Книга: Симфония №6. Углерод и эволюция почти всего
Назад: ИНТРОДУКЦИЯ — До воздуха
Дальше: ИНТЕРМЕЦЦО — Глубинный углеродный цикл

АРИОЗО — Происхождение земной атмосферы

Атмосфера согревает Землю. Она защищает нас от жесткого солнечного излучения. Она поддерживает нас, обеспечивая кислородом, которым мы дышим, и водой, которую мы пьем. Воздух также хранит огромные запасы углерода, используемого растениями, которые мы едим. Но Земля при рождении и в младенчестве не имела атмосферы. Воздух должен был появиться, вырасти из ничего. Как?

Чтобы узнать это, давайте перенесемся на 4,5 млрд лет назад — в эпоху, когда планеты все еще формировались, Солнечная система пребывала в хаосе, а углеродный цикл Земли только начинал складываться.

Земля получает углерод из космоса

Итак, мы на 4,5 млрд лет в прошлом. Протоземля образовалась как единое целое. Начала формироваться ее многослойная структура, состоящая из ядра, мантии и коры. Вместе с каменным дождем на Землю попали десятки химических элементов, большинство из которых — редкие. В смеси компонентов доминируют несколько минералообразующих элементов: железо, кремний, магний и самый распространенный из них, дающий 90% общей массы, — кислород. Кальций, алюминий, никель и натрий составляют 90% остального. Прочее богатство Периодической таблицы встречается в меньших количествах — несколько атомов на тысячу азота и фосфора, несколько атомов на миллион лития и фтора и несколько атомов на миллиард бериллия и золота.

Земля и другие планеты земной группы — Меркурий, Венера и Марс — сформировались ближе всех к Солнцу, безжалостный жар которого испарил большинство газов. Потому-то эти каменистые внутренние планеты предпочли элементы, из которых могли образовываться твердые минералы. Самые же распространенные элементы космоса — газообразные водород и гелий — были в основном отброшены мощными солнечными ветрами далеко (на расстояние более 0,5 млрд км) от Солнца: в область газовых планет-гигантов Юпитера, Сатурна, Урана и Нептуна.

В космическом масштабе водород и гелий всегда составляют самую большую долю — 99% всех атомов. Из оставшегося 1% атомного вещества, которое формирует каменистые планеты, ключевую роль играют атомы углерода. Из атомов, не являющихся водородом или гелием, каждый четвертый — атом углерода. Только железо и кислород более распространены среди планетообразующих остатков. Однако в отличие от железа и кислорода большинство атомов углерода на ранних этапах истории Вселенной оказались заперты в маленьких летучих молекулах — углекислого и угарного газов, а также метана. В результате получилось, что запасы земного углерода скудны, но не понятно насколько: наше наиболее вероятное предположение — не более одного атома на сотню.

Весь углерод Земли пришел из космоса, из трех главных источников. Некоторое его количество было привнесено солнечным ветром, обогащенным углеродсодержащими газами Солнца. Более заметная доля пришла на Землю в составе черных богатых углеродом метеоритов, которые до сих пор время от времени падают с неба. Эти удивительные камни доставили сюда также все виды органических молекул: нефтеподобные углеводороды и спирты плюс основные биомолекулы, а именно аминокислоты, сахара, пурины и пиримидины, которые играют существенные роли в ДНК и РНК, — все в собранном виде, готовые к химическим преобразованиям. Но самый важный вклад в растущие запасы земного углерода внесли кометы, исключительно богатые небольшими молекулами газов, в частности угарного и углекислого. Нельзя не упомянуть также, что кометы принесли и огромное количество воды, из которой образовались земные океаны.

