Во время войны довольно часто стреляли из винтовок по вражеским самолетам. Может показаться, что это безнадежное дело; о прицельной стрельбе здесь и речи быть не может, поскольку лишь пули, пробивающие бензобак или поражающие летчика, приносят результат. Было установлено, что вероятность удачного выстрела равнялась 0,001. Действительно мало. Но если стреляет одновременно много бойцов, то картина меняется.
Примеров, в которых нас интересует вероятность многократно осуществленного события, обладающего малой вероятностью, множество. Например, с задачей попадания в самолет из винтовки полностью совпадает задача о выигрыше в лотерею по нескольким билетам.
Каждая серия «выстрелов» может быть как неудачной, так и закончиться одной удачей, а то и несколькими. Соответствующее распределение вероятностей было найдено французским математиком Пуассоном.
В любом математическом справочнике вы найдете формулу Пуассона, а также таблицы, позволяющие найти интересующую вас вероятность без расчета.
Средняя частота – это результат, идеально совпавший с предсказанием теории вероятностей. Если вероятность выигрыша равняется 0,01, то из ста билетов выиграет 1, а из тысячи – 10. Единица и десять это и есть средние частоты выигрыша для серий в сто и тысячу билетов. Конечно, средняя частота может быть и дробным числом. Так, для серий в десять билетов при том же значении вероятности средняя частота выигрыша равняется 0,1. Это значит, что в среднем одна из десяти серий по десяти билетов будет содержать один выигрыш.
В таблицах Пуассона приводятся цифровые данные для всевозможных значений средних частот. Чтобы было ясно, в каком виде нам сообщаются эти сведения, и для общей ориентировки приведем несколько чисел, характеризующих распределение вероятности при средней частоте, равной единице. Вот эти числа.
Ста выстрелами при вероятности попадания в 0,01, или тысячью выстрелами при вероятности попадания в 0,001, или миллионом при вероятности в 0,000001, мы поразим цель один раз в 37 процентах случая, 2 раза в 18 процентах, 3 раза в 6 процентах… 8 раз лишь в 0,001 процента. А промахнемся сколько раз? Промахов точно столько же, сколько одноразовых попаданий, то есть 37 процентов.
Приведенные проценты, как и любые числа вероятностей, работают точно лишь для очень большого числа серий. Если миллион людей приобрел лотерейные билеты, выигрывающие с вероятностью в 0,01, то 37 процентов из них не выиграют ни разу, а 37 процентов других лиц обязательно выиграют по одному билету и так далее. Если же мы заинтересуемся выигрышами только 100 человек, то должны считаться с вероятными отклонениями от среднего. В «среднем» 37 из них не выиграют ни разу. Отклонения здесь от «среднего» не превысят 6 ≈ √37. А с такими отклонениями, как мы уже знаем, следует считаться и помнить, что число неудачников будет находиться между 31 и 43. Конечно, не исключены и большие отклонения в обе стороны, но их вероятность совсем уж невелика.
Узнав из условий розыгрыша, что в среднем на сотню лотерейных билетов один выигрывает, владелец билетов будет считать себя несчастливым, если на его 100 билетов выигрыш не упадет ни разу. Если же ему не повезет несколько раз, то он, возможно, заподозрит устроителей лотереи в несправедливости. Однако сделаем простой расчет. Если вероятность одного «промаха» равна 0,37 (37 %), то вероятность двух «непопаданий» равна квадрату этого числа (0,14), а трех – кубу (0,05). А это не такие уж малые доли, чтобы делать столь решительные выводы.
Мой знакомый – американский математик мистер В., ранее занимавшийся достаточно успешно приложениями теории вероятностей к вопросам структуры жидкостей, переменил область своей деятельности.
– Я занимаюсь теорией рекламы, – сообщил он мне при последней нашей встрече.
– И это интересно?
– Бесспорно. Здесь много занятных тонкостей.
– А, собственно говоря, что же является конечной целью теории?
– Хотя бы получение ответа на вопрос, который интересует любого нашего промышленника: сколько денег имеет смысл потратить на рекламу?
– Но каковы же математические методы, которые вы используете?
– Да все те же, с которыми я имел дело до сих пор. Теория рекламы, теория популярности актера, теория известности писателя, прогноз бестселлеров литературы – все это классический предмет теории вероятностей. Не я один, а много моих коллег заняты этим приложением теории вероятностей к проблемам нашей капиталистической действительности.
– Может быть, вы расскажете мне о наиболее интересных теоретических находках в этой области?
– С удовольствием. Надеюсь, мне не надо доказывать вам, что, прежде чем добиться того, чтобы вещь, или событие, или некая персона понравились, надо, чтобы они стали известными потребителю?
– Без сомнения.
– Поэтому не будем пока касаться проблемы «нравится», а остановимся на вероятности получения неким гражданином сведений о существовании сигарет «Честерфилд», лезвий для бритья фирмы «Вильсон», романа Агаты Кристи «Убийство по азбуке» или киноактрисы Бетти Симпсон. Мы оставим в стороне систематические знания, приобретаемые в результате обучения в школе или университете, и будем интересоваться лишь теми сведениями, которые люди приобретают «на ходу», не преследуя образовательных целей. На каждого из нас через разные каналы: радио, газеты, телевидение, болтовню с друзьями – обрушивается мощный поток информации, получаемой «по случаю». Фамилии актеров, названия книжных новинок, новых сортов сигарет, лезвий для бритья и многое другое мы узнаем большей частью случайно. В зависимости от размаха рекламы, от интереса, который общество проявляет к тому или иному «модному» предмету, имеется некоторая определенная вероятность о нем услышать. Эта вероятность более или менее одинакова для однородной группы населения – скажем, для жителей города, имеющих телевизоры и радиоприемники и выписывающих две-три наиболее распространенные газеты.
