Книга: Дизайн привычных вещей
Назад: Понятность и практичность дизайна
Дальше: Поиск виноватого

Глава 2

Психология действий

Когда я и моя семья ездили в Великобританию, мы снимали там домик, пока его владельцы были в отъезде. Однажды хозяйка дома приехала за какими-то личными бумагами. Она прошла в кабинет и попыталась открыть верхний ящик стола, но тот не открывался. Она толкала его вперед, назад, влево, вправо, но безуспешно. Я предложил свою помощь. Я подергал ящик, затем покрутил переднюю панель, сильно надавил на нее и стукнул ладонью. Ящик открылся. «Ох, – вздохнула женщина, – извините, но я ничего не понимаю в механике».

Ложное самообвинение

Я изучал психологию пользователей, которые, работая с механическими устройствами, выключателями, предохранителями, компьютерами, процессорами, самолетами и даже ядерными электростанциями, совершали ошибки, и иногда очень серьезные. Все они без исключения чувствовали за собой вину и либо пытались скрыть ошибку, либо обвиняли себя в «глупости» и «неуклюжести». Часто мне было трудно получить разрешение служащего понаблюдать за его работой: никому не хотелось, чтобы кто-то другой видел его ошибки. Я заметил, что плохой дизайн предмета часто приводит к тому, что разные пользователи совершают одни и те же ошибки. И все же, если задание кажется простым или незначительным, люди в первую очередь винят в оплошностях себя. И это выглядит так, будто они гордятся своей некомпетентностью в механике.

Однажды в одной большой компьютерной компании меня попросили оценить новую продукцию. На ее изучение и проверку я потратил целый день. У клавиатуры был один недостаток: кнопки «возврат» и «ввод» мало отличались друг от друга. Перепутав кнопки, пользователь мог уничтожить работу последних нескольких минут.

Я рассказал об этом дизайнеру, добавив, что сам несколько раз допустил подобную ошибку, следовательно, ее будут допускать и другие пользователи. Первая реакция дизайнера была такой: «Почему вы допустили эту ошибку? Разве вы не читали инструкцию?» Затем он пустился в объяснения разницы между двумя кнопками.

«Конечно, – начал я, – я понимаю разницу между ними, но я путаю их. Они похожи и расположены рядом, а как опытный наборщик я часто нажимаю кнопку “возврат” автоматически. Поэтому другие, возможно, тоже будут допускать такую ошибку».

«Нет», – сказал дизайнер и заявил, что я единственный, кто пожаловался, и что секретари компании пользуются этой клавиатурой уже много месяцев. Я не унимался, и мы решили поинтересоваться, путали ли служащие когда-нибудь эти две кнопки, у них самих. И приходилось ли им из-за этого переделывать работу?

«О, да, – ответили все секретари, – такая проблема возникала много раз».

«Почему же никто не сказал об этом?» – спросили мы их. После этого мы попросили их докладывать обо всех трудностях, возникающих с новой продукцией.

Причина была банальной: если система переставала работать или работала плохо, это считалось проблемой, а вот путаница в кнопках проблемой не считалась. Секретари обвиняли в этом себя. В конце концов им объяснили, что они заблуждались и что необходимо делать в таких ситуациях.

Конечно, людям свойственно ошибаться. Эксплуатация сложного устройства без предварительного ознакомления с инструкцией часто приводит к ошибкам. Однако задача дизайнеров состоит в том, чтобы эти ошибки не приводили к серьезным последствиям. Вот мои собственные рассуждения по этому поводу.

Если ошибка возможна, кто-то обязательно ее допустит. Дизайнер должен предусмотреть все возможные ошибки и постараться свести к минимуму вероятность их появления. Ошибки должны быть легко распознаваемы и по возможности обратимы и не должны приводить к серьезным последствиям.

Повседневные недоразумения

Наша жизнь полна различных недоразумений. И это неудивительно: нам часто приходится сталкиваться с незнакомыми ситуациями. Но ошибки и недоразумения дают нам бесценный жизненный опыт. Большинство недоразумений подпадают под категории «наивных» или «популярных заблуждений». И такие заблуждения бытуют не только среди простых людей: Аристотель разработал теорию физики, которую сегодняшние физики вряд ли воспринимают всерьез. Однако физика Аристотеля больше ориентирована на повседневную жизнь, чем современные теории, которые нам преподают в школе. Физику Аристотеля принято называть «наивной» физикой.

Однако понять «неправильность» этих наивных взглядов можно, только изучив ту физику, которая считается «правильной».

Наивная физика Аристотеля

Аристотель, например, считал, что предметы продолжают движение только в том случае, если какая-то сила двигает их. Современные же физики утверждают противоположное: предмет продолжает движение, если ему не мешает какая-то другая сила. Это первый закон Ньютона, который существенно повлиял на развитие современной физики. Однако тот, кто когда-либо толкал тяжелый ящик по полу или пробирался по пересеченной местности, знает, что Аристотель был прав: если не прилагать усилий, движение прекратится. Конечно, И. Ньютон и его последователи предполагали отсутствие силы трения и сопротивления воздуха. Аристотель же жил далеко не в таких идеальных условиях. Противодействуя силе трения, предмет постепенно останавливается. Возможно, взгляды Аристотеля вовсе не имеют отношения к физике, но они описывают то, что мы наблюдаем в реальном мире. Попробуйте ответить на следующие вопросы.

