Книга: Дарвинизм в XXI веке
Назад: Эпигенетика и эпигонство, или Злоприобретенные признаки
Дальше: И все-таки они наследуются. Но…

“…Что любое движенье направо начинается с левой ноги”

В сентябре 2015 года один из ведущих научных журналов мира – Nature – опубликовал очередную работу, посвященную экспериментальной эволюции тринидадских гуппи – тех самых, о которых мы говорили в главе “Отбор в натуре”. Объектом нового исследования группы ученых во главе с одним из основных участников “Проекта Гуппи” Дэвидом Резником стали четыре популяции гуппи. Популяция № 1 жила в относительно большой и глубокой реке с немалым числом хищников, самым опасным из которых для гуппи была хищная цихлида Crenicichla frenata. Популяция № 2 обитала в маленьком ручье, где хищников не было вообще. Молекулярно-генетический анализ показал, что популяция № 2 когда-то отпочковалась от популяции № 1, но как давно это случилось, оставалось неизвестным – хотя было ясно, что она живет в безопасных водах уже много поколений. Популяции № 3 и № 4 ученые создали сами, взяв некоторое число рыбок из популяции № 1, пересадив их в заводи без хищников и подождав, пока там сменятся три-четыре поколения (как мы помним, минимальный срок для наступления заметных эволюционных изменений). По сути эти две популяции воспроизводили популяцию № 2 на самом начальном этапе ее независимой эволюции.

Первым делом ученые взяли достаточное количество взрослых самцов из всех четырех популяций и измерили активность всех генов, работающих в клетках их мозга (это можно сделать, просто подсчитав количество одновременно присутствующих в клетках матричных РНК, снятых с каждого гена). Сравнив активность каждого отдельного гена в разных популяциях, они выявили 135 генов, активность которых в дочерних популяциях отличалась от их активности в популяции № 1. Причем активность каждого из этих генов во всех трех дочерних популяциях была смещена в одну и ту же сторону (увеличена или уменьшена) по отношению к материнской. Это позволяло предположить, что эти сдвиги отражают не случайные различия, а именно приспособление к новым условиям обитания – отсутствию хищников. Активность генов зависит как от внешних сигналов, так и от “содержания” других областей генома – регуляторных участков ДНК, генов так называемых факторов транскрипции (сигнальных белков, регулирующих интенсивность работы других генов) и т. д. – и в меру этой зависимости подлежит действию естественного отбора. Так что изменения в активности 135 генов могли быть суммой “быстрой” фенотипической (эпигенетической) реакции и генетических изменений под действием естественного отбора.

Каков же вклад каждого из этих факторов? Чтобы выяснить это, ученые взяли еще одну группу самцов из популяции № 1 и рассадили по двум аквариумам с проточной водой. В один вода поступала из другого аквариума, где жила хищная креницихла, которой ежедневно скармливали по две гуппи – так что гуппи из первого аквариума постоянно чувствовали запах хищника и “феромон тревоги”, выделяемый его жертвами.

Поскольку рыбки были из популяции № 1, для них эти пугающие сигналы были привычными – в своей родной речке они тоже постоянно сталкивались с ними. Через другой аквариум текла просто чистая вода без всяких следов присутствия хищника – и это для рыбок из популяции № 1 было совершенно новой ситуацией.

Через две недели (довольно большой срок в масштабах гуппиной жизни) ученые сравнили активность уже известных им 135 генов у гуппи из двух аквариумов. Поскольку геном рыбок измениться не мог, различия в активности генов в этом эксперименте могли отражать только индивидуальную фенотипическую реакцию на изменившиеся условия.

И вот тут выяснилось самое интересное. Из 135 исследованных генов 120 (89 %) отреагировали на исчезновение хищников изменением активности в сторону, противоположную той, в которую она менялась в ходе эволюционного приспособления к отсутствию хищников. То есть те гены, которые в ходе эволюции увеличивали свою активность, в ходе индивидуальной реакции ее уменьшали – и наоборот. Наблюдалась даже некоторая пропорциональность: чем сильнее интенсивность работы того или иного гена отклонялась от исходных значений у рыбок, только что столкнувшихся с отсутствием хищника, – тем больше было ее отклонение в противоположную сторону через три-четыре поколения жизни в безопасности. А те 15 генов, у которых направление индивидуальных изменений активности совпало с эволюционным, отличались наиболее слабыми изменениями ее в обоих случаях.

