимающую силу ячейки Меррилла — Бассета обеспечивала треугольная рамка с тремя винтами.
Свои первые эксперименты исследователи проводили на кальците, о котором было известно, что он приобретал немного более плотное расположение атомов, названное «кальцит-II» и «кальцит-III», при давлениях, соответственно, 15 000 и 20 000 атм — такие значения характерны для верхней мантии Земли на глубине нескольких десятков километров. Мерриллу и Бассету не удалось расшифровать все детали этих структур, но они заметили небольшие изменения в порядке атомов, которые указывали на более плотные формы с более низкими симметриями кристаллов.
Стремясь опробовать этот новый подход и применить его к своей диссертации, я связался с Биллом Бассетом и попросил его совета. Некоторые ученые отказали бы. Зачем им стимулировать конкуренцию, имея в руках мощный новый метод и такую кучу требующих решения задач, когда не знаешь, за что и хвататься? Но Билл решил помочь. Специально для меня он заказал в своей механической мастерской новую алмазную ячейку, продал ее мне по себестоимости и приехал из Рочестера, штат Нью-Йорк, в Кембридж, штат Массачусетс, чтобы показать, как ею пользоваться.
Билл Бассет помог также многим другим ученым, и область кристаллографии высокого давления начала процветать. Благодаря передовым достижениям Билла кальцит продолжает привлекать к себе повышенное внимание. Сейчас известны по меньшей мере шесть разных форм карбоната кальция, существующих при давлениях вплоть до 80 000 атм, каждая из которых включает в себя типичный крошечный карбонатный треугольник с тремя атомами кислорода, аккуратно окружающими атом углерода. Карбонаты железа, магния, марганца и других элементов проявляют подобное разнообразие форм под давлениями, эквивалентными тем, что характерны для верхней мантии, — которые достигаются относительно легко в исследованиях кристаллических структур с помощью DAC. Иными словами, теперь мы знаем, что минералы глубоких недр Земли отличаются от минералов близповерхностных областей.
Еще один вызов — «прозондировать» кристаллические структуры в экстремальных условиях слоя Голицына и нижней мантии Земли, где давления превышают 100 000 атм. Наша успешная стратегия заключалась в том, чтобы применить для решения этой задачи расчеты атомных связей. Благодаря достижениям квантовой механики удалось создать сложные математические модели кристаллических структур. Ее вычислительные методы точно воспроизводят многие структуры природных материалов, найденных в земной коре, — так же как и структуры искусственных веществ, ряд которых был предсказан в теории до того, как эти вещества были синтезированы в лаборатории.
Данные вычислительные методы можно также применять к высоким давлению и температуре — пусть для этого и потребуются некоторые математические приемы и мощные компьютеры. Компьютерные модели снова оказались замечательно эффективными, воссоздавая уже известные переходы при высоком давлении минералов поверхности в плотные минералы мантии (пусть даже модели не всегда точно предсказывают давление, при котором в мантии образуются новые минералы). В отличие от экспериментов, где каждое приращение давления требует существенного усложнения техники исследования, набрать миллион или больше атмосфер в квантовых вычислениях и посмотреть, что произойдет, гораздо проще.
Общий результат — и это неудивительно — заключается в том, что более глубинные минералы имеют более плотные структуры. Для карбонатных минералов, таких как кальцит и доломит, это изначальное увеличение плотности происходит из-за все более плотной упаковки знакомых карбонатных треугольников CO3 с другими атомами, но переупаковка атомных треугольников и ядер имеет место лишь до определенного момента. После примерно полумиллиона атмосфер нам понадобится другая стратегия, потому что при таких условиях карбонатные минералы берут пример с алмаза. Преобразование графита в алмаз заключается в превращении плоского слоя с тремя смежными атомами углерода в пирамиду с четырьмя. Подобным образом, согласно вычислениям, углерод карбонатов вместо трех смежных атомов кислорода в плоскости будет иметь четыре атома кислорода в крошечных группах CO4 пирамидальной формы, называемых тетраэдрами.
Минералоги быстро распознали возможное сходство содержащих CO4 карбонатов высокого давления со многими распространенными силикатными минералами, найденными в изобилии в коре Земли, в которых кремний окружен тетраэдром из четырех атомов кислорода. В минералогии земной коры преобладают десятки хорошо известных типов силикатных структур — слюд, полевых шпатов, пироксенов, гранатов и др. Могут ли подобные типы структур встречаться в карбонатах мантии? Безусловно. Теоретики спрогнозировали, что карбонат магния в условиях нижней мантии должен приобретать изящную структуру пироксена с длинными цепочками тетраэдров CO4, связанных угол с углом.