Значительная часть этих запасов углерода циркулировала в составе флюидов глубоко под поверхностью, подвергаясь там температурам, достаточным для разделения большого скопления разных атомов на их простейшие молекулярные компоненты — азот, воду и углекислый газ. Так начался круговорот земного углерода. Поскольку горные породы в твердом состоянии не могут долго удерживать горячие, находящиеся под давлением подвижные флюидные потоки, те начали пробиваться к поверхности всевозможными путями. Они продвигались, растворившись в расплавленной породе — раскаленной магме, которая прокладывала себе путь наверх, используя любую трещину или щель. Недалеко от поверхности — возможно, на глубине 1 км или меньше, где давление падает ниже критического значения, — горячие потоки преобразовывались во взрывообразно расширяющийся газ. Подобно шампанскому из откупоренной бутылки, газы и измельченные в порошок камни вырывались наружу, создавая горячие фонтаны золы и воздуха. В более холодных зонах эти легкие подвижные молекулы также должны были подниматься сквозь кору, находя любой путь и постепенно заполняя огромные пространства покорной Земли. Освобожденная при этом вода стала первыми океанами, а газы — первым воздухом.

Никто не знает состава первичной атмосферы Земли. Химически нейтральный газ, который доминирует в нынешнем воздухе, — изначально азот в форме молекул N2 с небольшой примесью аргона — безусловно, присутствовал с самого начала. Атмосфера Земли должна была подождать более 2 млрд лет, пока не накопится благотворный для жизни химически активный кислород O2, другой ее главный современный компонент. В первоначальной смеси должны были содержаться и зловонные вулканические, содержащие серу газы, такие как сероводород (H2S) и сернистый газ (SO2). В раннюю атмосферу Земли вошли также газы, насыщенные углеродом.

Углерод атмосферы сконцентрирован в составе трех простых молекул. Углекислый газ CO2 в наши дни заслужил множество публикаций в прессе (в большей их части он плохой). Это простая молекула — атом углерода в ней встроен в середину аккуратного ряда между двумя атомами кислорода. При низких температурах внешнего космоса углекислый газ, замерзая, может образовывать чистые бесцветные кристаллы, известные как сухой лед. На Земле CO2 — доминирующий в атмосфере углеродсодержащий газ. Его концентрация составляет, согласно последним измерениям, 400 частей на миллион и продолжает повышаться с каждым годом.

Вдали от звезд и планет, в глубоком космосе, где изолированные атомы находят друг друга лишь изредка, единичный атом кислорода может соединиться с единичным атомом углерода в угарный газ CO — одну из самых распространенных молекул космического пространства. Угарный газ всегда был второстепенным компонентом атмосферы Земли — менее одной части на миллион в воздухе, которым мы дышим сегодня. В нашей повседневной жизни угарный газ представляет реальную опасность, потому что он легко образуется при неполном сгорании углеродных видов топлива. При сгорании такого топлива углерод всегда соединяется с кислородом, но если перекрыть поток воздуха к вашей печи или камину, то кислорода для образования углекислого газа окажется недостаточно и ваш дом наполнится угарным газом. Последствия станут катастрофическими.

Угарный газ коварен, потому что он бесцветный и не имеет запаха, вследствие чего наши тела принимают его за кислород О2. Но, в отличие от кислорода, который мы быстро усваиваем при вдохе, угарный газ блокирует человеческое дыхание. Нехватка кислорода вызывает медленную потерю сознания. Мозг умирает, а затем умираете вы.

Третья простая углеродсодержащая молекула в атмосфере Земли — это метан CH4, который вы оплачиваете как «природный газ», когда готовите еду или отапливаете свой дом. Это изящная маленькая молекула с центральным атомом углерода, окруженным пирамидой из четырех атомов водорода. Современная атмосфера Земли содержит лишь следы метана — всего две части на миллион, но, как мы увидим, этого достаточно, чтобы были последствия.

Воздух — пуск остановлен

В каком-то смысле все равно, смесь чего была в самой древней земной атмосфере, поскольку в одно шокирующее мгновение почти 4,5 млрд лет назад защитное воздушное покрывало нашей планеты оказалось стерто с лица Земли.