Какое все это имеет отношение к вопросу об эволюционной роли эпигенетических эффектов? Самое прямое: изменения активности генов в ходе жизни особи (в отличие от тех, что происходят в ряду поколений) – это и есть эти самые эпигенетические эффекты в чистом виде. Правда, группа Резника не изучала возможность и степень их наследования – этого не позволяли применяемые методы измерения активности генов. Но и без этого картина достаточно красноречива: эпигенетические сдвиги не “предвосхищают” последующие эволюционные изменения, не “прокладывают пути” для них, а уводят организм куда-то совсем не туда.

Конечно, такая картина получена хотя и для очень большого числа генов, но все-таки для единственного вида и для адаптации к единственному фактору – исчезновению хищников. Но вспомним парадоксальные результаты работ по “эпигенетическому ламаркизму”: едва ли не все они обнаруживают дезадаптивные эпигенетические изменения. В свете работы группы Резника противоположная направленность эпигенетических и эволюционных сдвигов предстает уже не странным невезением энтузиастов-исследователей, а общей закономерностью. Кстати, сами авторы “гуппиного” исследования так прямо и пишут, что фенотипическую пластичность можно использовать для прогноза направления эволюции под действием того или иного нового фактора – например, глобального потепления. Мол, глянул, как изменилась активность тех или иных генов у первого поколения, попавшего под действие этого фактора, – и уверенно предсказываешь, что в эволюции все будет наоборот.

Конечно, если в свете этого оглянуться на историю эволюционной идеи в биологии, на язык невольно запросятся иронические комментарии. Сколько квадратных километров бумаги было исписано за последние двести лет глубокомысленными словесами о “жизненном порыве”, “воле”, “стремлении”, “аккумуляции усилий” и всем таком прочем, что позволяет животному самому влиять на свою будущую эволюцию! Сколько блестящих умов – от Ламарка до Анри Бергсона и Бернарда Шоу – обольщались этой красивой идеей! Сколько упреков, насмешек, патетических обличений было обрушено на “догматиков” – дарвинистов, злостно игнорирующих эту великую творческую силу! И вот оказывается, что эта великая сила способна только создавать дополнительные препятствия на пути реальной эволюции. Разгребать которые приходится все тому же невозмутимому и трудолюбивому “демону Дарвина” – естественному отбору.

Но ирония – иронией, а как же все-таки понимать этот результат? Сами авторы работы предлагают простую трактовку: именно неадаптивность “первой реакции” активности того или иного гена – причина особенно быстрой эволюции ее в ближайших поколениях. Чем вреднее будет модификационное (негенетическое) изменение того или иного признака, чем сильнее оно осложнит жизнь своих обладателей – тем ценнее будет любое мутационное (генетическое) изменение, сдвигающее этот признак в обратную, полезную сторону, тем жестче будет отбор в пользу такого генетического варианта. И тем быстрее, следовательно, этот признак будет эволюционировать в ближайших поколениях. Эта мысль даже вынесена в название статьи Резника и его коллег: “Неадаптивная пластичность усиливает быструю адаптивную эволюцию экспрессии генов в природе”.

Это рассуждение звучит вполне правдоподобно и к тому же косвенно подтверждается некоторыми деталями (сужением размаха колебаний уровня активности для изученных генов в “безопасных” популяциях по сравнению с “живущими в опасности”). Однако остается вопрос: почему же “быстрые” изменения активности генов столь неотвратимо неадаптивны? Даже если они никак не связаны “по смыслу” с тем, чего требуют от организма изменившиеся условия среды, – почему бы им хотя бы в половине случаев не оказаться полезными? Ну или хотя бы нейтральными? Собственно, почему эти гены вообще закономерно реагируют на данное изменение в среде, если эта реакция никак не содействует адаптации к нему?

Вспомним комментарий Владимира Фридмана (см. главу “Отбор в натуре”) к более ранним опытам с гуппиными популяциями, в которых в безопасные дотоле заводи вселяли хищников (то есть делали нечто противоположное тому, чем занималась группа Резника): изменения в индивидуальном поведении рыбок и эволюционные изменения в популяции пошли в разных и до некоторой степени противоположных направлениях. Поведение рыбок (особенно самцов) изменилось в сторону большей заботы о личной безопасности в ущерб заботе о размножении. А в ряду поколений изменения шли в сторону роста “вложения” в размножение за счет уменьшения “вложений”

в собственный размер и безопасность. По сути дела Фридман на чисто фенотипическом уровне заметил тот же парадокс, который сейчас группа Резника наглядно показала на уровне генетическом и эпигенетическом. И то, что при рассмотрении одной лишь активности генов и ее изменений кажется загадочным и противоестественным, при взгляде на фенотипическое выражение приобретает вполне внятный смысл.

