Книга: Странная обезьяна
Назад: Глава 36. Кто вы, мистер Холик?
Дальше: Глава 38. Очи черные, склеры белые

Глава 37. В погоне за «белым геном»

Пришло время разобраться с тем, какие гены управляют цветом нашей кожи. То, что цвет наследуется, ни для кого не секрет. По оттенку кожи люди порой судят о вашей родословной, и в былые времена это, увы, служило причиной для дискриминации (смугл — значит, кто-то из родителей «не той расы»). А что говорит наука?
Если вы интересуетесь историей биологии, то наверняка слышали про «кошмар Дженкина» — довод, который в XIX веке использовался как возражение против теории Дарвина. Напомню, что, согласно Дарвину, материалом для эволюции служат небольшие случайные изменения в строении и поведении, возникающие при размножении живых существ. Некоторые из этих изменений могут повышать приспособленность организма, их обладатель имеет больше шансов выжить и размножиться. Через несколько поколений благоприятный признак распространяется в популяции. Так работает естественный отбор.
Суть возражения, выдвинутого в 1867 году инженером Флемингом Дженкином, заключалось в том, что признак, даже самый выгодный, неизбежно размывается при скрещивании с особями, у которых такой особенности нет. Почему я вспомнил о кошмаре Дженкина? Посмотрите, какой пример использовал автор.
«…Представим себе белого человека, потерпевшего кораблекрушение на острове, населенном неграми… Наш выживший герой, возможно, станет среди них королем; он убьет очень много чернокожих в борьбе за выживание; он заведет очень много жен и детей, в то время как множество его подданных будут жить холостяками и умрут холостяками… Качества и способности нашего белого человека, несомненно, помогут ему дожить до глубокой старости, но даже его длинной жизни явно не хватит для того, чтобы кто-то из его потомков в каком-либо поколении стал полностью белым… В первом поколении будет несколько дюжин смышленых молодых мулатов, чей ум будет в среднем превосходить негритянский. Нас не удивит, что трон в течение нескольких поколений будет принадлежать более или менее желтокожему королю; но сможет ли поверить кто-то, что население всего острова постепенно станет белым или пусть даже желтым?..
В нашем случае признак попал в исключительно благоприятные условия, способствующие его сохранению, — способствующие, и все же неспособные закрепить и сохранить его».
Этот довод произвел впечатление на Дарвина, который не нашел сильных контраргументов и сам использовал словосочетание «кошмар Дженкина» для обозначения серьезности проблемы.
Оставим в стороне расистскую сторону аргументации, обычную для XIX века. Описанный Дженкином ход событий следует из представлений европейца об интеллектуальном превосходстве «белой расы». Однако рассматриваемый признак — светлую кожу — едва ли можно назвать благоприятным для выживания на тропическом острове. Кроме того, Дженкин исходил из того, что наследственность непрерывна, т. е. результат скрещивания — это всегда нечто промежуточное между признаками отца и матери. В момент, когда Дженкин писал свою работу, уже были сформулированы, но еще не приняты научным сообществом законы наследования, открытые Грегором Менделем и переоткрытые позднее Гуго де Фризом, Карлом Корренсом и Эрихом Чермаком. Наследственность оказалась дискретной, признак не размывался, а передавался целиком в виде особых частиц, позже названных генами. Согласно Менделю, потомок не был носителем среднего арифметического признаков отца и матери — в нем проявлялась особенность лишь одного из родителей, доминантная. Рецессивный вариант гена не влиял на развитие организма и мог сохраняться в популяции, не подвергаясь отбору.

 

 

Стоп! Погодите. Но ведь цвет кожи наследуется не так. Мы же знаем, что у чернокожей женщины и белого мужчины (или наоборот) родится ребенок-мулат, который может оказаться и темным, и светлым, но чаще промежуточно-смуглым. Где же ваши законы Менделя?
Все верно. Ведь единственного гена «темной кожи» или «светлой кожи» не существует. Наша пигментация управляется множеством генов.

 

 

Представьте себе, что у вас есть принтер, который печатает только одним цветом, оставляя на бумаге последовательность крошечных точек — условных «меланосом». При этом печатающий картридж может выдавать много краски, а может по чуть-чуть, сами точки получаются большими или маленькими, то круглыми, то вытянутыми, головка принтера движется медленно либо быстро, плавно или рывками, а промежутки между точками тоже зависят от настроек. Меняя настройки (аллели генов), мы получим сотни различных оттенков.
Я сейчас не пытался описать устройство человеческой пигментации. Аналогия с принтером нужна, чтобы показать, что такое полигенный признак: родители передают ребенку комбинацию «настроек», перемешанных случайным образом, в результате цвет кожи потомка сложно предсказать.
Цвет шерсти или кожи удобен для исследования, и генетики плотно занялись пигментацией еще 100 лет назад. Но напрямую читать ДНК ученые стали совсем недавно — до этого влияние генов на организм изучали, скрещивая различающихся особей и оценивая то, что получилось. Мышей разных цветов можно скрестить, но как быть с человеком? Взять в качестве модельного объекта популяции смешанного происхождения, например афроамериканские. Анализировать родословную каждого индивида, оценивать вклад «белых» и «черных», фиксировать цвет кожи у потомков в разных поколениях и делать выводы.
Первая работа такого рода была проведена еще в 1913 году. За ней последовали другие. Авторы по-разному оценивали европейский вклад в генофонд афроамериканцев, в итоге получали, что цвет кожи регулируется двумя, тремя, а то и шестью генами «аддитивного» действия (т. е. эффект суммировался). Сложность в том, что сами африканцы и европейцы разнообразны по цвету кожи. Чтобы обойти эту проблему, исследователи пытались найти относительно гомогенную популяцию с хорошо известной родословной. Такой оказалась, например, группа афроевропейских метисов первого поколения в Ливерпуле и их потомков. Снова выходило, что за различия в цвете кожи между европейцами и неграми ответственны три-четыре наследуемых фактора (гена?).
Ситуация резко изменилась с развитием молекулярной генетики — когда специалисты научились читать и сравнивать генетические последовательности, быстро выяснилось, что генов, связанных с пигментацией, десятки, если не сотни. К началу XXI века генов, влияющих на цвет кожи, шерсти и глаз у мышей насчитывалось уже 127, и с первой расшифровкой человеческого генома у человека нашлось не менее 60 очень похожих генов-«ортологов». Эти гены отвечали за развитие пигментных клеток и меланосом, регулировали их миграцию, кодировали белки, участвующие в синтезе пигмента. Как часто бывает в генетике, функцию ряда генов удалось выяснить благодаря патологиям — нарушениям пигментации, таким как альбинизм.
Про ген OCA2 я уже писал, когда рассказывал про несчастных африканских альбиносов. Половина всех альбиносов должна «благодарить» за свою особенность ген OСA2 (он даже расшифровывается как oculocutaneous albinism 2). Еще один ген, мутации в котором приводят к «глазокожному альбинизму 1 типа», — ген тирозиназы (TYR). Тирозиназа — фермент, благодаря которому тирозин превращается в меланин, и мутации в гене TYR ответственны за 40 % случаев глазокожного альбинизма в мире.
Нарушения работы гена TYR чреваты отсутствием пигмента в коже, глазах и волосах в течение всей жизни — это крайняя форма альбинизма. В самом тяжелом случае, когда ген инактивирован полностью, человек получает не только полностью белые волосы и кожу, полупрозрачную радужку глаз и неспособность загорать, но и сильно ослабленное зрение.
Более редкая форма альбинизма OСA3 — «рыже-красный альбинизм», названный так потому, что страдающие этим недугом африканцы обладают красновато-коричневой кожей и светло-каштановыми или рыжими волосами. Здесь ответственность, как выяснилось, лежит на гене TYRP1 (Tyrosinase Related Protein 1, родственный тирозиназе протеин 1).
Ученым стали известны и другие гены, мутации в которых приводили к разным вариантам альбинизма. Однако изучение патологий не проливало свет на вопрос, почему у обычных, полностью здоровых людей цвет кожи может быть столь разным. Надеюсь, разница между альбиносом и светлокожим европейцем очевидна.