1. Я беру пистолет и, направив его на цель, стреляю строго в горизонтальном направлении. В другой руке я держу пулю так, чтобы пуля в пистолете и пуля в руке были на одинаковом расстоянии от земли. Эту пулю я роняю одновременно с выстрелом. Какая из них упадет на землю первой?

2. Представьте бегущего человека с шаром в руках. Продолжая бежать, он отпускает шар. По какой траектории: А, Б или В (рис. 2.1) полетит шар?

Рис. 2.1. Бегущий человек с шаром. По какой траектории полетит шар: А, Б или В? Когда этот вопрос был задан шестиклассникам школ Бостона, только 3 % учеников выбрали ответ А, остальные же примерно поровну разделились между ответами Б и В. С этим вопросом не справились и ученики старших классов, которые изучали ньютоновскую механику полтора месяца: только 20 % (вопрос задавался 41 ученику) выбрали правильный ответ, остальные опять же разделились между ответами Б и В. (Исследование проводилось агентством White & Horwitz в 1987 году. Рисунок взят из книги: McCloskey (1983). Intuitive Physics, Scientific American, Inc. Все права защищены)





Физик скажет, что задача с пулями проста: обе они упадут на землю одновременно. Тот факт, что скорость пули, двигающейся по горизонтали, намного больше, абсолютно не влияет на скорость ее вертикального падения. Правилен ли этот ответ? А если учесть тот факт, что пуля немного поднимется вверх (как самолет) вследствие сопротивления воздуха? Таким образом, она продержится в воздухе немного дольше. Кто знает? Физика базируется на законах, в которых не учитывается сопротивление воздуха. Популярное заблуждение вообще заключается в том, что пуля, выпущенная из пистолета, упадет намного позже. Но это заблуждение не так уж и необычно.

В случае с падающим шаром мы можем предположить, что шар упадет вертикально. Но на самом деле шар будет падать по траектории А (рис. 2.1). Бегущий человек несет шар, поэтому тот получает горизонтальное ускорение. Если человек его отпустит, шар сохранит направление движения, но будет неизменно приближаться к земле.

Наивная физика, как и наивные взгляды в психологии и других науках, во многом разумна, хотя теоретически неверна. Но порой эти взгляды становятся источником наших неприятностей. Несмотря на это, мы должны найти способ «переварить» неизвестную информацию, ибо человек – существо мыслящее.

Люди – существа объясняющие

Ментальные модели (предметов, событий и поведения) являются результатом нашего стремления докопаться до сути вещей. Такие модели необходимы. Они помогают нам понять наши промахи, предугадать результат действий и предотвратить их нежелательные последствия. Эти модели основаны на наших знаниях: реальных или выдуманных, наивных или научно обоснованных.

Ментальные модели часто создаются на основе неполных аргументов, плохого понимания ситуации и с учетом причин, механизмов и связей, которых на самом деле может и не быть. Ошибочные модели порождают разочарование, как, например, в случае с моим холодильником. Мое представление о работе холодильника (см. рис. 1.9А) не соответствовало реальности (см. рис. 1.9Б). Но в таких сложных системах, как промышленное предприятие или пассажирский самолет, проблема модели приобретает особое значение, потому что ошибка может привести к фатальным последствиям.

Представьте комнатный обогреватель. Как он работает? Само устройство практически не дает нам подсказок. Мы просто входим в комнату, чувствуем, что нам холодно, и включаем его. Через некоторое время становится теплее. Заметьте, тот же механизм работает и в микроволновой печи (и в печи для обжига глины, и в кондиционере, и практически во всех устройствах, связанных с изменением температуры). Хотите испечь пирог, но выключена печь? Включите ее, и скоро она нагреется до нужной температуры. В комнате очень жарко? Включите кондиционер. И все же, как работает термостат?

Если вы хотите быстро нагреть комнату, нужно ли для этого включать обогреватель на полную мощность? Или ставить регулятор духовки на максимум, чтобы быстро разогреть ее до рабочей температуры? Или выставлять кондиционер на максимальное охлаждение, чтобы быстро снизить температуру в комнате?

Если вы думаете, что термостат, включенный на полную мощность, нагреет (или охладит) комнату или печь быстрее, вы ошибаетесь. Это говорит о том, что вы придерживаетесь распространенного в быту мнения. В основном бытуют две теории, связанные с термостатами: временнáя и энергетическая. Временнáя теория гласит, что термостат контролирует длительность работы прибора. Если вы ставите переключатель термостата на половину, прибор будет работать половину времени, если ставите на максимум – все время. Отсюда следует, что для быстрого нагрева или охлаждения комнаты нужно так включить термостат, чтобы прибор работал максимально долго. Согласно энергетической теории, термостат контролирует количество тепла (или холода), которое исходит от прибора. Это значит, что, включив обогреватель на полную мощность, вы получите максимум тепла или холода.

Но на самом деле термостат – это просто выключатель «вкл./выкл.» В таких устройствах, как обогреватель, печь, кондиционер, есть только режим включить/выключить и никаких промежуточных. Благодаря термостату обогреватель, печка или кондиционер нагреваются до установленной температуры (работают на полную мощность), а затем автоматически отключаются. Если вы выставите термостат на максимум, это никак не повлияет на скорость нагрева прибора.

Цель примера – показать не то, что существуют ложные представления о тех или иных явлениях, а то, что человек старается каким-либо образом объяснить все, что видит. В случае с термостатом видно, что дизайн устройства не дает никаких объяснений относительно механизма его работы. Отсутствие разъяснений дает простор воображению. Так и появляются ошибочные ментальные модели.

Назад: Понятность и практичность дизайна
Дальше: Поиск виноватого