Получается, что мы (как и авторы статьи в Nature) не вполне правы, называя индивидуальные изменения “контрадаптивными” или “неадаптивными” на том лишь основании, что они противоречат последующим эволюционным изменениям. Возможно, что на самом деле эти сдвиги по-своему адаптивны – только это совсем другая стратегия адаптации, ставящая во главу угла другие приоритеты и потому плохо совместимая с адаптацией эволюционной.

Пояснить сказанное можно такой аналогией. Представим себе авиаконструктора, которому нужно, допустим, модернизировать истребитель. Ему приходится учитывать целый ряд противоречащих друг другу требований: машина должна летать быстрее, чем предыдущая модель (и чем самолеты противника), но при этом нельзя уменьшать ее маневренность, ослаблять вооружение, уменьшать время, которое она способна находиться в воздухе, и т. д. Чтобы улучшить одни и сохранить на прежнем уровне другие важные в бою характеристики, конструктор решает пожертвовать долговечностью машины – исходя из того, что подавляющее большинство этих самолетов все равно не доживет до опасной степени износа. Но вот истребитель спроектирован, принят на вооружение, поступил в войска и оказался там на попечении аэродромных техников. Техник не имеет возможности существенно изменить конструкцию самолета, да и вообще его задача – не обеспечить превосходство данной модели, а поддерживать в наилучшем из возможных состояний конкретную машину. Поэтому он будет стараться улучшить то, что он может улучшить, – в частности, продлить ресурс самолета, то есть сделать его более долговечным. И даже не задумается о том, что это противоречит логике изменений, внесенных конструктором, – да и всему тренду развития истребительной авиации.





Можно предположить, что если не во всех, то во многих случаях примерно так же соотносятся индивидуальные изменения с эволюционными. Механизмы индивидуальной пластичности не могут сколько-нибудь существенно изменить морфологию данной особи, не говоря уж об особенностях индивидуального развития, которое она давно прошла. Они могут изменить только ее поведение и – в тех или иных пределах – “текущую” физиологию. И меняют их так, чтобы обеспечить максимальную безопасность и благополучие данной особи. Именно под эту задачу эволюционно формировались сами эти механизмы: их наличие выгодно, если наступившие перемены окажутся краткой полосой, которую надо просто пережить любой ценой. Если же оказывается, что перемены – всерьез и надолго (хотя бы на несколько поколений), в дело вступает естественный отбор, изменившееся направление которого меняет саму “конструкцию”. Но отбор работает не с индивидуальными особями, а с генами, и потому его приоритеты могут быть совсем иными.

Разумеется, это только одна из возможных гипотез. Разнонаправленность индивидуальных и эволюционных изменений может объясняться чем-нибудь совсем иным – например, ошибками компенсационных механизмов. Вспомним, что в отсутствие хищников самцу выгодно быть цветастым и уделять брачным демонстрациям как можно больше времени и сил. Но когда хищники исчезли внезапно, может резко увеличиться частота встреч с самцами-конкурентами – отчасти из-за реального роста никем не поедаемой популяции, отчасти из-за того, что все разом перестали прятаться. А частое лицезрение соперников приводит к стрессу, который угнетает и яркую окраску, и сексуальную активность. Через три-четыре поколения естественный отбор исправит эту ошибку (например, повысив порог стресс-реакции), изменения пойдут в “правильную” сторону – но это будет уже потом.

Можно, наверно, придумать и еще какие-нибудь модели. И запросто может статься, что в одних случаях верны одни объяснения, в других – другие. Пока что же нам важен сам факт разнонаправленности индивидуальных реакций особей и дальнейшей эволюции популяции. И, исходя из него, можно предположить, что даже в тех случаях, когда направление этих изменений совпадает (см. ниже) – это именно всего лишь совпадение, а не внутренняя связь. Полагать, что эпигенетические изменения (независимо от того, насколько они адаптивны) могут со временем перерасти в эволюционные – это примерно то же самое, что верить, будто полив огорода из лейки может вызвать дождь.

Здесь внимательный читатель удивится, а может, даже и возмутится: позвольте, но ведь примеры “эпигенетической наследственности”, приведенные в предыдущей главке, явно неадаптивны не только с точки зрения долгосрочной (эволюционной) стратегии, но и с точки зрения отдельной особи! Какую пользу ей могут принести повышенная склонность к неврозу, сахарному диабету или никотиновой зависимости? С другой стороны – а как же знаменитые модификации, “определенная изменчивость”? Нас же в школе учили, что они обычно адаптивны! Читатель, знакомый с биологией более глубоко, вспомнит и про “генетическую ассимиляцию” и “эффект Болдуина” – ситуации, когда те или иные изменения (предположительно адаптивные) возникают сначала как чисто фенотипические варианты, а через какое-то число поколений становятся генетически предопределенной нормой. Как это совместить с закономерностью, открытой группой Резника?