 

Тайна рыжих волос
Прорыв в генетике кожной пигментации связан с исследованием еще одного гена — меланокортинового рецептора 1-го типа (MC1R).

 

Рецептор — молекула, передающая в клетку химический сигнал. Ген MC1R кодирует рецептор, который находится в клеточной мембране и реагирует на гормон, стимулирующий размножение меланоцитов и выработку меланина. Гормон называется α-МСГ — альфа-меланоцитстимулирующий гормон (он относится к меланокортинам).

 

Исследователи установили, что ген MC1R влияет на окраску меха у млекопитающих. Мутации в гене рецептора приводили к тому, что у мышей шерсть, в норме темная, становилась желтоватой. Как выяснилось, MC1R определяет относительное количество эумеланина и феомеланина, вырабатываемых меланоцитами. Если работа гена нарушалась, вместо темно-коричневого эумеланина образовывался желто-красный феомеланин. Оказалось, что работа гена сказывается на пигментации у лошадей, собак, свиней, овец и птиц.
Но раз у человека есть похожий ген, то, может быть, в нем кроется тайна рыжеволосости? Это можно проверить! В 1995 году группа генетиков взяла образцы этого гена у 30 рыжих британцев и ирландцев. Для сравнения изучили варианты MC1R у 30 темноволосых европейцев. Неожиданно 21 рыжий «подопытный» оказался носителем мутантного — отличного от эталонного — варианта MC1R. Да не одного, таких вариантов нашлось целых девять! Самая частая мутация, Asp294His (замена в 294-й позиции аминокислоты аспартата на гистидин) встретилась у 16 человек. А у восьми рыжих оказалось сразу две или больше мутаций в гене MC1R. И ни одного мутантного варианта не нашлось у контрольной темноволосой группы.
Дальнейший анализ показал, что нестандартные варианты MC1R все-таки встречаются и у обладателей темных волос, но никогда в двух копиях, на обеих хромосомах. Удивительно, но и многие рыжие были гетерозиготами по этому гену. То есть для того, чтобы получить рыжеватые волосы, достаточно было, чтобы мутация досталась от одного из родителей, хотя наиболее чистый рыжий тип, как позднее выяснилось, был все же гомозиготным.
Интересен и другой результат: практически у всех темноволосых носителей мутантного варианта MC1R была очень светлая кожа, а кроме того, они плохо загорали. Очевидно, ген влияет не только на волосы, но и на кожу, отмечали авторы исследования. Обнаружилась и связь гена с появлением веснушек, а также — увы — с риском развития рака кожи.
Это было только начало множества исследований гена, который оказался очень удобным — маленьким (всего 954 нуклеотида), с понятной функцией, удивительно изменчивым. Связь некоторых вариантов гена MC1R с рыжими волосами подтвердил анализ ДНК ирландцев, голландцев и шведов, а также исследования на близнецах, выявившие еще 11 вариантов гена. Одни аллели MC1R оказывали сильное, другие — слабое влияние на рыжеволосость. Любопытно, что у разнояйцевых близнецов, обладающих одинаковым вариантом MC1R, встречались разные типы волос — значит, этот ген не мог полностью отвечать за признак. Впрочем, это было очевидно и раньше, ведь мутации в гене обнаружились не у всех рыжих. Так что окрестить ген MC1R «геном рыжих волос», как бы ни хотелось, не получится.
Тем не менее, если проанализировать распространение разных версий гена, может, это расскажет нам что-нибудь о человеческой эволюции? В 2000 году группа генетиков так и поступила. В исследовании участвовали образцы ДНК из Европы, Африки, Азии, Океании, а также двух шимпанзе.
Сравнив варианты гена MC1R между собой, исследователи вычислили предковый, «корневой» вариант, который, немного предсказуемо, оказался африканским, обычным также для юга Азии. Почему предсказуемо? Потому что, как мы знаем, люди родом из Африки. Этот вариант отличался от шимпанзиного 16 мутациями, 10 из которых были несинонимичными, т. е. меняли аминокислоту.
А дальше — интереснее. Африканское разнообразие гена выглядело очень низким — генетики нашли тогда всего пять вариантов, и все синонимичные, их различия не влияли на работу гена. Сходная картина у папуасов и южных азиатов — людей с темной кожей. И совсем другое дело — остальная Евразия, где обнаружилось 13 вариантов гена, причем синонимичных — только 3. Ситуация очень нетипичная, ведь обычно разнообразие максимально в Африке, а тут строго наоборот. Что бы все это значило? А вот что: в Африке палящее солнце отбраковывало любые мутации, вызывавшие хотя бы незначительное посветление кожи. Этот мощный стабилизирующий отбор и есть причина низкого числа вариантов MC1R на Африканском континенте, а также на юге Азии. Когда же люди мигрировали на север, в высокие широты, жесткий отбор прекратился. По мнению авторов исследования, причина появления вариантов MC1R в Евразии — не естественный отбор, а наоборот, его ослабление. В таких условиях мутации, снижавшие пигментацию, уже не приводили к печальным последствиям и стали распространяться по законам нейтральной эволюции, случайным образом. То, что внутривидовое разнообразие примерно соответствует межвидовым различиям между человеком и шимпанзе, по мнению авторов, свидетельствует не в пользу отбора. Этим можно объяснить и то, что вариантов гена в Европе больше, чем в Азии.
Повторю: вариант шимпанзе отличается от «корневого» человеческого десятью значимыми мутациями. А сейчас в Африке любые мутации в MC1R отсеиваются стабилизирующим отбором. Получается, что когда-то этот отбор был слабым, а затем почему-то стал сильным. Если африканское солнце играет роль сурового фактора отбора сейчас, почему это не происходило раньше? Американские антропологи Алан Роджерс, Дэвид Илтис и Стивен Вудинг предложили простое объяснение: раньше кожа наших предков была покрыта шерстью! Волосы защищали кожу от вредного ультрафиолета, поэтому ее цвет был не столь важен, вот и накапливались мутации. Кстати, у современных обезьян, у тех же шимпанзе, кожа под шерстью может быть очень разной — на выживание животного это не влияет.
Ситуация изменилась, когда древние гоминины лишились волосяного покрова. Коже пришлось быстро почернеть, и с тех пор у африканцев она не менялась.
Посмотрите: мы связали вместе первую и вторую части книги. Кожа у людей потемнела, когда у них исчезла шерсть. Еще немного хитрости — и можно прикинуть, когда примерно это могло произойти. Исследователи рассуждали так: когда-то под действием естественного отбора самый «черный» аллель гена MC1R распространился в популяции до полной фиксации, т. е. разнообразие упало до нуля (на самом деле это не всегда так, но в данном случае вероятность велика, так как ген маленький). Но сейчас в африканской популяции все же есть несколько вариантов гена, отличающихся синонимичными заменами. Мы можем воспользоваться методом молекулярных часов, поскольку речь идет о нейтральных мутациях, которые происходят с постоянной скоростью. Ее можно вычислить, зная отличия между геномами MC1R человека и шимпанзе и время, отделяющее нас от последнего общего предка. Конечно, неизвестно, сколько раз разнообразие падало до нуля, поэтому реальное время может быть больше расчетного.
Исследователи подсчитали, что для накопления существующего разнообразия понадобилось бы от 560 000 до 1,2 млн лет. Более вероятна верхняя оценка, так как 560 000 выходило в случае бесконечного размера популяции. Итак: 1,2 млн лет назад (или раньше) наши предки уже утратили шерсть и потемнели.