Не довольствуясь этими интригующими предсказаниями, большинство геофизиков хотят экспериментальных доказательств — подтверждений, которые требуют рентгеноструктурного анализа в, казалось бы, невозможных экстремальных условиях. Технические достижения, позволяющие осуществить такое исследование, поразительны. В 1970-х и 1980-х гг. в наших передовых методах использовались «большие» кристаллы — 0,02 см в поперечнике, простая DAC Меррилла — Бассета и стандартный источник рентгеновских лучей, который доступен в любой кристаллографической лаборатории. В удачный день мы могли добиться давления 100 000 атм, не разрушив наш образец и не расколов дорогие алмазные наковальни. Эти рентгеновские эксперименты при высоком давлении постепенно становились обыденными, и их начали воспроизводить в десятках лабораторий по всему миру.
С давлением в сотни тысяч атмосфер другая история. Кристаллы должны быть размером менее тысячной доли тех, что я изучал. Более крупные рассыпятся в порошок. Необходимо использовать модель DAC гораздо более высокого уровня, иначе неправильно расположенные алмазы треснут и расколются при таких высоких давлениях. Традиционные рентгеновские лучи также не подходят — они слишком слабые, чтобы можно было получить измеримые рисунки кристалла, который меньше пылинки. Так что ученые вынуждены использовать гигантские, финансируемые государством синхротроны — ускорители частиц, в которых рентгеновские лучи в миллион раз сильнее, чем в традиционных источниках. Но они заняты 24 часа в сутки 7 дней в неделю. Мало кому из ученых удалось преодолеть те строгие ограничения, которые обеспечивают единственно возможный экспериментальный путь к пониманию самых глубинных углеродсодержащих кристаллов Земли. Среди них своими открытиями в науке о глубинном углероде выделяется итальянский минералог и кристаллограф Марко Мерлини из Миланского университета.
Марко Мерлини — скромный ученый, которому гораздо важнее трепет открытия, нежели признание. Он приветливо улыбается, встречая вас, его глаза горят азартом, ученый жаждет показать свою лабораторию и последние результаты. И эти результаты впечатляют. В статье 2012 г., опубликованной в журнале Proceedings of the National Academy of Sciences, Мерлини с коллегами сообщил о структурах высокого давления доломита — похожего по структуре на кальцит распространенного карбонатного минерала земной коры с равным соотношением кальция и магния.
Если карбонатные минералы существуют в мантии Земли, то доломит — хороший на то кандидат. Работая в Европейском центре синхротронного излучения во французском Гренобле, ученые из группы Мерлини сжали крошечный кристалл доломита до небывалых значений. При давлении свыше 170 000 атм исследователи увидели структуру, которую они назвали «доломит-II» — по аналогии с кальцитом-II Меррилла и Бассета. Но стоило им сжать кристалл до 350 000 атм, как появилась совершенно новая структура — с четырьмя атомами кислорода вокруг нескольких атомов углерода, однако в новой, уплощенной пирамиде. Исследователи назвали ее конфигурацией «3 + 1». Мерлини и его команда продолжили подвергать свой кристалл доломита давлениям до 600 000 атм, но не увидели ни единого признака преобразования его в предполагаемый карбонат с углеродом, окруженным тетраэдром атомов кислорода.
Прорыв произошел в 2015 г., когда группа Мерлини опубликовала описание необыкновенной новой формы карбоната высокого давления, содержащего равные части магния и железа. Эти измерения казались почти невозможными, ведь требовались давления, приближающиеся к 1 млн атм, что соответствует условиям в глубочайших глубинах мантии Земли — более 1000 км под нашими ногами. Исследованием было подтверждено спрогнозированное преобразование плоских карбонатных групп CO3 в пирамиды CO4. Однако вместо ожидаемой структуры пироксена с непрерывными цепочками тетраэдров, соединенных углами, ученые обнаружили совершенно новый и неожиданный атомный порядок. У их карбоната под ультравысоким давлением цепочки разбились на сегменты по четыре тетраэдра, разделенные короткими, заполненными железом разрывами, — получилась причудливая плотная структура, не похожая ни на что, виденное ранее.
У открытий Мерлини — далеко идущие последствия. Десятилетия назад общепринятая точка зрения заключалась в том, что при высоком давлении минералы имеют тенденцию образовывать простые структуры — результат необходимой на больших глубинах плотной правильной упаковки атомов. Продолжающиеся же исследования Мерлини и других пионеров минералогии ультравысокого давления показывают иную картину. Структуры высокого давления могут быть сложными, непривычными и зачастую неожиданными. И это хорошие новости для тех из нас, кто увлечен изучением удивительной сложности природы.