В самой глубокой древности история атмосферы Земли была наполнена драмой. Огромные вулканы выбрасывали из глубоких недр пар и воздух даже в те времена, когда из космоса дождем сыпались обогащенные летучими веществами кометы. По мере того как толщина окутывающего планету газового слоя увеличивалась, на атмосферу обрушивались удары гигантских камней из космоса, время от времени разрушая внешние границы Земли. Эти стремительные космические камни, диаметр которых иной раз доходил до сотни километров, возможно, крушили и перемешивали внешние слои Земли, но были не в состоянии остановить неуклонную дифференциацию тверди, воды и воздуха.

Но одно столкновение стало исключительным — гораздо большим по площади и намного более разрушительным, чем любое другое событие в истории Земли. В течение десятков миллионов лет, в те времена, когда планеты Солнечной системы образовывались и соревновались за орбитальное пространство, у Земли был достойный соперник планетарных масштабов — имя ему дали Тейя в честь древнегреческой богини, матери Луны. Будучи, возможно, крупнее Марса, но гораздо меньше все еще растущей Земли, Тейя боролась за то же орбитальное пространство, что и наша планета. Какое-то время — может быть, даже несколько десятков миллионов лет — Земля и Тейя исполняли свой опасный танец на расстоянии. Прохождение же поблизости друг от друга, вероятно, вызвало смещение их орбит-близнецов, что привело к неизбежной последней дуэли.

Законы гравитации, диктующие эволюцию солнечных систем, гласят, что две планеты никогда не могут делить одно орбитальное пространство. В какой-то точке они подойдут слишком близко друг к другу, и, когда это произойдет, уверенно делайте ставку на более крупный объект.

В один трагический день — наша планета тогда была еще младенцем около 50 млн лет от роду — Тейя ударилась о Землю. Некоторые модели этого события предполагают прохождение по касательной. Но даже этот почти скользящий удар оказался фатальным для Тейи. Итогом стало ее полное уничтожение: будь у этого планетарного спектакля космический свидетель, наблюдающий с безопасного расстояния, его бы заворожило зрелище того, как Тейя развалилась на части и в основном испарилась, раскаленная добела в смертельных муках.

Вам вполне можно простить, если, наблюдая такую катастрофу, вы бы и не заметили, что еще одной жертвой столкновения стала разреженная атмосфера Земли. Все молекулы воздуха были вытеснены, главным образом выброшены глубоко в космос, чтобы никогда больше не вернуться к уже выигравшей поединок третьей от Солнца планете. Более заметным оказалось огромное светящееся облако испарившихся от удара горных пород — смесь раскаленных обломков мантий Тейи и Земли. Значительная доля этого месива упала обратно в омывающий Землю океан магмы в виде проливных дождей из раскаленных докрасна расплавленных капель. Оставшаяся часть улетела на орбиту, чтобы вскоре собраться в спутник Земли Луну.

Пришло время начинать все сначала. Гигантская кнопка перезагрузки, при нажатии которой образовалась Луна, также запустила заново и образование атмосферы Земли. И вот тогда-то глубинный углеродный цикл заработал всерьез.

Подсказки о самой древней атмосфере Земли

Процесс формирования атмосферы происходил более 4 млрд лет назад. Геологи недаром называют неустоявшиеся первые полмиллиарда лет Земли гадейским эоном. Если бы вы отважились оказаться на той обновленной поверхности Земли, у вас бы создалось непреодолимое ощущение неумолимо жестокой и враждебной среды. Сложно сказать, чего стоило опасаться больше — непрекращающегося каменного дождя с неба или беспощадного взрывного вулканизма из глубины. Тем не менее два этих бедствия в совокупности доставили в воздух углерод и запустили углеродный цикл Земли. Новая атмосфера буквально пролилась с небес и изверглась из глубин.