 

Считали исходя из того, что общий предок человека и шимпанзе жил 5 млн лет назад. Сейчас эту цифру сдвинули на пару миллионов лет в прошлое, и некоторые другие допущения, сделанные в статье 2004 года, наверняка поменялись.

 

Что касается евразийского разнообразия, Роджерс и его коллеги считали, что дело не в ослаблении отбора, а в смене его направления: в условиях недостатка ультрафиолета выгодными оказались любые мутации, снижающие синтез пигмента. Авторы сравнили разнообразие MC1R и двух других участков ДНК, находящихся за пределами известных генов, и показали, что поведение исследуемого гена не согласуется с правилами нейтральной эволюции.
Кстати, анализ азиатских геномов дал неожиданный результат: у китайцев, японцев, вьетнамцев и прочих восточных азиатов с высокой частотой (70 %) встречается вариант гена MC1R Arg163Gln! Для сравнения: среди европейцев Австралии только около 5 % обладали этим вариантом MC1R, а у африканцев он вообще отсутствовал. Зато он же нашелся, причем в гомозиготном виде, у пяти американских индейцев, участвовавших в исследовании, что намекает на близкое родство восточных азиатов и аборигенов Америки. Тут есть и другой прозрачный намек: у людей за пределами Африки кожа светлела не один раз, а как минимум дважды, у азиатов — отдельно от европейцев. Позже были получены другие убедительные подтверждения этой гипотезы.

 

Данные накапливались стремительно. В работах начала 2000-х годов оперировали сотнями генетических образцов. К настоящему времени счет пошел на десятки тысяч. В очередном исследовании 2018 года задействовано 59 000 человек со всей Евразии. Помимо прочего, ученые оценивали распространенность пяти вариантов MC1R, связанных со светлой кожей, и результат получился примерно тот же: одни аллели распространены в Европе и редки за ее пределами, а у других частота, наоборот, максимальна в Восточной Азии.

 

Надо добавить: позже выяснилось, что однообразие MC1R в Африке с лихвой компенсировалось чрезвычайной вариативностью других генов пигментации, о чем разговор впереди. Кроме того, число африканских вариантов MC1R оказалось все же чуть выше, чем предполагали: у жителей Южной Африки (негроидов и сан), исследованных в 2003 году, нашли 11 мутаций MC1R, причем 3 несинонимичные, отличные от евразийских. Но обратите внимание: это юг Черного континента, где уровень ультрафиолета ниже, чем у экватора.
Попрощаемся пока что с меланокортиновым рецептором 1-го типа. Другие замечательные гены ждут, когда мы познакомимся с ними.

 

Рыбы, мыши, человек
Наш новый герой заинтересовал ученых благодаря маленькой рыбке данио-рерио (известной также как zebrafish, рыба-зебра). Это серебристое существо с продольными полосками — популярный объект исследований биологов, ее неоднократно генетически модифицировали и даже отправляли в космос. А трансгенная флуоресцирующая, т. е. светящаяся в ультрафиолете, рыбка оказалась первым домашним ГМО-животным, продающимся под брендом GloFish.
Одна из мутантных форм данио-рерио, получившая название golden, отличается более светлой окраской, слабо выраженными полосками и бледными глазами. Пигментные клетки рыбки «гольден» — меланофоры — маленькие, неправильной формы и содержат меньше меланина, чем у обычных, диких особей. Точно таким же образом меланоциты светлокожего человека отличаются от меланоцитов африканца.
Как и в случае с MC1R, сходство биологических процессов у таких, казалось бы, разных существ, как рыбка и человек, побудило людей искать общую генетическую основу. Изучив более 1000 мутантных эмбрионов рыбки, генетики обнаружили связь специфической окраски с мутацией на хромосоме 18, в гене slc24a5, члене семейства генов, отвечающих за натриево-кальциевый обмен (SLC 24 — solute carrier 24, транспортеры растворимых веществ 24). Кальций необходим для синтеза меланина, и продукт работы гена, находящийся на клеточной мембране, регулирует этот процесс.
То, что мутации в данном гене связаны с типом пигментации «гольден», показал эксперимент: когда мутантным эмбрионам делали инъекцию нормального, дикого гена slc24a5, цвет рыбок частично восстанавливался.

 

 