Среди всего разнообразия форм углеродсодержащих минералов высокого давления — с учетом как уже известных кристаллических структур, так и тех, которые еще предстоит обнаружить, — алмаз всегда будет занимать свое почетное место. Он находится в идеальной нише между очень редкими и просто редкими минералами: достаточно распространен для того, чтобы его мог купить любой желающий, но достаточно редок, чтобы заслуживающие внимания крупные камни стоили миллионы долларов. Уже добыты сотни миллионов драгоценных камней с теми размерами, что подходят для колец или ожерелий, но обладать одним или несколькими такими камнями хотят еще сотни миллионов потребителей. Привлекательность алмазов обусловлена и их научной ценностью: чем больше мы изучаем эти почти чистые фрагменты углерода из глубин Земли, тем больше узнаем об истории и динамике нашей планеты. Поэтому неудивительно, что никакой другой минеральный вид не завораживал ученых из Обсерватории глубинного углерода до такой степени.
Первые кристаллы алмаза (хотя и микроскопического размера) в истории Вселенной образовались при конденсации атомов углерода из горячего газа в оболочках химически активных звезд. Но наши самые ценные алмазы образуются не в ходе этого энергетического процесса, протекающего в практически вакуумных условиях Космоса. Если речь идет о драгоценных камнях, мы должны отвести взгляд с окраин звезд и посмотреть в глубокие недра планет, подобных Земле.
В земной коре образуется очень много графита. Когда атомы углерода концентрируются вблизи поверхности планеты, появляется именно графит, а не алмаз. Для создания крупного кристалла плотного твердого алмаза Земле требуется значительное давление, — по крайней мере в десятки тысяч раз больше атмосферного, — чтобы упаковать атомы углерода поплотнее. Не помешает также применить жар паяльной лампы, чтобы «уговорить» колеблющиеся атомы углерода перейти в новую, более стабильную конфигурацию пирамиды. Так что мы должны сместить фокус внимания в глубокие недра, на сотни или более километров вниз, в недостижимую мантию Земли. Где химические условия подходящие, а давление и температура достаточно высокие, где множество атомов углерода концентрируются вокруг центра кристаллизации, вот там и могут вырасти крупные драгоценные камни.
Человечество научилось воссоздавать условия, существующие на глубине сотен километров под нашими ногами, сконструировав гигантские гидравлические прессы с прочными карбидными наковальнями и мощными электрическими нагревателями. Миллионы карат синтетических камней производятся таким образом каждый год: или для абразивов, или для электронных компонентов, или для оптических окон — или как синтетические драгоценные камни. Можно даже заказать «алмаз памяти» в виде кулона — он образуется под давлением из атомов углерода, оставшихся после кремации любимого человека. Люди не вечны, но памятный алмаз переживет даже самую долгую память.
Теперь, когда мы знаем, что алмазы могут раскрывать укрытые долгое время тайны сложных недр и бурного прошлого нашей планеты, у развивающегося научного сообщества появляется больше оснований, чтобы оценивать эти камни дороже других сокровищ. Охотники за алмазами, представляющие эту новую генерацию, не гоняются за безупречными камнями для дорогих помолвочных колец или теннисных браслетов. Наоборот, превыше всего они ценят изъяны в виде крошечных минеральных включений — некрасивые черные, красные, зеленые и коричневые вкрапления минералов, а также микроскопические карманы с глубинными жидкостью и газом. Эти дефекты, обычно удаляемые при огранке драгоценных камней, зачастую представляют собой фрагменты глубоких недр Земли — кусочки, которые образовались давно и глубоко, намного глубже залитой солнцем поверхности нашей планеты, где они были захвачены и герметично запечатаны обволакивающими их растущими алмазами.
Какие истории они рассказывают! Включения могут сообщить нам, как глубоко, как давно и в каком окружении росли их хозяева-алмазы. Обратимся к тайнам, которые сейчас открывают нам самые крупные камни в мире. Среди богатого разнообразия алмазов особо выделяются гигантские «Обещание Лесото» в 603 карата, добытый в 2006 г. и названный величайшей находкой нового столетия; легендарный «Кохинур» в 793 карата, найденный столетия назад в Индии и ныне украшающий корону британской королевы-матери; «Созвездие» в 813 карат, проданный на аукционе в 2016 г. за рекордные 63 млн долларов; и самое исполинское сокровище — «Куллинан» весом в 3106 карат, обнаруженный в 1905 г. в южноафриканской шахте «Премьер» как «выживший» фрагмент камня, который должен был быть гораздо большего размера. Оказывается, у всех этих гигантов — общее неожиданное происхождение.
