Книга: Дарвинизм в XXI веке
Назад: Глава 2. Такая естественная синтетика
Дальше: “Наши недостатки – продолжение наших достоинств”

Не лезь в концепцию

Означает ли сказанное, что СТЭ полностью и исчерпывающе объясняет все эволюционные явления и фактов, противоречащих ей (или не вписывающихся в нее, не поддающихся интерпретации в ее понятиях), нет? Судите сами.

Для начала зададим простой вопрос: какие организмы эволюционируют быстрее – крупные или мелкие? Если все дело только в динамике генных частот, то скорость эволюции должна зависеть от исходного разнообразия материала (в конечном счете – от частоты мутаций), жесткости отбора, численности вида и скорости смены поколений. Кроме того, согласно СТЭ, на нее может влиять то, насколько легко у данной группы существ возникают преграды, препятствующие обмену генами между популяциями.

Частота мутаций у разных групп живых организмов может заметно различаться, но не обнаруживает явной зависимости от размера (по крайней мере, в расчете на одно поколение). Жесткость отбора может отличаться очень сильно – на порядки, но если она и зависит от размеров организма, то только в том смысле, что в популяциях мелких существ она может достигать значений, которые в популяциях крупных просто невозможны: скажем, в популяции амурских тигров, насчитывающей всего 400–500 особей, не может выживать одна особь из тысячи родившихся. Так что по этому показателю если у кого-то и есть преимущество, то скорее у мелких организмов. По всем же остальным параметрам преимущества последних и вовсе очевидны: они более многочисленны, легче распадаются на изолированные популяции, и у них быстрее сменяются поколения. По всему выходит, что в среднем они должны изменяться быстрее.

В действительности, однако, все обстоит почти строго наоборот – по крайней мере, у животных и одноклеточных эукариот. Видовой состав слонов и крупных копытных обновляется наполовину примерно за 200 тысяч лет. Для мелких млекопитающих этот период составляет 500 тысяч, для насекомых – 3–7 млн, для одноклеточных диатомовых водорослей – 15 млн лет. Можно спорить, насколько адекватен такой показатель для оценки скорости эволюции и означает ли слово “вид” одно и то же для слонов и диатомей (особенно применительно к ископаемому материалу), но общая закономерность слишком очевидна. И ее нужно как-то объяснять.

Другой пример: согласно теории, дискретность видов – их отграниченность друг от друга и целостность каждого внутри себя – поддерживается постоянным обменом генами внутри вида и невозможностью такого обмена между видами. Строго говоря, с этой точки зрения само понятие вида приложимо только к существам с регулярным половым процессом в той или иной форме. Во всяком случае, у форм, размножающихся исключительно бесполым путем, видовая норма должна быть гораздо менее жесткой, а границы между видами – условными.

Между тем некоторые животные (в том числе и довольно высокоорганизованные) способны существовать как с половым размножением, так и без него. Всем известный серебряный карась образует устойчивые популяции из одних самок, размножающихся партеногенезом (процесс, при котором развитие зародыша протекает точно так же, как и при обычном половом размножении, но без оплодотворения и без участия генов самца). Однако их видовая принадлежность определяется так же легко, как и у представителей того же или близкого вида, живущих в нормальной обоеполой популяции. И никакой особенной тенденции к размытию видовых признаков у таких существ не просматривается. Бесполые и партеногенетические виды остаются дискретными у одноклеточных, жуков-долгоносиков, низших водорослей, папоротников и коловраток (причем для последних это показал не кто иной, как Эрнст Майр – один из главных идеологов СТЭ).

Вид – вообще центральное понятие в синтетистской парадигме, рассматривающей всякую эволюцию как процесс реального или потенциального видообразования. Согласно СТЭ, каждый акт видообразования уникален и в принципе неповторим. Никакой вид не может возникнуть независимо второй раз – даже от той же исходной формы и под действием тех же факторов отбора. Это так же невероятно, как то, что два брата, родившиеся в разные сроки, будут генетически идентичны, как близнецы.

Однако еще в начале 60-х годов советский энтомолог Георгий Шапошников экспериментально изучал процессы видообразования у тлей. Тля – исключительно высокоспециализированный паразит, многие виды тлей способны питаться лишь строго ограниченным набором растений, часто – всего одним видом. Если лишить тлей доступа к “своему” кормовому растению, они умрут – даже сидя на сочном побеге, который с аппетитом сосут их ближайшие родичи.