Рыбка нам пусть дальняя, но родня: у человека нашелся похожий ген SLC24A5 (аминокислотная последовательность совпала на 69 %). Здорово, что, когда рыбке ввели человеческий вариант гена SLC24A5, тот заработал — следовательно, функция гена сохранилась, он также влияет на пигментацию у нас, как и у наших маленьких чешуйчатых родичей. Позже на культуре человеческих меланоцитов было показано, что если ген SLC24A5 выключить, синтез меланина нарушается. Затем оказалось, что у 98 % европейцев один вариант этого гена (Ala111Thr, в 111-й позиции стоит аминокислота треонин), а у более 93 % афроамериканцев, индейцев и восточных азиатов — другой, предковый (в 111-й позиции аланин). Когда ученые проанализировали две смешанные популяции, афроамериканскую и афрокарибскую, сомнения отпали: вариант SLC24A5 влиял на цвет кожи, меняя меланиновый индекс на 7–12 единиц. Много это или мало? Для сравнения: разница между европейцами и африканцами составляет около 30 меланиновых единиц. К этому моменту генетики уже описали несколько генов, связанных с пигментацией, но только для одного из них (ASIP, агути-сигнальный белок) удалось оценить вклад, и он не превышал четырех меланиновых единиц. Новый ген посерьезней будет! Однако восточные азиаты, несмотря на светлую кожу, оказались носителями предкового, «африканского» варианта SLC24A5, что усложняло картину. Похоже, наш ген осветлял только европейцев.
С этого момента ген SLC24A5 стал постоянным объектом исследований генетики кожной пигментации (по запросу «SLC24A5» поисковик по научным публикациям Google Scholar выдает более 2400 результатов). Выяснилось, что работа гена сказывается не только на цвете кожи, но и на окраске глаз. На страницах книги мы с ним встретимся еще не раз.
Вот лишь одна из относительно недавних публикаций, 2017 года, — исследование, в котором участвовало более 1100 индийцев. Индия — огромная страна с разнообразным населением, а самое любопытное для исследователей — наличие каст, в которых практикуется эндогамия, т. е. браки заключаются только внутри касты. Благодаря этому у представителей разных каст цвет кожи может сильно отличаться. Ученые решили посмотреть, как социальная структура в Индии влияет на цвет кожи… а заодно нашли новый вариант гена SLC24A5, распространенный среди индийцев, — его наличие связано с более светлой кожей (на семь единиц меланинового индекса!).
Познакомимся с еще одним геном, о котором ученые узнали благодаря и мышам, и рыбам. Обозначают его SLC45A2. Да, похоже на SLC24A5, я тоже их путаю. К счастью, у гена есть и другие названия, например ген связанного с мембраной транспортного белка, MATP (ну что, стало легче?), а также антиген меланомы 1 (AIM-1, дословно англ. — absent in melanoma 1, «отсутствующий в меланоме»).
В 2001 году группа американских медиков исследовала альбинизм у мышей, вызываемый мутациями в гене underwhite. Нарушения работы гена приводили к формированию маленьких и угловатых меланосом. Параллельно японские ученые занялись очень похожим геном (ортологом) у рыбки медаки — аминокислотная последовательность белка, который он кодирует, совпадала с мышиной на 82 %. Мутантных рыбок, отличавшихся оранжево-красной окраской, столетиями разводили в Японии. Matp — так стали называть ген — вероятно, отвечает за транспорт каких-то важных веществ через мембрану меланосом и играет ключевую роль в пигментации столь разных позвоночных, как рыба и мышь. Значит, стоит присмотреться к тому, как себя ведет родственный ген у человека. Изучив 100 людей-альбиносов из разных частей планеты, исследователи нашли необычного индивида из Турции. Внешне он походил на классического альбиноса с OCA2, страдал нарушениями зрения, хотя ген OCA2 у него не содержал мутаций. Зато мутантным у пациента, причем в гомозиготном виде, оказался ген MATP. Этот случай послужил эталоном для описания нового типа альбинизма — OCA4. Однако, помимо этой мутации, ученые обнаружили в гене MATP другие вариации, не приводившие к альбинизму.
Интерес к гену породил серию исследований. Оказалось, что:
— один из вариантов гена (L374F, замена в 274-й позиции лейцина на фенилаланин) встречается у белых Южной Африки с очень высокой частотой (89 %), а у японцев, негров, папуасов практически отсутствует. Сравнение с обезьянами, мышью и рыбой показало, что описанный вариант гена — новый, производный. Не связан ли он с ослаблением пигментации у европейцев?
— этот же вариант L374F нашелся у 96 % немцев. Возможно, у южноафриканских белых частота ниже, поскольку они на 7 % смешаны с местным населением?
— предковый вариант гена MATP редок у европейцев в Австралии и ассоциируется у них со смуглой — оливковой — кожей, темными волосами и глазами.

 

Итак, производный аллель L374F очень распространен в Европе, а за ее пределами встречается редко. Не поискать ли признаки естественного отбора? А как это сделать? Допустим, какой-то кусочек ДНК подвергается положительному отбору, т. е. быстро распространяется в популяции, потому что содержит полезные мутации, улучшающие жизнь их обладателя. «Кусочек» существует не в вакууме, справа и слева от него есть другие последовательности ДНК, и какие-то прилегающие их части прицепляются и начинают распространяться вместе с центральным участком просто потому, что они рядом. «Автостопом» — помните, в первой части книги я уже употреблял этот термин? Это значит, что вокруг «отбираемого» варианта у разных людей в ДНК должны быть одни и те же последовательности. И падает гетерозиготность, т. е. часто будут совпадать последовательности на обеих хромосомах, доставшихся и от отца, и от матери.
Если же какая-то мутация ни вредна, ни полезна, она гуляет в популяции по воле случая, и снижения разнообразия вокруг нее не произойдет. Японские исследователи протестировали по этому признаку несколько сотен человек — китайцев, африканцев из Ганы и Южной Африки, европейцев и жителей Шри-Ланки. Что творится в ДНК этих людей на участке длиной семь с половиной килобаз, охватывающем вариант L374F?

 

Заодно сравнили человеческий вариант с геном шимпанзе. Разница составила меньше 1 % (различия в 80 позициях). Кто-то все еще сомневается, что шимпанзе — наш ближайший родственник?

 

Разнообразие на этом кусочке ДНК у европейцев оказалось очень низким, что совсем непохоже на картину нейтральной эволюции. Получалось, что данный генетический вариант распространялся под давлением отбора, причем даже более сильного, чем отбор на аллели, защищающие людей от малярии в Африке.
Исследователи прикинули, что вариант гена, содержащий мутацию L374F, появился примерно 39 000 лет назад. А ведь как раз в это время кроманьонцы покоряли Европу.

 

Ах, как красиво выходило! Однако несколькими годами позже ученые получили более скромную дату: по новым оценкам, европейские варианты как MATP, так и SLC24A5 начали распространяться 11 000–19 000 лет назад, т. е. спустя многие тысячи лет после выхода Homo sapiens из Африки. Почему такая задержка? Хороший вопрос. Может быть, последний пик ледникового периода 15 000–20 000 лет назад заставил людей сооружать надежные убежища, сильнее кутаться в одежду и тем самым усугубил недостаток ультрафиолета? Кроме того, небольшая популяция мигрантов как раз в конце ледниковья, возможно, стала расти, а чем больше людей, тем больше возможностей для накопления полезных мутаций.
Прозвучала и другая версия: с переходом к сельскому хозяйству около 10 000 лет назад люди стали употреблять больше злаков, меньше рыбы и дичи, и усилился дефицит витамина D. Кроме того, население росло, и люди стали жить более скученно, что чревато эпидемиями. Поскольку, как полагали некоторые медики, витамин D может играть важную роль в сопротивлении инфекциям, из-за эпидемий спрос на этот витамин резко возрос. Кстати, вот вам объяснение, почему не посветлели тасманийцы, хотя Тасмания находится достаточно далеко от экватора. Близость к океану позволяла аборигенам этого острова пользоваться дарами моря, а низкая плотность населения защищала от эпидемий. В этом, по мысли авторов гипотезы, может крыться и причина цветового однообразия коренных жителей Америки. Сельское хозяйство распространилось у них достаточно поздно, а специфических человеческих инфекций в Новом Свете было мало, пока туда не пожаловали гости из Европы.
Когда мы добавим сюда данные палеогенетики, картина станет еще веселее.