Столетиями считалось, что такие прекрасные драгоценные камни являются просто крупными вариантами более распространенных камней меньшего размера. Но это не так. В ходе оптических исследований были замечены признаки их иного происхождения. Большинство алмазов, пусть и поразительно прозрачных для видимого света, из-за изъянов на атомном уровне поглощают волны инфракрасного и ультрафиолетового диапазонов. Самые распространенные «нарушители» — атомы азота. В алмазах типа I примерно один атом углерода из тысячи бывает заменен атомом азота. Если эти атомы азота собираются в небольшие скопления, они могут придавать драгоценным камням желтый или коричневый оттенок. Когда-то их считали некрасивыми, но теперь некоторые из этих нечистых алмазов продаются под такими откровенно соблазнительными названиями, как «коньячные», «цвета шампанского» или «шоколадные». Вы уж меня извините, но это по-прежнему просто коричневые алмазы.
Оставшиеся алмазы — менее 2% всех добытых драгоценных камней — относятся к типу II. У отличающихся своей непревзойденной прозрачностью как для видимого, так и для ультрафиолетового света алмазов типа II нет видимых включений азота, но наблюдается тенденция быть крупнее плюс они совершеннее оптически. Эти характеристики навели некоторых ученых на мысль об их более медленной и глубинной кристаллизации. Тем не менее точное происхождение алмазов типа II остается загадкой.
В открытии 2016 г., взорвавшем СМИ броскими заголовками, международная группа изучающих глубинный углерод ученых, которую возглавляет Эван Смит из некоммерческой организации «Геммологический институт Америки» (GIA, от Gemological Institute of America), показала, что алмазы типа II, к которым относятся многие наиболее крупные камни, имеют любопытные специфические включения: серебристые крупинки железо-никелевого состава, отличающиеся от обычных минеральных включений, представленных оксидами и силикатами, характерными для алмазных собратьев меньшего размера.
Это исследование стало триумфом как с общечеловеческой, так и с научной точки зрения. Владельцы шахт, огранщики и коллекционеры ревностно охраняют свои сокровища: чем крупнее алмаз, тем сложнее получить к нему доступ для научных исследований. Обретение возможности хотя бы поверхностного изучения включений в одном или двух больших алмазах стало бы неожиданным подарком для большинства ученых. Те, кто пытал счастье ранее, кто видел проблески серебристых включений в крупных алмазах, ошибочно предполагали, что это распространенный минерал графит. А он не представлял особого интереса.
Но Смит и его коллеги из GIA, объединившись с другими экспертами по алмазам из Соединенных Штатов, Европы и Африки, заложили основу для исследований по целому спектру параметров. Задача отделения GIA в Нью-Йорке — сертифицировать алмазы всех видов: их взвешивают, сортируют, пытаются определить страну происхождения и постоянно разрабатывают новые тесты, чтобы отсеивать следующее поколение искусных синтетических подделок или «конфликтных алмазов» — камней из зон конфликтов. Сертификация GIA — это универсальный стандарт качества. Благодаря многочисленным связям с работниками месторождений и музейными сотрудниками команда Смита смогла собрать и детально изучить поразительную коллекцию драгоценных камней и фрагментов, отсеченных от 53 крупных алмазов типа II. Исследователи даже заново огранили и отполировали пять фрагментов, чтобы обнажить серебристые включения для тщательного изучения высокотехнологичными аналитическими инструментами.
Первый сюрприз поджидал их при исследовании состава. Богатые металлом включения не содержали кислорода — самого распространенного химического элемента мантии, но в них присутствовало много углерода и серы, а это свидетельствовало о том, что металл должен был находиться в расплавленном состоянии, когда образовывались алмазы. Примечательно, что металлические включения указывают на те глубокие области нашей планеты, которые по составу подобны недоступному ядру Земли с его океаном плотного жидкого металла — железа и никеля, — окружающим внутреннюю сферу диаметром 2446 км, состоящую из еще более плотного кристаллического сплава железа и никеля.
Вот какой вывод мы можем сделать: крупные алмазы образуются на глубине сотен километров в изолированных мантийных карманах, заполненных богатой металлом жидкостью. Алмазам легко расти в такой среде, потому что металлическое железо обладает необычной способностью поглощать много атомов углерода. При достаточных давлении и температуре образуются центры кристаллизации и алмазы начинают расти — подвижные атомы углерода легко проходят через расплавленный металл, добавляя слой за слоем к будущим гигантским кристаллам. Образование некоторых алмазов именно таким образом — при участии металла — для ученых не является полной неожиданностью: металлические растворители использовались для выращивания больших кристаллов синтетических алмазов с начала 1950-х гг. Но никто тогда не знал, что природа освоила тот же трюк миллиарды лет назад.
