Книга: Супернавигаторы. О чудесах навигации в животном мире
Назад: 24. Морские коньки в наших головах
Дальше: 25. Навигационный мозг человека

Навигационные клетки мозга

В начале 1970-х годов оказалось, что рискованная затея О’Кифа принесла свои плоды: он объявил об открытии отдельных клеток мозга с необычной – и даже никогда раньше не виданной – функцией. Каждая из них становилась активной, только когда крыса оказывалась в строго определенной точке клетки, которую она исследовала. Другими словами, попадание крысы в каждую точку приводило к активации определенной клетки или группы клеток ее гиппокампа. О’Киф мог сказать, где именно находится животное, просто посмотрев на картину электрической активности этих клеток.

Очевидно, оставалась возможность, что вновь открытые клетки реагируют на какие-то другие факторы, но ничто из того, что животные могли видеть, обонять или слышать, не оказывало никакого влияния на поведение этих клеток. По-видимому, их функция сводилась исключительно к кодированию пространственных свойств мира крысы. Поэтому О’Киф решил назвать их нейронами места. Это открытие было поистине революционным.

В 1978 году О’Киф и Линн Нейдел написали книгу, в которой высказали предположение, что клетки места представляют собой часть системы навигации, где точкой отсчета служат внешние объекты, которая позволяет крысе регистрировать и вспоминать расположение ориентиров и целей. Другими словами, нейроны гиппокампа составляют карту среды, в которой находится животное. Именно здесь, утверждали они, находится физическая основа «когнитивной карты» Толмена. В то время это утверждение казалось дерзким; во всяком случае, оно, несомненно, рассердило бихевиористов, которые никак не желали согласиться с этими взглядами на функцию гиппокампа, тем более что они, по-видимому, подтверждали мнение их старого врага Толмена.

Однако нейроны места оказались лишь первым элементом в потрясающем ряду открытий, полностью преобразивших за последние 50 лет взгляды ученых на неврологические основы навигации – по меньшей мере у млекопитающих. Теперь ясно, что на пространственные свойства мира, в котором существует млекопитающее, реагируют многие разные участки его мозга, а успешная навигация обеспечивается не только гиппокампом. Таким образом, эта тема становится все интереснее – и все сложнее.

В 1980-х годах была найдена еще одна группа клеток, расположенная в соседнем с гиппокампом отделе мозга, который называют пресубикулумом (предоснованием гиппокампа). Эти нейроны генерировали импульсы только тогда, когда крыса смотрела в определенном направлении, и поэтому их назвали нейронами направления головы. Они реагировали совершенно одинаковым образом, где бы ни находилось животное, что бы оно в этот момент ни видело, слышало или обоняло, и независимо от того, двигалось оно или нет. Они активны даже в полной темноте, и распределение генерирующих импульсы нейронов остается стабильным в течение долгого времени. Таким образом, эта группа клеток ведет себя как компас, хотя магнитное поле Земли не влияет на их работу.

Позднее два молодых исследователя из Норвежского университета естественных и технических наук в городе Тронхейме – Марианна Фюн и Торкель Хафтинг – сделали еще более поразительное открытие. Работая под руководством супругов Мэй Бритт и Эдварда Мозер, они исследовали клетки, находящиеся в энторинальной коре (ЭК), соединяющей гиппокамп с другими отделами мозга. Там они обнаружили клетки, ведущие себя почти так же, как нейроны места, но с одним важным отличием: каждый из этих нейронов активировался не когда крыса находилась в одной определенной точке, но во многих разных местах.

Такое поведение казалось непонятным, но, когда размеры пространства, которое крысы могли исследовать, увеличили, проявилась поразительная закономерность. Стало ясно, что вновь открытые клетки генерируют импульсы в регулярно расположенных точках, которые образуют правильную решетку, разбивающую на сегменты все пространство, предоставленное в распоряжение крыс. По-видимому, эти клетки – так называемые нейроны решетки – регистрируют исключительно пространственные свойства среды обитания крыс. То есть крысы практически накладывают на окружающий мир стандартную координатную сетку, как это делают картографы или землемеры. В ЭК были найдены и нейроны направления головы. Некоторые из них также образуют решетку: они срабатывают только тогда, когда крыса оказывается в определенной точке, а голова ее обращена в определенном направлении.



Картина активности одиночного «нейрона решетки» у крысы, исследующей небольшую квадратную арену. Серые линии показывают маршруты перемещения крысы, а черные точки – «всплески» электрической активности, возникающие во время передвижений животного





В 2008 году группа Мозер сделала еще одно открытие: были обнаружены клетки ЭК, срабатывающие только тогда, когда крыса (или мышь) находится у края клетки. Поэтому их назвали нейронами границы. Затем, в 2015 году, Мозер сообщили о клетках еще одного типа: они реагируют только на скорость движения крысы, и частота генерирования импульсов увеличивается, когда крыса движется быстрее. Собственно говоря, они работают так же, как спидометр. Уже длинный список специализированных клеток, которые участвуют в навигации, все еще продолжает пополняться.

В 2014 году эти поразительные достижения были удостоены Нобелевской премии, которая была присуждена Мэй Бритт и Эдварду Мозер и Джону О’Кифу.