 

Поведение гена MATP в Европе резко отличается от истории с MC1R. Помните, что последний одинаков в Африке, но крайне разнообразен за ее пределами, особенно у европейцев. У MATP тоже не слишком много африканских вариантов, где, как и у MC1R, его мутации, скорее всего, «убивались» жестким солнечным излучением. Зато ген варьирует в Азии, но его вариации почти исчезли в Европе! Все вытеснил пресловутый L374F. Так может быть, этот ген, а не MC1R, стал главным «зачинщиком» посветления европейцев?
Судя по всему, ген MATP (он же SLC45A2) влиял на пигментацию даже сильнее, чем наш предыдущий знакомый — SLC24A5.

 

Чтобы не путать эти страшные аббревиатуры, давайте далее SLC24A5 будем называть «геном рыбы-зебры», а SLC45A2 — «геном японской рыбки». Да простят меня генетики! Это ненаучно, но у нас ведь популярная книжка.

 

Во всяком случае, к такому выводу пришли японцы, когда сравнивали частоту европейских аллелей этих двух генов. Оба достигли частоты почти 100 % в Европе, и исчезающе редки на востоке Азии. Однако существуют азиатские популяции, антропологически и генетически близкие европейским, например часть коренного населения Шри-Ланки. Логично, что частота «европейских генов» должна у таких людей быть промежуточной. И действительно, западный вариант «гена рыбы-зебры» встречается в Шри-Ланке с частотой до 50 %, а также распространен у уйгуров — тюркского народа, живущего на северо-западе Китая, у которого имеется значительная европейская примесь.
Однако L374F, европейский вариант «гена японской рыбки», верен своим корням, и так же редок в Шри-Ланке, как на юге Китая или в Африке. И только у уйгуров частота L374F выросла до 20 %. Исследователи отметили, что «ген японской рыбки» настолько хорошо отделяет европейцев от других, что может служить маркером европейского происхождения в криминалистике. Если на месте преступления остались кровь или волос злоумышленника, нужно выделить ДНК из этого образца и посмотреть, какая аминокислота стоит на 374-й позиции белка MATP — лейцин или фенилаланин. Если второй вариант — значит, родители подозреваемого почти наверняка европейцы. В крайнем случае, уйгуры…

 

Частоты вариантов SLC24A5 и SLC45A2. EU — европейцы, XH — коса (Южная Африка), GH — Гана (Западная Африка), CH — китайцы, UY — уйгуры, SH — сингалы (Шри-Ланка), TA — тамилы (Шри-Ланка). Предковые варианты (111A для SLC24A5 и 374L для SLC45A2) обозначены светлым, производные аллели (111T для SLC24A5 и 374F для SLC45A2) — темным

 

Почему так? А потому, заключили японские исследователи, что «ген японской рыбки» играет в нашей пигментации наиболее важную роль. Попав на юг Азии в результате миграций или смешения, европейский вариант был быстро выкошен отбором — со светлой кожей на широте Шри-Ланки делать нечего.
Второй вывод, мне кажется, уже просто банален: оба наших «рыбьих гена» ответственны за посветление европейцев. Но китайцы, японцы и другие монголоиды светлели как-то иначе.
Вскоре последовали открытия генетических вариантов, руливших эволюцией на Востоке, в частности за светлую кожу у монголоидов отвечали специфические мутации в уже упоминавшемся гене OCA2.
Благодаря открытиям генетиков эволюция цвета кожи стала чуть ли не самым изученным примером параллельной эволюции у человека. Иначе говоря, такой эволюции, при которой у разных групп организмов сходные признаки возникают независимо и даже на разной генетической основе под действием близких условий среды. Древние мигранты из Африки, разошедшиеся на запад и восток, одинаково страдали от недостатка ультрафиолета — в итоге мы видим два случая посветления людей. Но два ли? Быть может, этим же путем гораздо раньше прошли другие колонизаторы Евразии? Не забегаем вперед. У ученых возникали и другие вопросы.
Темнокожие аборигены Австралии, папуасы, обитатели юго-востока Азии — может быть, они потемнели вторично? Ведь их предки обязаны были пройти через Евразию. Можно представить, что они посветлели, а потом, мигрировав на юг, снова стали черными.
Койсаны — бушмены и готтентоты на юге Африки обладают относительно светлой кожей. Этих своеобразных людей, хоть и не совсем корректно, иногда называют «самым древним народом планеты». Так их цвет кожи — исходный для человека?
А коренное население Америки? Как эволюционировал их цвет?
Как давно длится процесс депигментации людей, покинувших Африку? Начался ли он у некой протоевразийской популяции или уже после того, как разные группы разбрелись по континенту? Вроде бы выше были свидетельства в пользу второй версии, но ведь генов пигментации много, и пути их эволюции могут не совпадать.
Наконец, где и у кого возникли соответствующие мутации? Варианты: уже после «переезда» в Евразию, или еще в Африке, или вообще у неандертальцев, которые поделились этим сокровищем с нашими предками.

 