Применения открытия, что крупные алмазы сформировались специфическим образом, намного шире, чем просто поиск причудливых драгоценных камней. Этот особый класс алмазов типа II демонстрирует ранее не описанную гетерогенность мантии. Раньше думали, что высокие температуры в мантии за миллиарды лет перемешивания посредством конвекции должны были превратить ее в похожую на смузи однородную массу. Теперь же — благодаря крупным алмазам и их красноречивым включениям — у нас есть очевидное доказательство, что мантия похожа скорее на фруктовый пирог с несколькими относительно однородными областями, а вдобавок — с завитками начинки и множеством фруктов и орехов (читай, металлов и алмазов).
Более того, эти локальные варианты мантийных пород и минералов указывают на наличие глубинных областей с разными химическими средами. Мы долгое время предполагали, что мантия состоит почти исключительно из силикатов, оксидов и других богатых кислородом минералов. Именно их мы обычно видим в вулканических породах, называемых кимберлитами, которые выносят свой клад драгоценных алмазов на поверхность и являются основным компонентом богатейших алмазных трубок в мире. Но металлические включения указывают на иные зоны мантии — области, которые лишены кислорода и в которых могут происходить другие процессы, такие как рост действительно крупных алмазов.
Здесь все точно так же, как и во многих других аспектах эволюции Земли: чем пристальнее мы смотрим и чем больше данных собираем, тем более замысловатой и увлекательной становится история.
Металлические включения, наблюдаемые только в малой доле алмазов, по-видимому, являются исключением — редкостью под стать малочисленности крупных алмазов типа II, в которых они встречаются. Намного более распространенными и доставляющими головную боль ювелирам, которые ищут сколь возможно идеально ограненные и отполированные драгоценные камни, являются включения обычных мантийных минералов в алмазах типа I. Пока люди ценили совершенные драгоценности, минеральные включения были источником разочарования. Ученые придерживаются противоположной точки зрения, так как минеральные включения сами являются кладезем данных о глубоких недрах Земли.
Некоторые из этих включений раскрывают возраст алмазов: несколько древних камней оказались старше 3 млрд лет. Ключами к определению даты рождения алмаза стали иногда встречающиеся микроскопические частицы сульфидных минералов — сияющие кристаллы толщиной меньше волоса, состоящие из комбинации атомов металлов и серы. Эти сульфидные включения всегда содержат мизерное количество редкого элемента рения, который оказывается необыкновенно полезным, если вы хотите узнать возраст минерала.
Природные атомы рения имеют две разновидности. Стабильный изотоп рений-185 составляет около 37% от общего объема рения Земли; остальные 63% приходятся на радиоактивный рений-187 — нестабильный изотоп, который может самопроизвольно преобразовываться в стабильный осмий-187 со скоростью распада половины атомов рения за 41,6 млрд лет. Со временем отношение радиоактивного рения-187 к осмию-187 уменьшается так же прогнозируемо, как тиканье часов. Требуется тщательная подготовка образца и ультрасложные аналитические приборы, но поднаторевшему и терпеливому ученому удастся выяснить возраст алмаза измерением соотношения изотопов рения и осмия в микроскопическом сульфидном включении.
Такое сложнейшее датирование получает огромное преимущество, когда сочетается с исследованиями других включенных минеральных зерен — обычно самых распространенных оксидов и силикатов, которые составляют бóльшую часть мантии Земли. Эти характерные ассоциации минералов иногда проливают свет на экстремальные глубины образования алмаза. В ряде случаев необычайно плотные включения оксидов и силикатов указывают на свое происхождение на глубине более 900 км, в загадочном и недоступном царстве нижней мантии Земли. Как алмазы могут прокладывать путь к поверхности из таких больших глубин, как они переживают такое путешествие, находя безопасный проход сквозь сотни километров, казалось бы, твердой породы, — не рассыпаясь, не застревая, не превращаясь в другой минерал, — остается во многом нерешенной загадкой.
Какими бы тернистыми путями эти алмазы ни появлялись из глубины, они могут много рассказать о миллиардах лет изменений в глобальном масштабе. Поразительные доказательства, тщательно собранные в передовом исследовании 2011 г. экспертами по алмазам Стивеном Шири из Института Карнеги и Стивеном Ричардсоном из Кейптаунского университета в Южной Африке, указывают на глубокое преобразование, которое произошло примерно 3 млрд лет назад.