Есть ли у нас возможность узнать природу той эфемерной атмосферы, которая окутывала Землю более 4 млрд лет назад? С тех далеких времен до сегодняшнего дня дожили лишь редкие бесценные микроскопические песчинки отдельных минералов, а также совсем небольшое количество горных пород возрастом более 3,5 млрд лет, сохранившихся в удаленных регионах Австралии, Канады, Гренландии и Южной Африки. Но эти разрозненные кусочки ничего не могут рассказать о природе древнего воздуха.

Тем не менее подсказки о древнем воздухе существуют. О том, что же там могло быть, нам намекают три линии свидетельств от трех разных научных областей — астрофизики, геохимии и планетологии.

Подсказка №1 — Слабое молодое Солнце

Первая раскрывающая суть подсказка о гадейской атмосфере Земли пришла из источника, кажущегося не очень-то вероятным: от физиков, которые изучают эволюцию звезд. Специалисты по астрофизике звезд сообщают нам, что Солнце, как и многие другие звезды, находится сейчас в середине периода стабильности. В течение этого периода, продолжающегося миллиарды лет, звезды наслаждаются спокойствием, размеренно потребляя водород, который в реакциях ядерного синтеза преобразуется в гелий. Взгляните на ночное небо. Девять из каждых десяти звезд, которые вы видите, сжигают водород в реакциях ядерного синтеза, при этом лишь доля процента их водородной массы преобразуется в тепло и свет. Результат этих реакций — именно то, что мы видим и ощущаем как солнечный свет.

Но тут есть загвоздка. Сжигающие водород звезды меняются так медленно, что их сияние остается неизменным долгое время. Изменения невозможно заметить не то что за сотни — за миллионы лет. Тем не менее за миллиарды лет Солнце стало гораздо ярче. Более 4 млрд лет назад наша звезда излучала только 70% сегодняшней мощности. Это огромная разница; если бы такое уменьшение излучающей энергии Солнца произошло в наши дни, оно имело бы немедленные и катастрофические последствия. Земля бы замерзла, лед распространился от полюсов к экватору. Жизнь почти прекратила бы свое существование, остались бы только небольшие локальные колонии простых организмов, впившиеся в теплые влажные зоны рядом с горячими вулканическими жерлами.

В размышлениях о временах того слабого Солнца 4 млрд лет назад нам бы следовало удивляться, как это Земле удалось не покрыться льдом. Те несколько минералов и каменных обломков, которые дожили до нашего времени с первого полумиллиарда лет Земли, определенно не указывают на замерзший мир.

Самым правдоподобным объяснением представляются парниковые газы. Аналогично тому как теплица у садовника может оставаться теплой даже в холодные зимние дни, некоторые атмосферные газы обладают способностью поглощать и захватывать солнечную энергию, уменьшая количество тепла, излучающегося обратно в холодный космос. Водяной пар и облака всегда были частью парникового баланса; сегодня на Земле они отвечают почти за половину жизненно важного парникового эффекта, который сейчас не дает нашей планете замерзнуть. Но одних только молекул воды недостаточно, чтобы компенсировать слабость молодого Солнца. Чтобы захватить достаточно тепла, Земля нуждалась в других молекулах — углеродсодержащих.

Подсказка №2 — Геохимия

Если более 4 млрд лет назад Земле не давали стать замерзшей планетой большие запасы парниковых газов, то где они сейчас? Геохимики, проводящие глобальную инвентаризацию химических элементов Земли, указывают на распространенные сегодня на всех континентах огромные залежи карбонатных минералов, которые не образовались бы в таком изобилии 4 млрд лет назад. Между карбонатами и атмосферным CO2 долгое время существовало равновесие: каждая молекула карбоната в коре — это минус одна молекула углекислого газа в воздухе. Вывод таков: 4 млрд лет назад, когда карбонатных минералов было меньше, бóльшая часть углерода сидела взаперти в молекулах CO2 атмосферы, а давление воздуха, возможно, в несколько раз превышало нынешние значения.