Приключения колюшки
Я хочу познакомить вас с еще одним геном, который можно было бы по аналогии с предыдущими двумя окрестить «геном колюшки»… Но боюсь, генетики меня точно поколотят, тем более название гена запоминающееся, хотя труднопроизносимое, — KITLG. Как мебель из ИКЕА. «Лиганд рецептора тирозинкиназы KIT». Также его называют геном стволового клеточного фактора (англ. stem-cell factor, SCF), или геном фактора роста клеток. Продукт этого гена влияет на развитие половых, нервных клеток, клеток крови, а также — что важно для нас — меланоцитов. Мутации в KITLG приводили к стальной расцветке у мышей, за что его еще окрестили «стальным фактором». В 1998 году американские генетики провели любопытный опыт: генетически модифицированным голым мышам пересадили кусочки светлой человеческой кожи — обрезки от пластических операций. Затем в эти участки кожи делали инъекции нормального человеческого SCF. Хотя визуально пигментация изменилась не сильно, анализ показал, что в сравнении с контрольными образцами число и размеры меланоцитов выросли, кроме того, пигментные клетки стали сильнее ветвиться.
Спустя девять лет ген KITLG привлек внимание специалистов, изучавших эволюцию трехиглой колюшки. Еще одна рыбка в нашей истории, которая крайне заинтересовала эволюционных биологов. Колюшка может жить и в морской, и в пресной воде, и в конце последнего ледникового периода — 10 000–11 000 лет назад эти рыбки широко расселились по планете, колонизировав множество озер в Северной Америке и Евразии. Получилась куча изолированных популяций, которым пришлось быстро приспосабливаться к новым условиям. Менялся их образ жизни, рацион, строение тела и, разумеется, расцветка. В озерах тихоокеанского побережья Америки возникло фактически два разных вида колюшки: один — придонный, а другой — добывавший пищу ближе к поверхности, который больше похож на морскую разновидность. Донный вид отличается белесыми жабрами и светлым брюшком, тогда как его поверхностный собрат гораздо темнее. Скрещивая разные формы рыбок и сравнивая их генотипы, исследователи пришли к выводу, что причина различий — вариации гена Kitlg, причем состав белка у светлых и темных рыбок совпадает, а мутации коснулись регуляторной части — у светлых колюшек экспрессия ослаблена, т. е. ген работает «вполсилы». Поскольку сходные изменения произошли у рыбок, обитающих как минимум в трех удаленных друг от друга озерах, получается, мы имеем дело с параллельной эволюцией, причем в данном случае причина — одни и те же аллели одного и того же гена. Эти варианты, по-видимому, возникли еще у морского предка озерных колюшек, но только при изменении их образа жизни оказались выгодными и распространились у придонных форм.
Трудно не усмотреть здесь параллелей с эволюцией человека. Как и колюшки, люди быстро расселялись по планете, попадали в новую среду и… меняли цвет. Исследователи знали, что у людей ген KITLG влияет на рост меланоцитов, а также, что у африканцев и европейцев аминокислотная последовательность гена одинаковая, однако экспрессия в Африке выше. Видите? Как и у рыбок, различия относятся к регуляции работы гена.
Чуть раньше ген KITLG вместе с несколькими другими генами пигментации попал в генетический топ-100 «Самый сильный естественный отбор у человека за последние 200 000 лет». Причем на этот раз отбор вариантов гена имел глобальный характер, коснулся и Европы, и Азии.
Ученые применили к людям подход, раньше опробованный на рыбках: взяли популяцию смешанного происхождения — 370 афроамериканцев. Для каждого фиксировали цвет кожи, определяли происхождение по генетическим маркерам, а затем смотрели вариант снипа rs642742, находящегося рядом с геном KITLG (предковый вариант снипа встречается в Западной Африке с частотой 92 %, а производный — у как минимум 86 % европейцев и азиатов). Самыми темными оказались гомозиготы — носители двух предковых вариантов, а самыми светлыми — двух производных, с разницей в шесть-семь единиц меланинового индекса.
Удивительно: между человеком и колюшкой огромная дистанция, и тем не менее получается, у обоих видов недавняя эволюция происходила путем сходных генетических изменений!
Авторы исследования высказывают интересные идеи об адаптивной роли гена. Ведь KITLG влияет не только на развитие меланоцитов, но и на множество других процессов в организме, включая функционирование мозга. У мышей — носителей мутантного гена возникали проблемы при ориентации в пространстве, а придонные колюшки из озера Пакстон (Канада) по сравнению со своими поверхностными родичами обладали бóльшими способностями к пространственному обучению (родился каламбур: «Ты, рыбка, мыслишь слишком поверхностно»). Быть может, отбор определенного варианта Kitlg происходил вовсе не из-за окраски, а благодаря повышенным способностям рыбок, необходимым для добывания корма в сложной среде? Правда, переносить эти идеи на людей нужно с большой осторожностью…
Прежде чем продолжить рассказ про наш «ген колюшки», хочу вернуться на несколько десятилетий назад и поведать вам про одну порядком забытую гипотезу. Зачем — скоро поймете.

 

Ультрафиолет или холод?
В 1975 году американские биологи Питер Пост, Фаррингтон Дэниэлс и Роберт Бинфорд опубликовали в журнале Human Biology статью, в которой привели интересную статистику по нескольким войнам. Оказывается, чернокожие солдаты, попав в холодный климат, гораздо чаще, чем их белые сослуживцы, отмораживали конечности. Так, во время Итальянской кампании 1944–1945 годов каждый третий случай обморожения в американской армии приходился на афроамериканцев. Во время Корейской войны чернокожие солдаты в 4–6 раз чаще попадали в госпиталь с обморожением, чем белые. Быть может, дело в культурных различиях? Вряд ли. В течение войны в Корее медик Л. М. Шуман собрал статистику более 700 случаев обморожения. Он скрупулезно зафиксировал все, включая время последней смены носков и стелек пострадавшего, а также — что особенно важно — данные по солдатам из того же блиндажа, бункера, танка. Так вот, даже когда представители разных рас находились в одинаковых условиях, африканцы особенно страдали от мороза. А после исцеления у многих негров в течение нескольких лет на пораженных морозом участках оставалась посветлевшая кожа.
Исследователи вспомнили и об экспериментах американца А. Сесила Тэйлора, который ставил опыты на черных крысах: охлаждал их кожу с помощью сухого льда. Меланоциты гибли, но волосы продолжали расти, хотя и обесцвеченные. Значит, пигментные клетки сильнее уязвимы для холода, чем волосяные фолликулы.
Авторы публикации поставили свой опыт: пегих морских свинок усыпляли, брили и обмораживали у них пигментированные и светлые участки кожи. На окрашенных частях кожа пострадала сильнее: эпидермис становился более тонким, появлялся отек, и повреждалось больше клеток. Исследователи пришли к выводу, что меланин делает кожу более уязвимой для холода. Кстати, не потому ли у северных популяций японских макак лица светлее, чем у их южных сородичей?
Стоит вспомнить, что многие животные, живущие на севере, светлые или становятся белыми зимой. Считается, что цель — маскировка на снегу, но, может быть, дело не только в этом? Возможно, и люди в Евразии посветлели от холода? Попав в суровые условия высоких широт, многие отмораживали себе конечности, а для охотника потеря подвижности и ловкости равносильна смерти. Выживали те, кто меньше мерз, — у кого в коже меньше меланина.

 

 