Систематические исследования минеральных включений в алмазах по всему миру — драгоценных камнях из самых продуктивных рудников Бразилии и России, Южной Африки и Канады — показывают, что более молодые минералы зачастую содержат характерные сочетания серо-зеленого пироксена и красного граната. Этот цветной минералогический дуэт указывает на то, что алмазы происходят из породы, называемой эклогитом. У эклогита очень интересная биография. Эта красивая красно-зеленая порода возникает вследствие преобразования под высоким давлением базальта — повсеместно распространенной темной горной породы, которая кристаллизируется из магмы, изливающейся вдоль всей зоны срединно-океанических хребтов, имеющих протяженность в тысячи километров и опоясывающих весь земной шар. В результате этого базальт покрывает бóльшую часть океанического дна — почти 70% поверхности Земли. Такое постоянное производство новой базальтовой коры требует, чтобы соответствующее количество старой базальтовой коры исчезало в процессе необратимого погружения в зонах субдукции. Вдали от срединно-океанических хребтов более древние, холодные и плотные пласты базальтовой коры изгибаются вниз и уходят глубоко в недра Земли. Субдукция таким образом завершает важнейший процесс «кругооборота» земной поверхности, вызываемого движением литосферных плит.
Когда базальт опускается, он нагревается и испытывает огромное давление. На глубине не менее 50 км минералы базальта преобразуются в более плотные свои разновидности, в частности в красный гранат и серо-зеленый пироксен, обнаруженные в некоторых алмазах. Это характерное сочетание эклогитовых включений навело ученых на мысль, что движение плит, которое мы наблюдаем сегодня — с его активными срединно-океаническими хребтами и подвижными зонами субдукции, — шло полным ходом на протяжении последних 3 млрд лет.
Другие алмазы, включая и те, возраст которых превышает 3 млрд лет, содержат очень разные наборы мантийных минералов. Можно найти много включений желтого или коричневого оливина (его ювелирная разновидность известна как хризолит), а также пурпурного граната, черного хромита и изумрудно-зеленого пироксена. Такое характерное сочетание минеральных включений указывает на гораздо более глубокий мантийный источник, который связан с горной породой, называемой перидотитом и, как считается, доминирующей в мантии Земли. Это плотное собрание минеральных фрагментов никогда не видело земной поверхности и не подвергалось субдукции. Отсюда важный вывод: на ранних этапах эволюции Земли движения плит не было (по крайней мере, в современном его варианте — со столкновениями и расколом континентов и погружением базальтовой коры).
Урок ясен. Алмазы и их включения — действительно научные сокровища, убедительно доказывающие, что одна из величайших инноваций нашей планеты — движение литосферных плит — появилась, когда Земле было около 1,5 млрд лет. И по иронии судьбы, не ускользнувшей от исследователей алмазов, некоторые из тех драгоценных камней, которые некогда отвергли покупатели из-за присутствия в них некрасивых включений, сейчас продаются коллекционерам минералов по бешеным ценам. Опубликованные научные открытия вдохновили общественность и создали спрос на содержащие включения образцы, которые оказались не по карману некоторым исследователям.
Понять по отдельным фрагментам минералогию углерода в мантии и так достаточно тяжело, но это цветочки по сравнению с получением проб с глубин более 2900 км, где проходит граница между мантией и ядром. Давление там поднимается выше 1 млн атм, а температура превышает 3000 °C. Сколько в ядре углерода и какова его природа там —единственная остающаяся нерешенной величайшая загадка при оценке общего содержания углерода на Земле.
Минералогия расплавленного внешнего ядра проста. Там нет кристаллов, так что нет и минералов углерода. Тем не менее нам все равно нужно узнать, сколько углерода могло раствориться в этой зоне железо-никелевого расплава. По крайней мере две линии доказательств указывают на то, что его может быть много — возможно, гораздо больше, чем во всех остальных оболочках планеты, вместе взятых.
Первые ключи к разгадке тайны глубинного углерода появились в новаторском исследовании спокойного и скромного гарвардского геофизика Фрэнсиса Бёрча. Научные открытия Бёрча, возможно, оказались в тени его центральной роли в создании и вводе в действие атомной бомбы, известной под кодовым названием «Малыш». Будучи капитан-лейтенантом Военно-морского флота США во время Второй мировой войны, он руководил сборкой бомбы на острове Тиниан в западной части Тихого океана и погрузкой оружия в Боинг B-29 «Суперкрепость», носящий собственное имя «Энола Гэй».
Когда я ходил на его курс геофизики осенью 1971 г., 68-летний Бёрч казался мне мягким, увлеченным своим делом преподавателем. Он рассказывал обо всех сферах применения геофизики — от исследования слоистой структуры Земли до изучения ее значительного теплового потока и переменного магнитного поля. Если бы он не был таким известным в этой области, т.е. если бы мы до этого уже не прошли по учебной программе закон Бёрча и уравнение состояния Бёрча — Мурнагана, мы бы даже не осознали, насколько большая часть материала курса базируется на его собственных революционных открытиях.