С помощью некоторых ухищрений и ценой высокой смертности среди подопытных Шапошникову все же удалось заставить тлей, питавшихся на купыре, потреблять другое зонтичное растение – бутень. При этом уже через несколько десятков поколений тли-переселенцы приобретали морфологическое сходство с другим видом тлей, исходно обитавшим на бутене. И самое неожиданное – они утрачивали способность скрещиваться с исходным “купырным” видом, зато могли вступать в брак с “бутеневыми” тлями. Если остальные результаты Шапошникова противоречили скорее духу СТЭ, то преодоление межвидового репродуктивного барьера нарушало уже и букву теории: получалось, что ученый в своих экспериментах независимо воссоздал уже существующий конкретный вид. Это попахивало направленностью эволюции и чуть ли не лысенковскими фантазиями о порождении ржи пшеницей и кукушки – пеночкой.

Опыты Шапошникова получили немалую известность, но долгое время не имели никакого теоретического объяснения. Десятилетиями они рассматривались как своего рода курьез, уникальный случай (тем более что работы эти были выполнены в СССР в те времена, когда хотя Лысенко и не имел уже абсолютной власти над советской биологией, его сторонники все еще численно преобладали в исследовательских учреждениях, и работ, исходивших из его “теорий”, в советской научной прессе печаталось немало). Однако много позже зарубежные ученые воспроизвели их на других видах насекомых.





Более того – случаи “повторного видообразования” были обнаружены и в природе. Так, например, на небольших островах Неприступный и Соловей архипелага Тристан-да-Кунья в южной Атлантике живут вьюрки. На каждом из островов встречаются две разновидности этих птиц, хорошо различающиеся по размерам клюва – что и не удивительно, поскольку они питаются семенами разного размера. Большеклювые вьюрки с Неприступного внешне совершенно неотличимы от большеклювых вьюрков с Соловья. То же самое можно сказать и о тонкоклювых птицах с обоих островов. Зоологи нисколько не сомневались, что каждая из этих форм представляет собой единый вид, распространенный на обоих островах. Однако в 2007 году южноафриканские биологи сравнили геномы этих птиц. И оказалось, что большеклювые вьюрки Неприступного генетически гораздо ближе к своим тонкоклювым землякам, чем к большеклювым вьюркам Соловья, а последние, в свою очередь, более близкая родня местным тонкоклювым вьюркам.

Видимо, оба острова были заселены единым предковым видом, который на каждом из них независимо разделился на две формы – каждая из которых удивительно похожа на свой аналог с другого острова.

Но в конце концов, неоднократное возникновение даже чрезвычайно сходных форм на базе одного и того же вида – это еще куда ни шло. В этих случаях отбору приходится иметь дело с одним и тем же исходным материалом – накопленной мутационной изменчивостью (см. начало этой главы). Даже разные, но очень близкие виды теоретически могут породить очень сходные формы – ведь и у них внутривидовое генетическое разнообразие в значительной мере остается общим. Но этими соображениями никак нельзя объяснить широкое распространение параллелизмов и конвергенций в эволюции обширных систематических групп – классов и типов. Между тем палеонтологи все чаще стали замечать: накануне появления больших и славных групп их отдельные признаки возникают независимо в разных, не очень родственных ветвях группы-предка. Например, всем известный и вошедший во все учебники археоптерикс при детальном исследовании оказался вовсе не предком современных птиц, а “конкурирующей моделью” – представителем совсем другой ветви юрских рептилий-архозавров, независимо освоившей полет на перьевых крыльях. Сегодня палеонтологам известно как минимум пять таких эволюционных попыток, и представителям по крайней мере двух ветвей (настоящих птиц и так называемых энанциорнисов, к которым относится и археоптерикс) удалось реально подняться в воздух.

И птицы далеко не уникальны в этом отношении. Когда ученые попытались разобраться, от какой же именно группы триасовых рептилий произошли современные млекопитающие, выяснилось, что различные признаки будущих млекопитающих (специфическое строение слуховых косточек, мягкие губы и т. д.) возникали независимо – хотя и порознь – в шести разных группах зверозубых ящеров (териодонтов). Одна из них, наиболее успешно продвигавшаяся по этому пути, дала начало почти всем современным млекопитающим – как плацентарным, так и сумчатым. От другой до наших дней дожили утконосы и ехидны – странные существа, откладывающие яйца, но выкармливающие детенышей молоком. Еще четыре вымерли полностью – но они существовали довольно долго, более-менее успешно конкурируя с будущими победителями.