Некоторые геохимики подозревают в этом сценарии небольшую проблему: они считают, что насыщенная углекислым газом атмосфера была основательно дополнена метаном — газом, который мог быть гораздо более распространен в атмосфере до того, как 2,5 млрд лет назад в ней вдруг резко увеличилось содержание кислорода. Метан — это мощный парниковый газ, каждая молекула которого во много раз эффективнее молекулы CO2. Это изобилие метана могло бы купаться в космических лучах, инициируя различные органические химические реакции и образуя молекулярную дымку, которая, возможно, придавала юному небу Земли отчетливый оранжевый оттенок — такой, как наблюдается на спутнике Сатурна Титане сегодня.

Если бы такая плотная атмосферная смесь углекислого газа и метана внезапно окружила сегодняшнюю Землю, климат бы резко изменился, приблизившись к небывалым условиям оранжереи. Это вопрос равновесия. Парниковый эффект необходим для жизни — без него современная Земля замерзла бы от полюсов до экватора. Но слишком много парниковых газов означает, что удерживается слишком много тепла. Есть вероятность, что мы достигнем атмосферного переломного момента, когда потепление будет освобождать все больше и больше метана и углекислого газа из почвы и пород, что в свою очередь приведет ко все большему потеплению: возникшая положительная обратная связь может спровоцировать возникновение необратимого и неконтролируемого парникового эффекта.

Что бы произошло, если бы все карбонатные минералы в земной коре преобразовались в атмосферный углекислый газ? Что бы произошло, если бы этот огромный резервуар с более чем 200 млн млрд т углерода — в 100 000 с лишним раз больше его содержания в современной атмосфере — внезапно превратился в газовый? Ответ очевиден: Земля стала бы подобна Венере. Венера во многих отношениях является планетарным близнецом Земли — тот же размер, та же плотность и тот же основной химический состав. Но сочетание двух факторов — ее орбиты, расположенной на 40 млн км ближе к ослепительному Солнцу, и плотной существенно углекислой атмосферы, давление которой в 90 раз больше, чем на поверхности Земли, — привело к бесконтрольному парниковому эффекту. Средняя температура поверхности Венеры составляет 480 °C — вполне достаточно, чтобы расплавить свинец.

Возможно, Земле просто повезло. (Поэтому мы и назвали свою зону обитаемости планетой Златовласки.) Если это так, то углерод был главной тому причиной.

Подсказка №3 — Метеориты с Земли

Третья, гораздо более умозрительная, линия свидетельств — метеориты с древней Земли — может выявить тонкие детали ранней земной атмосферы. Эта идея не такая сумасшедшая, как выглядит со стороны. Более сотни метеоритов были идентифицированы как пришедшие с Марса, поскольку, когда столкновения с большими кометами или астероидами разрушают ландшафт Красной планеты, камни с ее поверхности разлетаются во все стороны. Неоспоримым свидетельством того, что эти довольно невзрачные булыжники образовались на Марсе, а не были частью астероида или другого объекта, является характерное сочетание молекул газов, сохранившихся в миниатюрных воздушных карманах. Эта смесь точно соответствует соотношению газов, измеренному зондами NASA в марсианской атмосфере.

Итак, представьте себе последствия одного из таких гигантских столкновений астероида с Землей более 4 млрд лет назад. Обломки выбитых с поверхности камней должно было выбросить в космос. Эти куски породы содержат крошечные пузырьки древней атмосферы Земли. А они должны все еще находиться внутри защищающих их минералов. Поэтому все, что нам нужно сделать, — это отправиться на Луну и найти там парочку из бесчисленных тысяч метеоритов с Земли, которые должны были упасть на поверхность нашего светящегося поблизости спутника. На самом деле многие из нас думают, что сбор земных метеоритов — одна из самых веских причин вернуться на Луну и снова пройтись по нашему ближайшему небесному соседу.

Собрать немножко древнего воздуха Земли — это было бы ого-го!

Назад: ИНТРОДУКЦИЯ — До воздуха
Дальше: ИНТЕРМЕЦЦО — Глубинный углеродный цикл