В самой важной своей работе, опубликованной в 1952 г. и остающейся фундаментом геофизического мышления до сегодняшнего дня, Бёрч объединил данные сейсмологии (исследования звуковых волн, проходящих сквозь Землю) и материаловедения. Исследователь понял, что скорость сейсмической волны напрямую связана с плотностью породы, через которую она проходит. Используя свою модель, он описал недра Земли гораздо детальнее и углубленнее, чем было сделано до него. Под тонкой земной корой находится трехслойная мантия со значительными неоднородностями плотности, отмечаемыми на глубинах примерно 410 и 670 км. Это границы, которые отделяют друг от друга верхнюю мантию, слой Голицына и нижнюю мантию. Бёрч предположил, что плотность обогащенных магнием, кремнием и кислородом силикатных минералов, из которых состоят эти слои, последовательно нарастает с глубиной. Десятилетия дальнейших исследований сотен ученых добавили некоторые детали и нюансы, но общая картина, нарисованная Бёрчем, остается верной и поныне.
Гораздо более отчетливая неоднородность, отражающая сильный контраст плотностей, отмечается в основании мантии (граница мантии и ядра) на глубине около 2900 км от поверхности Земли. Ранее ученые в течение долгого времени описывали ядро как плотную, богатую металлом зону с жидким внешним ядром, простирающимся вниз до глубины 5100 км, и меньшим кристаллическим внутренним ядром с радиусом около 1230 км. Бёрч использовал свежие данные о плотности жидкого металлического железа и сплавов при высоких давлениях и температурах, чтобы развить эту точку зрения. Он заметил, что сейсмические скорости в ядре указывали на плотность значительно меньшую, чем у чистого железо-никелевого сплава. Ученый утверждал, что в этом расплавленном слое должен быть по крайней мере один более легкий компонент: атомы железа и никеля внешнего ядра смешаны с 12% чего-то еще. Может ли оказаться этим недостающим компонентом огромное количество углерода?
Бёрч быстро обнаружил потенциальные «нестыковки» в своей смелой модели недр Земли. В остроумном примечании, которое прославилось не меньше его геофизических открытий, Бёрч отметил:
Излишне доверчивым читателям следует обратить внимание на то, что обычные слова, когда их применяешь по отношению к недрам Земли, подвергаются изменению и переходят в формы высокого давления. Вот несколько примеров подобных эквивалентов:
Несмотря на это предупреждение, предсказание Бёрча о наличии легкого элемента в жидком внешнем ядре выдержало все испытания. Но что это может быть за элемент? Экспериментаторы и теоретики, посвятившие себя данной сфере, продолжают биться над этим интригующим вопросом, но он до сих пор остается открытым.
В поисках ответа мы должны следовать трем простым правилам. Во-первых, элемент должен быть значительно легче железа и никеля, так что уран, свинец или золото не подходят. Во-вторых, элемент должен встречаться в изобилии в космосе; это требование исключает из списка подозреваемых легкие литий, бериллий или бор, к примеру. И наконец, в-третьих, элемент должен обладать способностью растворяться в расплавленном металле в экстремальных условиях температуры и давления внешнего ядра. На самом деле только жалкая горстка кандидатов удовлетворяет этим трем основным требованиям: водород, углерод, кислород, кремний и сера — вот единственные реальные претенденты. У каждого свои преимущества и недостатки, у каждого свои сторонники и очернители. Конечно, это не обязательно «или/или». Расплавленный металл способен легко растворить более одного примесного легкого элемента, возможно, даже все пять сразу. (Я лично отдаю предпочтение именно этому всеобщему раствору, поскольку природа, похоже, продвигает сложность.) В любом случае есть убедительное доказательство присутствия углерода в этой смеси.
Очевидными подсказками обеспечивают нас изотопы углерода. Атомы углерода распространены в двух вариантах — у него два стабильных изотопа. Каждый атом углерода имеет шесть протонов в своем ядре, это определяющая характеристика углерода. Однако количество нейтронов — других кирпичиков атомных ядер — может варьировать. Почти 99% атомов углерода обладают шестью нейтронами (изотоп углерод-12), а оставшийся 1% — это углерод-13 с семью нейтронами. У наших каменистых соседей — в частности, у красной планеты Марс и большого астероида Веста — именно такое, научно доказанное соотношение этих изотопов; судя по всему, оно характеризует и большинство других объектов нашей внутренней части Солнечной системы. Но углерод Земли, по крайней мере доступный, находящийся рядом с поверхностью, похоже, слишком «тяжелый», с бóльшим процентным содержанием углерода-13, чем у соседей нашей планеты. Это загадка, которая требует решения.