Академик Леонид Татаринов, описавший эту “гонку в млекопитающие”, назвал ее “параллельной маммализацией териодонтов”. Позднее выяснилось, что подобные “-зации” предшествуют появлению на свет очень многих крупных групп животных и растений. Например, те же териодонты принадлежат к ныне полностью вымершей ветви рептилий – синапсидам, предки которых, вероятно, приобрели характерные черты рептилий независимо от предков современных пресмыкающихся. (Вообще, судя по всему, окончательный выход позвоночных на сушу происходил широким фронтом: ключевые черты рептилий независимо приобрели потомки сразу нескольких групп амфибий. И хотя большинство из них впоследствии вымерло, даже нынешние пресмыкающиеся – потомки разных групп земноводных.) Еще раньше, в девонском периоде проходила “тетраподизация” кистеперых рыб – сразу несколько групп этого надотряда начали независимо приобретать признаки четвероногих существ. А в конце периода юрского разные семейства голосеменных растений начали рваться в цветковые. И словно бы навстречу им среди тогдашних насекомых возникали формы, удивительно похожие на будущих опылителей – бабочек. Причем если обычно в гонке за право породить новую перспективную группу соревнуются хоть и не близкие, но все же родственники (все “недоптицы” принадлежат к группе архозавров, все “недомлекопитающие” – к териодонтам, все “недоамфибии” – к кистеперым), то подобия цветковых растений и бабочек возникали в самых разных группах голосеменных и насекомых. В частности, формы, удивительно похожие на бабочек, появились в столь далеких друг от друга отрядах насекомых, как сетчатокрылые и скорпионницы.







Согласно СТЭ, такое если вообще может быть, то только как крайне редкое случайное совпадение. Но всевозможные “-зации” оказались слишком частыми и слишком синхронными, чтобы их можно было списать на чистую случайность.

Разумеется, эти факты не прошли мимо внимания оппонентов дарвинизма, особенно из числа приверженцев номогенеза (см. главу 5) или телеологических эволюционных концепций. Они как будто бы прямо подтверждали, что эволюция (по крайней мере, макроэволюция – формирование и развитие крупных групп) – процесс закономерный и целенаправленный. Проблема, однако, заключалась в том, что ни одна из альтернативных дарвинизму эволюционных теорий не могла ни предложить механизмы, обеспечивающие направленность эволюции, ни хотя бы четко сформулировать ее “закономерности” и “цели”. Да и как их сформулируешь, если в одних и тех же группах некоторые виды вступают в очередную “-зацию”, а другие меняются совсем в других направлениях – или почти не меняются вообще? Мы говорили, что среди разных “бабочек” мелового периода были представители отрядов сетчатокрылых и скорпионниц. Оба эти отряда существуют и ныне, хотя их разнообразие и экологическая роль довольно скромны. Современных сетчатокрылых читатели, живущие в средней полосе и далекие от биологии, могут знать по златоглазкам – нежным зеленым созданиям с отливающими золотом глазами, которые летними вечерами кружат вокруг лампы, беззвучно трепеща своими четырьмя крыльями. Современных скорпионниц почти наверняка видел всякий дачник – это довольно крупные насекомые с пестрыми крыльями, немного похожие на комаров-долгоножек, но с задранным кверху концом брюшка (за что эти совершенно безобидные существа и получили свое грозное имя). Ни те, ни другие совсем не похожи на настоящих бабочек, на которых так походили их вымершие родичи.

То же самое можно сказать и о кистеперых рыбах – пока несколько групп этого надотряда соревновались за право стать амфибиями, другие (зачастую представители тех же самых семейств) оставались рыбами и в таком состоянии прожили более 300 миллионов лет – естественно, претерпевая собственную эволюцию. В частности, в начале мезозоя часть кистеперых (сформировавшихся как обитатели мелководий и пересыхающих водоемов, преимущественно пресных) ушла в море. Там и сохранился до наших дней единственный современный род кистеперых – знаменитая латимерия: оба современных вида этих рыб обитают в тропических морях, держась в основном на глубинах в сотни метров. Ни предполагаемая “цель” эволюции группы, ни “тенденции” или “закономерности” на большинство видов кистеперых почему-то не подействовали.

Назад: Глава 2. Такая естественная синтетика
Дальше: “Наши недостатки – продолжение наших достоинств”