Аналогичные специализированные навигационные нейроны уже найдены в мозге мышей, обезьян, летучих мышей и человека. Возможность прямой регистрации активности отдельных клеток человеческого мозга представляется только в случае вживления электродов для медицинских процедур, но существующие сейчас передовые технологии нейровизуализации позволяют ученым получать аналогичные результаты, не прибегая к хирургическим операциям. Также достоверно установлена важная роль гиппокампа в навигации голубей; хотя по строению он сильно отличается от гиппокампа крысы, в нем тоже есть специализированные «навигационные» нейроны.

Однако многие вопросы по-прежнему остаются без ответа. Хотя нейроны места, решетки и направления головы вполне могут составлять основу «системы карты и компаса», знания своего местоположения и направления движения недостаточно. Нужно еще обладать способностью запланировать маршрут к цели и пройти по нему.

В этом отношении кажутся перспективными специализированные клетки мозга, генерирующие импульсы во время прохождения крысой сложного лабиринта. Эти нейроны, расположенные вне гиппокампа, по-видимому, определяют маршруты и цели. В самом гиппокампе также были найдены другие клетки, которые, как кажется, участвуют в прокладке маршрутов.

Разумеется, лабораторные эксперименты проводятся в чрезвычайно искусственных условиях, не отражающих реальной жизни в дикой природе. Навигация в реальном мире может осуществляться на расстояниях, доходящих до сотен или даже тысяч километров. В большинстве случаев эксперименты касаются лишь двумерной навигации, в то время как многим животным – особенно умеющим летать или плавать – приходится ориентироваться в трех измерениях. Как именно их (и наш) мозг справляется с такими в высшей степени сложными задачами, пока неясно.

Поэтому было бы чрезвычайно полезно получить возможность изучения работы мозга животного во время его свободных перемещений в естественной среде. Израильский ученый Нахум Улановский уже разработал хитроумные методы регистрации активности отдельных клеток мозга летучей мыши в полете, и эти методы, возможно, вскоре будут применяться и для других животных.

Хотя центральную роль в решении навигационных задач играют гиппокамп и тесно связанные с ним зоны, ясно, что другие отделы мозга также вносят в эту работу важный вклад. Во время перемещений животного в его среде обитания разные области мозга обмениваются сигналами, когда животное вспоминает, где оно было раньше, или думает, куда следовать дальше. Как именно эти сложные «соединения» влияют на процесс навигации, остается загадкой.

Также ясно, что гиппокамп играет очень важную роль, а не только помогает формировать карту физических окрестностей и прокладывать маршрут. Он совершенно необходим для сохранения воспоминаний о людях, предметах, событиях и отношениях: возможно даже, что его основная функция состоит в образовании абстрактного «пространства памяти», в котором могут храниться и обрабатываться самые разнообразные концепции. С этой точки зрения гиппокамп не столько выполняет сами навигационные расчеты, сколько предоставляет запоминающее устройство, необходимое для успешной навигации.

Очевидно, мы не знаем еще очень многого, но в недавнем обзоре пятидесяти с лишним лет исследований Мозеры предлагают смелый вывод, что навигация, возможно, будет «одной из первых когнитивных функций, механистические аспекты которых мы сможем понять».

При этом остается неразрешенным один интересный философский вопрос. Хотя нам достоверно известно, что гиппокамп и ЭК играют в навигации ключевую роль, можно спорить об основе той пространственно-временной системы координат, которая, по-видимому, реализуется в них. Большинство нейробиологов, следуя положениям классической физики, считает самоочевидным, что пространство и время являются фундаментальными, неизменными измерениями реальности – внешнего мира, – каким-то образом представленными в нашем мозге.

Однако современная физика утверждает, что на самом деле пространство и время не являются ни отдельными, ни тем более неизменными измерениями. Наше субъективное восприятие как пространства, так и времени также чрезвычайно изменчиво. Значит ли это, что существуют другие возможности? Возможно, пространство и время всего лишь конструкты, порождаемые нашим физическим взаимодействием с миром.

* * *

Молодой исследователь Андриус Пашуконис, который раньше работал в Венском университете, а теперь перешел в Стэнфорд, провел долгое время в дождевых лесах Гвианы, терпеливо изучая крошечных (длиной 25 миллиметров) лягушек, обладающих замечательными – и пока что необъяснимыми – способностями.

Самцы этого вида занимают маленькие участки подлеска, защищают их от конкурентов и привлекают туда самок своими криками. После спаривания самки откладывают яйца, а самцы осторожно переносят их в лужи, расположенные в других частях леса, в которых могут вылупляться и расти головастики. Затем самцы возвращаются на свою территорию. Пашуконис сконструировал специальную неопреновую повязку, позволяющую прикреплять к самцам радиотрекеры, и относил их на расстояние до 800 метров от их участков.

К удивлению Пашукониса, лягушкам не просто удавалось найти обратную дорогу: они перемещались по весьма прямым маршрутам, хотя их путешествия занимали иногда до нескольких суток. Учитывая, что дождевой лес – место весьма хаотичное, полное шумов, запахов и физических препятствий, а обзор неба в нем весьма ограничен, очень трудно понять, как им это удавалось.

Назад: 24. Морские коньки в наших головах
Дальше: 25. Навигационный мозг человека