Про «холодовую» гипотезу благополучно забыли, но почему сейчас о ней вспомнил я? Ген KITLG выполняет много функций и, как выяснилось, еще и влияет на интенсивность «сжигания» бурого жира — так млекопитающие спасаются от переохлаждения. Когда мышь на ночь помещали в холод, уровень активности гена KITLG в бурой жировой ткани возрастал, при этом организм начинал выделять больше тепла. Вы подумали о том же, о чем и я? Что, если распространение определенных вариантов KITLG связано вовсе не с недостатком ультрафиолета, а с зимней стужей? Конечно, получается не совсем так, как в старой «холодовой» гипотезе. Кожа посветлела не потому, что меланин в мороз мешает. Меланин — отличная штука, просто тот вариант гена KITLG, который лучше сжигал жир в холод, оказался менее «меланинным». Иначе говоря, бледнокожесть — всего лишь побочный эффект морозостойкости. Ну или отбор работал сразу по обоим направлениям: и нехватка ультрафиолета, и низкие температуры помогли распространиться светлокожему аллелю KITLG.
Совсем недавно, в 2018 году, группа китайских исследователей взялась за проверку этой гипотезы. Ученые анализировали распределение вариантов гена KITLG, связанных с цветом кожи, в 19 популяциях Китая, Камбоджи и Таиланда. Как и Нина Яблонски, они искали корреляцию с уровнем ультрафиолета, но помимо этого, с другими факторами среды.
Все-таки нужно пояснить, что с чем сравнивали. Допустим, нас интересует некоторый снип в гене KITLG. Его предковый вариант (совпадающий с вариантом шимпанзе) — «T» (тимин), а производный — результат относительно недавней мутации, «А» (аденин). Мы можем посмотреть, как на определенной территории распределились эти два варианта, у каких популяций чаще встречается T, у каких А. И, если действовать в духе авторов исследования, поискать закономерность: может быть, производный вариант чаще встречается там, где ниже уровень ультрафиолета? Или там, где больше осадков? (В нашем случае производные варианты ассоциировались с более светлой кожей.)
Китайские ученые провели такой анализ для четырех снипов вблизи гена KITLG и обнаружили связь не только с УФ, но и с зимней температурой (за январь, усредненной за 22 года): производные аллели чаще встречались в местах, где зимой холоднее. Вы можете возразить: там, где холоднее, там и солнца меньше. Это верно, если мы берем, допустим, всю Евразию. Но в исследовании использовали азиатские популяции, занимающие узкий диапазон широт. На этой территории ученым не удалось найти зависимости между уровнем ультрафиолета и зимней температурой. И тем не менее для одного из снипов — rs4073022 — ассоциация с январским морозом оказалась даже сильнее, чем с УФ.
Любопытно, что, когда исследователи протестировали работу разных вариантов KITLG на культуре клеток, ген с производным вариантом именно этого снипа (rs4073022) был особенно активен при низкой температуре. Неужели вот она, мутация, которая сделала людей более устойчивыми к холоду?
По оценкам ученых, распространение этой мутации на востоке Азии началось 30 000 лет назад, а в Европе — 58 000 лет назад. Это древнее производных вариантов прочих генов пигментации и даже других снипов того же KITLG. Исследователи предположили, что разные аллели гена «отбирались» в разное время и по разным причинам, причем производный вариант rs4073022, с которым мы познакомились, стал распространяться еще в общей протоевразийской популяции, а фактором отбора в данном случае был не ультрафиолет, а холод.
Последнее утверждение ждет более тщательной проверки, и к датировкам я бы относился осторожно, поскольку их регулярно двигают. Однако картина согласуется с предыдущими исследованиями: эволюция светлой кожи в Евразии началась с гена KITLG.
В виде промежуточного резюме: по-видимому, первые шаги к посветлению наша кожа сделала у общих предков европейцев и азиатов вскоре после выхода из Африки. А когда пути восточных и западных ветвей человечества разошлись, эволюция светлокожести продолжилась в каждой группе.
Позже, в главе про цвет волос, мы еще встретимся с геном KITLG и узнаем, почему в прессе его успели обозвать «геном натуральных блондинок».

 

Индеец с китайцем братья навек
А что творилось в Новом Свете? Только что мы познакомились с примером параллельной эволюции в Евразии. Теперь случай иного рода: слишком многое говорит не только о внешнем сходстве американских индейцев и монголоидов, но и о близком родстве этих расовых групп. Археология подтверждает, что Северная и Южная Америка покорились человеку совсем недавно, какие-нибудь 15 000 лет назад. Мигранты шли, по-видимому, через «северный мост» — перешеек Берингию, находившийся в ледниковый период на месте нынешнего Берингова пролива. Генетический анализ подтвердил, что коренные американцы родственны жителям Восточной Азии. Логично ожидать, что и генетика пигментации у них сходна. Но это теоретически.
Чтобы прояснить вопрос, генетики опять обратились к популяциям, возникшим в результате смешивания разных рас. В таких группах генетическим вариациям соответствует разнообразие внешних признаков, а это — возможность изучать вклад тех или иных генов.
В свежем исследовании 2019 года анализу подверглись геномы более 6300 латиноамериканцев — жителей Бразилии, Колумбии, Чили, Мексики и Перу, для каждого из которых известны цвет кожи, волос и глаз. Для этих людей типична сильная индейская примесь: в среднем происхождение участника выборки на 48 % европейское, на 46 % — американское и на 6 % — африканское.
Светлее всего в среднем оказались, как ни странно, бразильцы, а самыми темными — мексиканцы. Вероятно, это связано с их родословной. Во всяком случае, в целом по выборке более светлая кожа сочеталась с высоким процентом европейской ДНК. В Бразилии также чаще всего встречаются светлые волосы и светлые глаза (40 % светлоглазых против 10 % в других странах).
В ДНК латиноамериканцев исследователи провели поиск генетических вариантов, влияющих на пигментацию этих людей. Ассоциации нашлись в нескольких участках генома, включающих гены, уже известные связью с цветом кожи, волос и глаз, такие как TYR и OCA2.
Один интересный участок расположен в гене MFSD12, мутации в котором связывают с развитием витилиго. Исследователи обнаружили вариант гена, распространенный только у восточных азиатов и у коренных американцев. Причем чем ниже уровень солнечного излучения, тем чаще на востоке Евразии встречается этот аллель. По оценкам ученых, отбор на данный вариант MFSD12 у азиатов начался около 11 000 лет назад.
Что имеем в результате? Ожидаемо, в силу близкого родства, генетика пигментации у коренных американцев оказалась сходной с азиатской. Даже слишком сходной! Пока что исследователям не удалось найти ни одного генетического варианта, специфического для Америки. А ведь Новый Свет простирается с севера на юг на огромной площади, и древние мигранты попадали в условия с радикально различающимся климатом. Да, это известная загадка — почему в Америке не возникло такого разнообразия типов пигментации, как в Старом Свете. Сравните норвежца с каким-нибудь кенийским масаем, а потом посмотрите на индейца севера США и на индейца из Амазонской низменности. Может быть, 15 000 лет недостаточно, чтобы возникли и распространились новые мутации?
В свете недавних открытий такое объяснение уже не кажется столь убедительным. Но об этом разговор впереди.

 

 