Разумеется, равная вероятность получить информацию вовсе не означает, что по истечении какого-либо срока все люди окажутся одинаково сведущими. Случайное получение информации очень похоже на лотерейный выигрыш. Действительно, среди тысячи обладателей по десяти лотерейных билетов окажутся лица, которые не выиграют ни разу, которые выиграют один раз, найдутся обладатели двух счастливых билетов, будут и такие везучие игроки, у которых выигрыши выпадут на три, четыре и более билетов. Так что…
– Вы хотите сказать, что вероятность «столкновения» с рекламой, вернее, не с рекламой, а с упоминанием о предмете или лице, известность которого обсуждается, подчиняется распределению Пуассона?
– Совершенно верно. Если, скажем, вероятность натолкнуться на соответствующую информацию в течение одного дня равна одной сотой, то через сто дней 37 процентов населения, так сказать, омываемого этим потоком информации, так и не столкнется с этой рекламой, другие 37 процентов встретятся с упоминанием о рекламируемом предмете 1 раз, 18 процентов – два раза, 6 процентов – три раза и так далее. Эти числа, как вы, конечно, помните, дает закон Пуассона. Значит, при вероятности узнавания, равной одной сотой в день, через сто дней обеспечивается известность среди 63 процентов населения?
– Не совсем так. У людей, к сожалению торговцев, память коротка, да и жизнь суматошная. С одного взгляда на рекламу мало кто запоминает рекламируемую вещь.
– Так что у вероятности узнавания имеется еще и второй множитель?
– Вот именно!
– А какова величина этой поправки на невнимательность?
– Разумеется, она различна в зависимости от того, о чем идет речь. Я могу вам сообщить, к примеру, данные, полученные из анализа анкет, распространявшихся среди телезрителей. Из этих данных была вычислена вероятность запоминания с одной встречи. Оказалось, что она колеблется между 0,01 и 0,1.
– Существенная поправка к распределению Пуассона!..
– Конечно. Судите сами: если подсчитать процент населения, который получит информацию через сто дней, то из 37 процентов «столкнувшихся» с рекламой один раз, информированными окажутся лишь 3,7 процента (если мы примем вероятность запоминания с одной встречи равной 0,1). Из 18 процентов «сталкивавшихся» с информацией два раза доля лиц, усвоивших рекламу, будет больше. Действительно, вероятность не запомнить с одного раза равна 0,9, а не запомнить после двух встреч равна квадрату этой величины, то есть 0,81. Запомнивших будет 0,19. Таким образом, процент информированного населения в нашем примере будет подсчитываться так:
37 · 0,1 + 18 · 0,19 + 6 · 0,27 +…
– Да, до 63 процентов далеко!..
– Вот этот коэффициент невнимательности и приводит к необходимости назойливой, торчащей на всех углах рекламы. Чтобы каждый потребитель узнал о товаре, он должен сталкиваться с соответствующей информацией очень часто.
– Мы все время говорим с вами об известности. Но ведь знать – это еще не значит предпочитать!
– Так-то оно так, – улыбнулся мой собеседник. – Но роль рекламы оказывается решающей. Недостаточная реклама означает малую известность, а малая известность влечет двойной проигрыш в конкурсе на высшую оценку. Первая причина ясна. Те, кто не знает, естественно, не могут подать голос за то, что им неизвестно. Вторая причина состоит вот в чем. Менее популярные вещи, книги, актеры, писатели… известны наиболее образованным людям. Но поскольку они образованны, они делают свой выбор среди значительно большего числа конкурентов. По этой причине вероятность высшей оценки предмета или объекта, который выбирается знатоками, становится меньше вероятности высшей оценки, которую выносит менее осведомленный судья.
– Я начинаю теперь понимать, почему в вашей стране тратят столько денег на рекламу!
– Еще бы!.. Вот вам простая числовая иллюстрация. Имеется 10 лучших ресторанов в городе. Из них два, скажем «Империал» и «Континенталь», разрекламированы много более других. Гурманы знают о существовании всех десяти ресторанов, которые примерно одинаково хороши. Случайные же посетители ресторанов, как правило ужинающие у себя дома, знают лишь о существовании «Империала» и «Континенталя». Положим, что тысяча человек собирается сегодня вечером поужинать вне дома. Из них 500 знатоков и 500 профанов. На первый взгляд может показаться, что менее разрекламированные рестораны не будут в проигрыше. Однако будут – и в очень большом! 500 профанов с вероятностью 1/2 выберут один из двух наиболее известных ресторанов. Из них 250 очутится в «Империале» и 250 в «Континентале». А 500 знатоков с вероятностью 1/10 выберут один из десяти ресторанов. Таким образом, в «Империале» и «Континентале» окажется по 300 человек, а в остальных 8 ресторанах – по 50. Как видите, наименее компетентные потребители играют решающую роль.
– Да, воистину реклама – двигатель торговли!
– Бог с ней, с торговлей. Меня огорчает во всем этом деле столь легкая возможность искажения истинной цены культуры. Как несправедливо получается, что в популярности человека искусства, произведения искусства самую последнюю роль играет мнение знатоков!
– Не забывайте, что такой вывод верен только в том случае, если реклама находится в нечестных руках. Если же знатоки будут влиять на то, чтобы объем рекламы был пропорционален заслугам, то все будет на своем месте!
– Это верно, – вздохнул мой собеседник, – но как этого у нас добиться?