Самое простое объяснение этой кажущейся аномалии заключается в том, что изотопный состав Земли такой же, как и у других миров, но «недостающий» легкий углерод спрятан от нас, заперт в ядре Земли. Если жидкое внешнее ядро содержит хоть крошечную долю углерода, то во всем ядре легко могло бы поместиться в 100 раз больше шестого элемента, чем известно для земной коры. А сколько всего содержится в Земле углерода? Поразительно, но мы абсолютно несведущи в таком важном вопросе.
Нет почтового назначения на Земле более тайного, более недоступного, чем твердое внутреннее ядро. Находясь на глубине более 5100 км, элементы внутреннего ядра подвержены давлениям выше 3 млн атм и температурам, доходящим до 5000 °C. Десятилетиями общепринятая точка зрения гласила, что внутреннее ядро сложено твердым металлическим железом с небольшой долей никеля. Как и в расплавленном внешнем ядре, один или несколько легких элементов тоже могут играть свои роли — второстепенные, но ведущая партия у железа.
Однако существует проблема, связанная с природой звуковых волн. Сейсмические волны бывают двух разных типов. Более сильные и быстрые, первичные (или «P») волны возникают, когда атомы и молекулы ударяются друг о друга последовательно, подобно костяшкам падающего домино. Движение атомов происходит в том же направлении, что и движение P-волны. Железо и его никельсодержащие сплавы вполне соответствуют регистрируемой скорости P-волн во внутреннем ядре.
Вторичные же (или «S») волны возникают, когда атомы двигаются из стороны в сторону, вызывая аналогичные движения у своих соседей. (Вспомните волну болельщиков на футбольном стадионе, когда люди встают и садятся, т.е. движутся вверх-вниз, а волна идет вдоль трибун.) Движения атомов при этом перпендикулярны движению волны. Удивительно, но S-волны проходят сквозь внутреннее ядро в два раза медленнее, чем должны бы в кристаллическом железе.
Что же происходит? Простое объяснение заключается в том, что внутреннее ядро частично расплавлено — состояние, которое неизменно замедляет S-волны, но железо-никелевый сплав не мог бы плавиться в предполагаемых условиях внутреннего ядра. Джи (Джеки) Ли, профессор геологии в Мичиганском университете, предложила оригинальное экспериментальное объяснение этого расхождения.
Блестящая, увлеченная исследовательница, способная оперативно поддержать вызывающие интерес новые идеи или подметить слабое место в аргументах коллеги плюс всегда готовая улыбнуться тонкой шутке или остроумному высказыванию, Ли — мастер ячейки с алмазными наковальнями. Подобно многим своим ровесникам из материкового Китая, она попала в науку, так как была отличницей.
Ли отучилась на бакалавра в престижном китайском Научно-техническом университете, затем поступила в Гарвард, чтобы получить докторскую степень, специализируясь на физике и химии глубоких недр Земли.
Одно из самых творческих исследований Джи Ли было посвящено углероду во внутреннем ядре Земли. Работая со своим выпускником Бин Ченом (ныне преподавателем Гавайского университета) и группой коллег по Обсерватории глубинного углерода, Ли изучила суперплотное соединение атомов железа и углерода в соотношении 7:3. Ранее исследователи утверждали, что этот необычный карбид железа потенциально может представлять собой минерал самых глубинных зон Земли, поэтому мичиганская команда проверила эту идею, сжав черный порошкообразный образец между алмазами до почти 2 млн атм, чтобы измерить его различные физические свойства. Экстраполируя полученные результаты на условия внутреннего ядра, экспериментаторы обнаружили почти полное соответствие сейсмологическим наблюдениям — прохождение P-волн было таким же, как в чистом железе, а скорость S-волн оказалась гораздо меньше. Это открытие никоим образом не доказывает, что углерод существует во внутреннем ядре Земли в форме карбида железа, но на текущий момент такая гипотеза кажется вполне вероятной.
В дополнительном исследовании, результаты которого были опубликованы несколько месяцев спустя, группа ученых в Германии во главе с аспирантом Клеменсом Прешером в Баварском геологическом институте при Байройтском университете подвергла то же соединение одновременно высокому давлению и высокой температуре и обнаружила необычные эластичные свойства, описанные авторами как «резиновые». Это нетипичная характеристика для минерала, но она подчеркивает, сколько еще нам придется узнать об углероде, находящемся глубоко внутри нашей планеты.
Наши попытки разгадать тайны земного ядра открывают фундаментальную правду о науке. Мы можем занести в каталог все кристаллические формы углерода Земли — сотни известных минералов коры и множество недостающих видов, плотные карбонаты мантии и манящие намеки на карбиды в ядре. Но такой каталог, каким бы полным он ни был, не самоцель. Все разрастающиеся знания о формах земного углерода ведут к созданию все более живой картины нашего изменчивого планетарного дома: как он появился, как функционирует, какова его дальнейшая судьба и почему он уникален в космосе.