Не все африканцы одинаково черны
Остается нерешенным африканский вопрос. Как вы помните, разнообразие некоторых генов пигментации в Африке резко снижено. При этом на просторах Черного континента живут и самые темные на планете (скотоводы Восточной Африки), и довольно светлые люди — например, уже упоминавшиеся южноафриканские койсаны. Что тут первично?
Недавно вышло сразу два исследования, посвященные этой теме. Во-первых, подвергли анализу генетику цвета кожи койсанов — почти 500 бушменов и готтентотов. Исследователи попытались применить к этой группе модель на основе девяти снипов, используемую криминалистами в Европе и дающую хорошие предсказания цвета кожи. Однако методика «сломалась», для большинства койсанов никакого прогноза не получилось. Значит, генетика пигментации в Южной Африке устроена как-то совсем иначе, нежели у европейцев. Ученые выявили порядка 50 генов, влияющих на пигментацию койсанов, в том числе ранее неизвестных. И даже эти 50 описывали лишь небольшую часть изменчивости, т. е. реальное число генов, управляющих цветом кожи южноафриканцев, должно быть существенно больше. Видимо, пигментация бушменов и готтентотов сложна и запутанна, как и они сами: напомню, что эта группа считается самой генетически разнообразной в мире. Сходство с европейцами все же нашлось: у койсанов распространен производный вариант «гена рыбы-зебры» SLC24A5 — тот самый, который почти поголовно встречается у европейцев и ассоциирован со светлой кожей. Думаете, он достался бушменам от колонизаторов? Европейская примесь в койсанских геномах действительно есть — 9–11 %. Однако доля «светлокожего» аллеля — 40 % — существенно выше европейского вклада, так что только смешением с белыми ситуацию не объяснить. Исследователи не решаются выбрать из альтернатив: аллель возник в Южной Африке и потом попал в Европу? Наоборот, из Евразии проник в Африку, а там распространялся под действием отбора? Или, наконец, налицо параллелизм, сходные мутации, возникшие независимо в двух популяциях?
Авторы второго исследования собрали сведения о 2000 жителей Эфиопии, Танзании и Ботсваны. Для каждого фиксировался цвет кожи на внутренней стороне руки. Кроме того, 1570 африканцев из этой базы данных было генотипировано. Удалось обнаружить четыре области в геноме, мутации в которых, вероятно, влияли на цвет кожи. К исследованию подключили данные жителей Западной Африки, Евразии, Австралии и Меланезии из проекта «Тысяча геномов». И снова вариант «гена рыбы-зебры» SLC24A5, связанный у европейцев со светлой кожей, нашелся с высокой частотой (до 50 %) в некоторых популяциях Восточной Африки.
Еще один важный участок генома, обнаруженный в исследовании, содержит только что упоминавшийся ген MFSD12. Две мутации в гене, связанные с темной пигментацией, встречаются только у африканцев, чаще всего — у нило-сахарских народов. Анализ показал, что один из этих аллелей возник около 600 000 лет назад. Еще два «темных» полиморфизма обычны для африканцев (кроме бушменов), а также распространены у южных азиатов и австрало-меланезийцев. Генетики пришли к выводу, что оба этих варианта достались обитателям Австралии и Меланезии от африканских предков, а возникли почти 1 млн лет назад!
Два предковых полиморфизма в этом же участке — ассоциированных со светлой кожей — встречаются почти у всех европейцев и восточных азиатов, а также часты у бушменов, у эфиопских и танзанийских популяций афроазиатского происхождения.
Вот что необычно: раньше мы говорили об изменениях генов, приводивших к посветлению кожи. А тут речь о предковых «светлых» вариантах и о мутациях, усиливающих пигментацию. Но чему удивляться? Когда шерсть исчезла, предкам, скорее всего, пришлось темнеть. Как обычно, по мере накопления фактов наука переходит от простых моделей к более сложным.
У популяций с африканскими корнями ген MFSD12 работает менее активно, чем у прочих. Генетики провели эксперимент: они взяли меланоциты мышей и на 80 % подавили в них работу гена-ортолога MFSD12. В результате содержание эумеланина в пигментных клетках выросло на 30–50 %. Когда же ген выключили совсем, получились мыши с однородным серым мехом — в результате полного отсутствия феомеланина.
Итак, снижение активности гена MFSD12 приводит к росту содержания эумеланина, а отключение — к прекращению синтеза феомеланина. Как все непросто!
Но самое интересное вот что.
Во-первых, согласно результатам исследования, большинство аллелей, связанных с темной и светлой кожей, в человеческом генофонде появилось более 300 000 лет назад, т. е. еще до возникновения человека современного вида.
Во-вторых, я начал с того, что у MC1R в Африке почти нет вариаций, но предупредил, что на этом гене свет клином не сошелся. И в самом деле, новое исследование показало иную картину: варианты исследуемых генов (в их список не попал MC1R) у африканцев очень разнообразны. Более того, примерно половина предковых вариантов ассоциируется со светлой кожей.
Авторы заключили, что темная кожа — признак, приобретенный нашими исходно светлокожими предками… На этом месте расисты должны радостно закивать, но прошу дочитать фразу до конца: темная кожа — признак, приобретенный нашими исходно светлокожими предками около 2 млн лет назад, когда они утратили защитный волосяной покров. И, судя по датировкам мутаций (600 000 лет — одна, 1 млн лет — две других и т. д.), процесс потемнения был длительным. Лишившись шерсти, еще долго гоминины оставались заметно более светлыми, чем некоторые современные африканцы.
И еще один вывод из статьи: южные азиаты и австралоиды получили темную кожу напрямую в наследство от африканских предков.
Итак: светлокожесть возникала в эволюции человека неоднократно, минимум дважды. Но темная кожа — универсальный признак, сформировавшийся однажды в Африке и общий для всех экваториалов. Конечно, не нужно абсолютизировать полученные учеными результаты. Не исключено, что в ближайшем будущем новые открытия изменят картину, может быть, даже радикально ее перекроят. И все же позволю себе слегка неполиткорректный комментарий.
Западные исследователи, занимающиеся эволюцией цвета кожи, в своих работах, разумеется, осуждают расизм. Я тоже! Дальше пишутся примерно такие слова: людей столетиями разделяли и дискриминировали из-за того, что они цветные. Но цвет кожи, как видим, — адаптивный признак, быстро меняющийся в ответ на изменения среды. Поэтому нельзя судить о родственных связях групп людей из-за того, что они светлые или темные. Смотрите, об этом нам говорит генетика!
Вообще-то, генетика говорит, что светлая кожа развилась отдельно у европеоидов и монголоидов, которых вроде бы никто на основании цвета кожи объединять не собирался. Иронично, но именно генетика пигментации позволяет нам судить о родстве, т. е. общем происхождении темнокожих людей от Африки до Австралии, — хоть и не в том смысле, который понравился бы расистам. Одни и те же варианты одних и тех же генов обеспечивают достаточное количество меланосом, их размер, распределение и насыщенность пигментом, чтобы наилучшим образом защищать от вредного ультрафиолета эфиопа, нигерийца, пигмея мбути, дравида с юга Индии, аэта с Филиппин, папуаса или коренного австралийца. Мог ли один и тот же набор мутаций возникнуть дважды? Крайне маловероятно. На самом деле, это звучит парадоксально, ведь генетически аборигены Австралии и африканцы очень далеки друг от друга — их пути разошлись существенно раньше, чем пути европейцев и азиатов. Видимо, все дело в сильном стабилизирующем отборе. Вопреки «кошмару Дженкина», никакого размывания признака, остававшегося жизненно важным, не произошло за десятки тысяч лет. Фокус в том, что предки австралийцев, мигрируя из Африки на восток и двигаясь по берегу Индийского океана, не покидали тропических широт, поэтому что-то менять в работе генов, обеспечивающих цвет их кожи, не было никакой нужды. Совсем другое дело — популяции, отправившиеся на север. Естественный отбор при необходимости может менять наш геном и облик быстро. Даже шустрей, чем кажется.
Назад: Глава 36. Кто вы, мистер Холик?
Дальше: Глава 38. Очи черные, склеры белые