Вряд ли кто-то сейчас может дать исчерпывающий и бесспорный ответ на этот вопрос – ведь “эффект Резника” обнаружен совсем недавно. Но самое простое и очевидное соображение можно прочитать в любом приличном учебнике по теории эволюции: адаптивные модификации – не первые шаги эволюции, а ее результат, сформированный ею приспособительный механизм. Помимо всего прочего это означает, что они “включаются” в ответ на что-то, с чем данный вид более-менее регулярно сталкивался в ходе своей предыдущей эволюции. Знаменитое растение стрелолист под водой выпускает лентовидные листья, а над водой (или при произрастании на суше) – стреловидные, потому что он может расти и на мелководье, и на берегу, и на тех участках, которые несколько раз за лето успеют побывать то дном, то берегом. Геном стрелолиста эволюционно “знаком” с обоими наборами условий и имеет свою программу формирования листа для каждого из них. Рачок артемия имеет разное строение своих хвостовых члеников в зависимости от того, при какой солености воды он развивался, потому что этот рачок может жить в водоемах с разной соленостью, и его геном готов к любому ее значению в довольно широких пределах. Если бы хищные рыбы в тринидадских ручьях то появлялись во множестве, то полностью исчезали (или если бы каждый малек гуппи мог со сравнимой вероятностью оказаться как в водоеме, кишащем хищниками, так и в безопасном), возможно, гуппи бы выработали механизмы, позволяющие особи при одних и тех же генах развиваться либо в форму, приспособленную к опасностям, либо в форму, выгодную при их отсутствии, – а то и переходить из одной в другую в течение жизни. Но попадание рыбок из зашуганной хищниками популяции в безопасную заводь – явление слишком редкое и нерегулярное, чтобы стать фактором отбора; вселение хищников в мирные прежде воды случается еще реже, а их полное исчезновение там, где они прежде водились в изобилии, может быть только чудом (или началом очередного эксперимента в рамках “Проекта Гуппи”). Понятно, что предыдущая эволюция не снабдила вид никакими инструкциями на случай столь нештатных ситуаций.

Если это так, то не удивительно, что в большинстве экспериментов по эпигенетическому наследованию наблюдаемые сдвиги оказываются явно неадаптивными. Дело в том, что факторы, вызывающие их (от постоянного обилия высококалорийной еды до воздействия никотина), – это то, с чем данный вид в своей предыдущей эволюции не сталкивался. Попытка извлечь из прежнего эволюционного опыта какой-то “план действий” на такой случай неизбежно приводит к ошибкам – как попытки программы распознавания текстов опознать символ, отсутствующий в применяемом ею алфавите. Точно так же, как эта программа обязательно поставит какой-нибудь знак вместо неизвестного ей, геном существа, столкнувшегося с “эволюционно непредвиденной” ситуацией, попытается отождествить ее с какой-то известной. В результате какие-то изменения в распределении активности разных генов произойдут (и, возможно, даже отчасти передадутся ближайшим потомкам), но практически наверняка они будут неадекватными.

Несколько отступая от темы нашей книги, можно сказать, что такой подход присущ не только генетическим и компьютерным программам, но и, например, мозгу – в том числе и человеческому. И не только наивным умам простаков, всерьез интересующихся, к какой части паровоза и как именно нужно припрягать лошадь или как вернуть в интернет скачанную и прочитанную книгу, но и изощренным умам ученых. В самом деле, разве не так отреагировала бóльшая часть научного сообщества на открытие эпигенетических эффектов и эпигенетического наследования? На совершенно новые (и в общем-то непростые для нормального человеческого воображения) явления многие исследователи смотрят сквозь “оптику” давно обветшавших теорий, пытаясь влить “вино” новых фактов в “мехи” старых понятий и концепций.

Но наш разговор все-таки не о нравах человечества в целом и мира науки в частности, а об эволюции. Мы убедились, что закономерные изменения особей в течение их индивидуальной жизни могут совпадать или не совпадать с направлением эволюции вида или популяции, но в любом случае являются результатом предшествующей эволюции, а не причиной или движущей силой дальнейшей. И что эпигенетические эффекты, как бы они ни были интересны сами по себе, не могут рассматриваться как возможная основа для ламарковской эволюции.

Итак, наследование приобретенных признаков невозможно?

Назад: Эпигенетика и эпигонство, или Злоприобретенные признаки
Дальше: И все-таки они наследуются. Но…